
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(11): 32646–32673.
DOI: 10.3934/math.20241563
Received: 13 August 2024
Revised: 02 November 2024
Accepted: 07 November 2024
Published: 19 November 2024

Research article

Bayesian and non-Bayesian estimation of some entropy measures for a
Weibull distribution

Amal S. Hassan1,*, Najwan Alsadat2, Oluwafemi Samson Balogun3, and Baria A. Helmy4

1 Department of Mathematical Statistics, Cairo University, Faculty of Graduate Studies for Statistical
Research, Giza 12613, Egypt

2 Department of Quantitative Analysis, College of Business Administration, King Saud University,
P.O. Box 71115, Riyadh 11587, Saudi Arabia

3 Department of Computing, University of Eastern Finland, FI-70211, Finland
4 Department of Mathematics, Al-Azhar University (Girls Branch), Faculty of Science, Cairo 11651,

Egypt

* Correspondence: Email: amal52 soliman@cu.edu.eg.

Abstract: Entropy measures have been employed in various applications as a helpful indicator of
information content. This study considered the estimation of Shannon entropy, ζ-entropy, Arimoto
entropy, and Havrda and Charvat entropy measures for the Weibull distribution. The classical and
Bayesian estimators for the suggested entropy measures were derived using generalized Type II hybrid
censoring data. Based on symmetric and asymmetric loss functions, Bayesian estimators of entropy
measurements were developed. Asymptotic confidence intervals with the help of the delta method
and the highest posterior density intervals of entropy measures were constructed. The effectiveness
of the point and interval estimators was evaluated through a Monte Carlo simulation study and an
application with actual data sets. Overall, the study’s results indicate that with longer termination times,
both maximum likelihood and Bayesian entropy estimates were effective. Furthermore, Bayesian
entropy estimates using the linear exponential loss function tended to outperform those using other
loss functions in the majority of scenarios. In conclusion, the analysis results from real-world examples
aligned with the simulated data. Drawing insights from the analysis of glass fiber, we can assert that
this research holds practical applications in reliability engineering and financial analysis.

Keywords: Weibull distribution; ζ-entropy; Havrda and Charvat’s entropy; Bayesian estimation
Mathematics Subject Classification: 62F15, 62F30, 94A17

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241563


32647

1. Introduction

The Weibull distribution is of particular importance since it naturally follows the extreme value
theorem [1] and has a useful physical interpretation in numerous practical applications. In various
engineering applications, such as independent component analysis, image analysis, genetic analysis,
and time delay estimation, it is useful to estimate the entropy of a system or process given some
observations (see [2–5]). The cumulative distribution function (CDF) and probability density function
(PDF) of this distribution, for x > 0, are, respectively, as follows:

F(x) = 1 − e−λxβ , (1.1)

and
f (x) = βλxβ−1e−λxβ , (1.2)

where β > 0 is the shape parameter and λ > 0 is the scale parameter.
The entropy in the Weibull distribution for progressive censoring was analyzed by Cramer and

Bag [6], and Cho et al. [7] using generalized progressive Type II hybrid censored samples to develop
estimators for the entropy function of a Weibull distribution. Entropy estimation for an inverse
Weibull distribution using multiple censoring samples has been discussed by Hassan and Zaky [8].
The estimation of entropy for the Weibull distribution based on record values was considered by
Chacko and Asha [9].

It is advisable to end the test before all of the items fail because most trials in life are time- and
money-constrained. The observations arising from that situation are referred to as censored samples,
and many censoring methods exist. Two of the most prevalent forms of censorship are Type II (T-
II) and Type I (T-I). Childs et al. [10] combined T-I and T-II censoring to create a hybrid censoring
scheme (HCS), which is divided into two categories: T-I HCS and T-II HCS. These two variants
have been widely implemented in various research studies. Chandrasekar et al. [11] expanded these
methods by introducing two new forms, termed generalized T-I HCS (GT-I HCS) and generalized T-II
HCS (GT-II HCS). The GT-II HCS allows for a flexible censoring scheme that combines T-I and T-II
censoring, accommodating various censoring patterns observed in real-world data. In many practical
scenarios, data may exhibit a combination of T-I and T-II censorship due to different reasons, such as
administrative constraints, equipment failures, or study design considerations. For some recent studies,
see [12–14].

Entropy is a measure of uncertainty in a random variable and is used in information theory to
determine the expected value of the information contained in that random variable. In many fields,
including statistics, physics, chemistry, economics, insurance, financial analysis, and biological
phenomena, measuring entropy is important. Less information in a sample is referred to as having
more entropy. One of the most popular ways to estimate entropy is Shannon’s entropy. This measure
has proven to be successful in the research of many applications. One of Shannon’s measure’s biggest
drawbacks is that it could be negative for specific probability distributions, making it useless as a
measure of uncertainty. Measures of uncertainty, including ζ-entropy, Arimoto entropy, and Havrda
and Charvat entropy, which are the subject of our attention, are explained in Section 2.

Numerous academics have researched entropy estimates for various life distributions. Cui and
Ding [15] studied the convergence of Rényi entropy of the normalized sums of independent, identically
distributed random variables. Entropy estimators for a double exponential distribution were created by
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Kang et al. [16], and Cho et al. [17] addressed entropy estimates for the Rayleigh distribution using
double G-II HCS. Cho et al. [18] used generalized progressive T-II HCS to derive estimators for the
entropy measure of a Weibull distribution. Ahmadini et al. [19] examined a Bayesian estimator of
dynamic cumulative residual entropy based on the Parto II distribution. Entropy estimators for the
Lomax distribution have been considered, respectively, by Al-Babtain et al. [20], and Hassan and
Zaki [21]. Al-Omari et al. [22] used record data to investigate an entropy Bayesian estimator for an
extended inverse exponential distribution. For more recent studies, see [23–27].

The goal of this work is to examine the challenges associated with estimating uncertainty measures
of the Weibull distribution using the GT-II HCS. We were motivated to investigate this issue due to
the significance of the Weibull distribution in various fields, including survival analysis and reliability
engineering. Uncertainty measures are essential as they reflect the degree of confidence in the
estimates and help in making informed decisions in practical applications. Moreover, the GT-II HCS
provides flexibility, realism, efficiency, and a comprehensive analysis framework for studies in these
areas. Notably, there are no existing studies that have utilized the GT-II HCS in conjunction with
various entropy measures in this context. The current work will now be summarized as follows:
• The maximum likelihood (ML) and Bayesian estimators of Shannon entropy, ζ-entropy, Arimoto

entropy, and Havrda and Charvat entropy are addressed using the GT-II HCS.
• The asymmetric loss function (ASLOF) and the symmetric loss function (SLOF) are both used in

the formulation of the Bayesian estimator.
• Asymptotic confidence intervals (ACIs), based on the delta method, and the highest posterior

density (HPD) intervals are established.
• The complicated forms of different entropy estimates and how to construct the HPD intervals

need the use of the Metropolis-Hastings (M-H) algorithm in the Markov chain Monte Carlo (MCMC)
approach.
• To evaluate the performance of different entropy metrics, Monte Carlo simulations were conducted

using accuracy measures such as mean squared errors (MSEs), average lengths (ALs), and coverage
probabilities (CPs). Additionally, the inferential approaches presented in this paper were applied to
real-world data to demonstrate their effectiveness.

This paper is structured as follows: Section 2 provides the derivation of the formulae for the entropy
measures. Section 3 examines the four various kinds of entropy measurements under the GT-II HCS
using both classical and Bayesian techniques. Also, in Section 3, the MCMC procedure is used to get
the Bayesian estimates based on the Metropolis-Hastings algorithm. The discussion of the simulation
issue and its application using actual data sets is covered in Section 4. The paper concludes with a
series of final remarks and observations in Section 5.

2. Expressions of entropies

In this section, we derive analytical formulas for Shannon, Arimoto, Havrda and Charvat, and ζ-
entropy measures for the Weibull distribution.

Shannon entropy is defined as follows:

E1 = −

∫ ∞

−∞

f(x) ln f (x)dx. (2.1)
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Let X be a random variable following the Weibull distribution. Then from Eqs (1.2) and (2.1), and
according to Cho et al. [7], Shannon entropy takes the following form:

E1 = −

∫ ∞

0
(βλxβ−1e−λxβ) ln (βλxβ−1e−λxβ)dx

= − ln (βλ) +
(β − 1)
β

[γ + ln(λ)] + 1
(2.2)

where γ is the Euler constant.
ζ-entropy is a parametric extension of Shannon entropy. It was introduced by the physicist

Tsallis [28], and this type has several applications in physics, statistical mechanics econophysics, and
finance. For a random variable X with a PDF f (x), for ζ > 0, ζ , 1, the ζ-entropy (E2) measure is
defined as follows:

E2 =
1

ζ − 1

(
1 −

∫ ∞

−∞

f (x)ζdx
)
.

The expression of ζ-entropy of the Weibull distribution can be calculated from Eq (2) as follows:

E2 =
1

ζ − 1

(
1 −

∫ ∞

0
(βλxβ−1e−λxβ)ζdx

)
,

where the value of the integral is given by:

I =
∫ ∞

0
(βλxβ−1e−λxβ)ζdx

= (βλ)ζ
∫ ∞

0
(xβ−1e−λxβ)ζdx.

Let u = xβ, x = u
1
β , and dx = 1

β
u

1
β−1du, and then

I = (βλ)ζ
∫ ∞

0
(u

β−1
β e−λu)ζ(

1
β

u
1
β−1).

After simplification, I is as follows:

I = (
β

λ
−1
β

)ζ−1
Γ(ζ(1 − 1

β
) + 1

β
)

ζζ(1− 1
β )+ 1

β

,

where Γ(.) is the gamma function. Then the value of ζ-entropy is given by:

E2 =
1

ζ − 1

(
1 − (

β

λ
−1
β

)ζ−1
Γ(ζ(1 − 1

β
) + 1

β
)

ζζ(1− 1
β )+ 1

β

)
. (2.3)

Arimoto entropy is a generalized form of the well-known Shannon entropy and has several
applications in clustering, image processing, and data analysis. The characteristics of Arimoto’s (E3)
entropy [29] measure is given by:

E3 =
ζ

1 − ζ

[( ∫ ∞

−∞

f (x)ζdx
) 1
ζ − 1

]
.
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The value of Arimoto’s entropy is

E3 =
ζ

1 − ζ

[(
(
β

λ
−1
β

)ζ−1
Γ(ζ(1 − 1

β
) + 1

β
)

ζζ(1− 1
β )+ 1

β

) 1
ζ
− 1

]
. (2.4)

Havrda and Charvat (HC) entropy [30] represents an extension of Shannon entropy. This particular
extension is denoted as E4 entropy of degree ζ, ζ , 1, and is characterized by the following properties:

E4 =
1

21−ζ − 1

[ ∫ ∞

−∞

f (x)ζdx − 1
]
.

In the same way as Arimoto entropy, the value of E4 entropy is calculated as follows:

E4 =
1

21−ζ − 1

[(
(
β

λ
−1
β

)ζ−1
Γ(ζ(1 − 1

β
) + 1

β
)

ζζ(1− 1
β )+ 1

β

)ζ
− 1

]
. (2.5)

3. Estimation methods

In this section, we examine the entropies measures of the Weibull distribution using the ML and
Bayesian methods. When using the Bayesian method, we acquire the entropy measure estimators for
SLOF and ASLOF, and compute these estimators using the Metropolis-Hastings (M-H) algorithm.

3.1. ML estimator

The ML estimators for the Weibull distribution are obtained based on the GT-II HCS. The GT-II
HCS is explained as follows:

In the GT-II HCS, one sets r ∈ (1, 2, ..., n) and time T1,T2 ∈ (0,∞), where T1 < T2. If the rth failure
occurs before T1, then the termination time is T ∗ = T1, if the rth failure occurs between T1 and T2, then
the termination time is T ∗ = xr:n, and if the rth failure occurs after T2, the termination time is T ∗ = T2.

Therefore under the GT-II HCS, there are three forms of data:

Case 1 : x1:n < ... < xd1:n i f xr:n < T1;
Case 2 : x1:n < ... < xd1:n, ... < xr:n i f T1 < xr:n < T2;
Case 3 : x1:n < ... < xd2:n, .. < T2 i f xr:n ≥ T2.

Suppose in a life-testing study, there are n identical items, and let x1:n, x2:n, ..., xn:n represent the ordered
failure times of these items, T1,T2 ∈ (0,∞). Then the likelihood function of β and λ is as follows:

L(x|β; λ) =
n!

(n − D)!
[

D∏
i=1

f (xi:n)][1 − F(C)]n−D, (3.1)

where D is the number of total failures in the experiment up to time C and its value is given by:

(D; C) =


(d1,T1) for Case 1
(r, xr:n) for Case 2
(d2,T2) for Case 3

,
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where di denotes the number of failures that occurred until time Ti. Then inserting (1.1) and (1.2)
in (3.1) gives:

L(x|β; λ) =
n!

(n − D)!
[

D∏
i=1

βλxβ−1
i e−λxβi ][e−λCβ

]n−D. (3.2)

For a simplified form, replace xi:n with xi in Equation (3.2). By taking the logarithm of each side,
indicated by l, we have

l ∝ D ln(β) + D ln(λ) + (β − 1)
D∑

i=1

ln(xi) − λ
D∑

i=1

xβi − (n − D)λCβ. (3.3)

The derivatives of (3.3), owing to β and λ, allow us to obtain

∂l
∂β
=

D
β
+

D∑
i=1

ln(xi) − λ
D∑

i=1

xβi ln(xi) − (n − D)λCβ ln(C), (3.4)

and
∂l
∂λ
=

D
λ
−

D∑
i=1

xβi − (n − D)Cβ. (3.5)

To obtain the ML estimators of the two parameters, set (3.4) and (3.5) to zero and solve the resulting
system of equations. Equating (3.5) with zero, we have

D
λ̂
−

D∑
i=1

xβ̂i − (n − D)Cβ̂ = 0,

and this can be written as
λ̂ =

D∑D
i=1 xβ̂i + (n − D)Cβ̂

= A(β̂). (3.6)

Substituting from (3.6) into (3.4) and setting it to zero, we have

D
β̂
+

D∑
i=1

ln(xi) − A(β̂)
D∑

i=1

xβ̂i ln(xi) − A(β̂)(n − D)Cβ̂ ln(C) = 0. (3.7)

The ML estimator of β may be obtained iteratively by calculating the ML estimator from (3.7)
and then substituting it into (3.6) to compute the ML estimator of λ. Hence, based on the invariance
property, the ML estimator of E1, E2, E3, and E4 are produced by inserting β̂ and λ̂ in Eqs (2.2)–(2.5),
respectively, as follows:

Ê1 = − ln (β̂λ̂) +
(β̂ − 1)
β̂

[γ + ln(λ̂)] + 1, (3.8)

Ê2 =
1

ζ − 1

(
1 − (

β̂

λ̂
−1
β̂

)ζ−1
Γ(ζ(1 − 1

β̂
) + 1

β̂
)

ζ
ζ(1− 1

β̂
)+ 1

β̂

)
, (3.9)

Ê3 =
ζ

1 − ζ

[(
(
β̂

λ̂
−1
β̂

)ζ−1
Γ(ζ(1 − 1

β̂
) + 1

β̂
)

ζ
ζ(1− 1

β̂
)+ 1

β̂

) 1
ζ
− 1

]
, (3.10)
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and

Ê4 =
1

21−ζ − 1

[(
(
β̂

λ̂
−1
β̂

)ζ−1
Γ(ζ(1 − 1

β̂
) + 1

β̂
)

ζ
ζ(1− 1

β̂
)+ 1

β̂

)ζ
− 1

]
. (3.11)

To compute the ACIs, the asymptotic variance-covariance matrix (AV-CM) of β̂ and λ̂ can be obtained
by inverting the Fisher information matrix (FM) defined as the negative expected value of the second
derivative of the log-likelihood function.

Î(β̂, λ̂) = −E

 ∂2l
∂β2

∂2l
∂β∂λ

∂2l
∂λ∂β

∂2l
∂λ2


(β̂,λ̂)

.

It is difficult to find exact closed-form solutions for the given requirements. Therefore, the observed
Fisher information matrix Î(β̂, λ̂), obtained by removing the expectation operator E, will be used to
construct ACIs for the parameters, see [31]. The second partial derivative of the log-likelihood
function from the entries of the observed matrix is represented by

Î(β̂, λ̂) = −

 ∂2l
∂β2

∂2l
∂β∂λ

∂2l
∂λ∂β

∂2l
∂λ2


(β̂,λ̂)

.

The elements of the FM are obtained as follows:

∂2l
∂β2 =

−D
β2 − (n − D)λCβln(C)2 − λ

D∑
i=1

xβi (ln(xi))2,

∂2l
∂λ2 =

−D
λ2 ,

∂2l
∂λ∂β

= −

D∑
i=1

xβi ln(xi) − (n − D)λCβ ln(C).

To construct the AV-CM for the ML estimators, the observed FM is inverted as follows:

[
V̂
]
= Î−1(β̂, λ̂) =

 − ∂2l
∂β2 − ∂2l

∂β∂λ

− ∂2l
∂λ∂β

− ∂2l
∂λ2

−1

(β̂,λ̂)

=

[
−var(β̂) −cov(β̂, λ̂)
−cov(β̂, λ̂) −var(λ̂)

]
.

The two-sided 100(1 − ω)% ACI for β and λ can be constructed based on the asymptotic normality
conditions of the ML estimators as:(

β̂ ± Zω
2

√
var(β̂)

) (
λ̂ ± Zω

2

√
var(λ̂)

)
,

where Zω
2

is an upper ω
2 % of the standard normal distribution.

Additionally, we must ascertain the variations of the entropy measures to derive the ACI. We employ
the delta method described in [32] to obtain a rough estimate of the entropy measures. This method is
a statistical technique used to approximate the distribution of a nonlinear function of random variables
using derivatives. This method is based on the principle that a nonlinear function can be approximated
using its first derivative, allowing for the estimation of the variance of complex statistics.
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This methodology allows us to approximate the variance of E1, E2, E3, and E4 as follows:

var(Ê1) = [∇1Ê1]T [V̂][∇1Ê1], var(Ê2) = [∇2Ê2]T [V̂][∇2Ê2],

var(Ê3) = [∇3Ê3]T [V̂][∇3Ê3], var(Ê4) = [∇4Ê4]T [V̂][∇4Ê4],

where ∇iÊi =
(
∂Ei
∂β
, ∂Ei
∂λ

)
.

∂E1

∂β
=
−1
β
+

1
β2 [γ + ln(λ)],

∂E1

∂λ
=
−1
βλ
,

∂E2

∂λ
= λ

1
β−1

(
β

λ−
1
β

)ζ−2 Γ
(
ζ
(
1 − 1

β

)
+ 1

β

)
ζζ

(
1− 1

β

)
+ 1
β

,

∂E2

∂β
=
ζ
ζ(1−β)−1

β Γ
(

1+(−1+β)ζ
β

) (
β − log(ζ) − log(λ) + ψ

(
1+(−1+β)ζ

β

))
β3−ζλ

1−ζ
β

,

∂E3

dλ
= λ

1
β−1 ζ(ζ − 1

1 − ζ

(
β

λ−
1
β

)ζ−2 Γ
(
ζ
(
1 − 1

β

)
+ 1

β

) 1
ζ

ζζ
(
1− 1

β

)
+ 1
β

,

∂E3

dβ
=
ζ
−1+ζ−βζ

βζ Γ
(

1+(−1+β)ζ
β

) 1
ζ
(
−βζ + ζ log(λ) + log(ζ) − ψ

(
1+(−1+β)ζ

β

))
β3−ζλ

1−ζ
β

,

∂E4

dλ
= λ

1
β−1 ζ − 1

21−ζ − 1

(
β

λ−
1
β

)ζ−2 Γ
(
ζ
(
1 − 1

β

)
+ 1

β

)ζ
ζζ

(
1− 1

β

)
+ 1
β

,

∂E4

∂β
=

2ζ(−1 + ζ)ζ
−ζ+ζ2−βζ2

β Γ
(

1+(−1+β)ζ
β

)ζ (
−β + log(λ) + ζ log(ζ) − ζψ

(
1+(−1+β)ζ

β

))
(−2 + 2ζ)β3−ζλ

1−ζ
β

,

where ψ(z) = Γ
′(z)
Γ(z) is the digamma function.

The delta method is employed because it effectively approximates the distribution, simplifying the
variance computation for the entropy measures. It also facilitates estimating uncertainty and
constructing confidence intervals, especially when using ML estimates. Thus, the
two-sided 100(1 − ω)% ACI for E1, E2, E3, and E4 can be constructed as follows:(

Êi ± Zω
2

√
var(Êi)

)
, i = 1, 2, 3, 4.

3.2. Bayesian estimator

Since both β and λ are unknown and lack a natural conjugate bivariate prior distribution,
independent gamma distributions are assumed for each. Specifically, β is assigned a gamma
distribution with parameters (a1, b1) and λ with parameters (a2, b2). The means of these distributions
are given by a1

b1
for β and a2

b2
for λ.
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The joint prior distribution is as follows:

π(β, λ) =
1

Γ(β)Γ(λ)
βa1−1λa2−1e−(b1β+b2λ), (3.12)

where a1, b1, a2, and b2 are positive hyperparameters that represent prior knowledge.
The posterior distribution is given by

π∗(β, λ|x) = M1β
D+a1−1λD+a2−1e−(b1β+b2λ)[

D∏
i=1

xβ−1
i e−λxβi ][e−(n−D)λCβ

], (3.13)

which can be written as:

π∗(β, λ|x) = M1β
D+a1−1λD+a2−1e−b1βe−b2λ × [e(β−1)

∑D
i=1 ln(xi)−λ

∑D
i=1 xβi )][e−(n−D)λCβ

], (3.14)

and further simplified as:

π∗(β, λ|x) = M1β
D+a1−1λD+a2−1e−

∑D
i=1 ln(xi)e−β(b1−

∑D
i=1 ln(xi))e−λ[b2+

∑D
i=1 xβi +(n−D)Cβ], (3.15)

where

M−1
1 =

∫ ∞

0

∫ ∞

0
L(x|β, λ)π(β, λ)dβdλ

is the normalizing constant.
The marginal posterior distributions of β and λ are given by:

(1) Marginal posterior distribution of β:

π∗1(β|x) ∝ βD+a1−1e−β(b1−
∑D

i=1 ln(xi)) ×

∫ ∞

0
λD+a2−1e−λ[b2+

∑D
i=1 xβi +(n−D)Cβ]dλ, (3.16)

(2) Marginal posterior distribution of λ:

π∗2(λ|x) ∝ λD+a2−1e−λb2 ×

∫ ∞

0
βD+a1−1e−λ[

∑D
i=1 xβi +(n−D)Cβ]e−β(b1−

∑D
i=1 ln(xi))dβ. (3.17)

From the expressions in (3.15)–(3.17), the conditional posterior distribution of λ given β is:

π∗1(λ|β, x) ∝ λD+a2−1e−λ[b2+
∑D

i=1 xβi +(n−D)Cβ]. (3.18)

As a result, the gamma distribution with shape parameter (D + a2 − 1) and scale parameter (b2 +∑D
i=1 xβi + (n−D)Cβ) is the posterior density function of π∗1(λ|β, x). So, any gamma-producing technique

can be used to generate λ samples with ease. One cannot sample directly from π∗2(β|λ, x) as it cannot
be analytically reduced to well-known distributions. The MCMC method-based M-H algorithm is
employed to get an estimate.

AIMS Mathematics Volume 9, Issue 11, 32646–32673.



32655

3.3. Loss functions

One of the accuracy metrics used in the Bayesian estimating process is the loss function, which is
defined as the amount of loss incurred while making a Bayesian judgment for an unknown parameter.
It is a measurement of the discrepancy between this parameter’s estimated and actual values. Generally
speaking, loss functions may be divided into two primary categories based on symmetry criteria: First,
there are SLOFs, which assume that the loss incurred in a positive direction is equal to the loss incurred
in a negative direction. The second class of loss functions is known as ASLOFs; in this class, it is
assumed that the amount of loss under the Bayes decision in both the positive and negative directions
need not be equal.

This sub-section examines the Bayesian estimators of different entropy measures for both SLOFs
and ASLOFs. The squared error (SE) LOF is one of the most extensively utilized SLOFs. This kind is
appropriate for reducing the mean squared error since it penalizes greater mistakes more severely than
smaller ones. The SE LOF is provided as below:

L1(ϕ, δ) = (δ − ϕ)2,

where δ is an estimator of ϕ. In this situation, the Bayesian estimator is calculated as follows:

ϕ̂S E = E(ϕ|data). (3.19)

In the context of ASLOFs, the linear-exponential (LINEX) LOF exhibits less sensitivity to outliers
than the SE LOF, striking a compromise between bias and variance. The LINEX LOF is defined as
follows:

L2(ϕ, δ) = e−q(δ−ϕ) − q(δ − ϕ) − 1,

where q represents the sign that indicates the direction of asymmetry. Under the LINEX LOF, the
Bayesian estimator is provided by

ϕ̂LINEX =
−1
q

ln[E(e−qϕ|data)]. (3.20)

Another ASLOF is the general entropy (GE) LOF which provides a measure of dissimilarity
between probability distributions and is used to focus on maximizing the similarity between predicted
and actual distributions rather than minimizing prediction errors. The GE LOF has the following
formula:

L3(ϕ, δ) = (
δ

ϕ
)q − q log(

δ

ϕ
) − 1.

The Bayesian estimator via GE LOF is:

ϕ̂GE = [E(ϕ−q|data)]−
1
q . (3.21)

Now the entropy Bayesian estimators via SE, LINEX, and GE LOFs, are as follows:

ĴS E = M1

∫ ∞

0

∫ ∞

0
JβD+a1−1λD+a2−1e−b1β × e−b2λ+Ki(β,λ,xi)[e−(n−D)λcβ]dβdλ, (3.22)
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ĴLINEX =
−1
q

ln[M1

∫ ∞

0

∫ ∞

0
e−qJβD+a1−1λD+a2−1e−b1β × e−b2λ+Ki(β,λ,xi)(e−(n−D)λcβ)dβdλ], (3.23)

ĴGE =
[
M1

∫ ∞

0

∫ ∞

0
(J)−qβD+a1−1λD+a2−1e−b1β × e−b2λ+Ki(β,λ,xi)(e−(n−D)λcβ)dβdλ

] −1
q , (3.24)

where

Ki(β, λ, xi) = ((β − 1)
D∑

i=1

ln(xi) − λ
D∑

i=1

xβi ),

M1 is the normalizing constant, and to calculate the different entropy measures, we put J = E1, E2, E3,
and E4. It is important to note that all Bayesian entropy estimators are formulated as a ratio of two
integrals. These integrals cannot be simplified or calculated directly. Therefore, to compute these
estimators and to construct their HPD intervals, the MCMC method is employed.

3.4. MCMC method

The behavior of the ML estimates (MLEs) and Bayesian estimates (BEs) for the different measures
of entropy for the Weibull distribution was investigated numerically using various LOFs. Bayesian
estimators were calculated using the M-H algorithm under the SE, LINEX, and GE LOFs. Samples
were created from the posterior distributions using the MCMC method. The M-H algorithm proceeds
as follows:

(1) Put β0 = β̂.
(2) Let l = 1.
(3) λ(l) is obtained from gamma π∗1(λ|βl−1, x).
(4) Generate β(l) from π∗2(β|λl, x) using the same procedure of Metropolis-Hastings [33] and use the

normal distribution as a proposal distribution.
(5) Put l = l + 1.
(6) Calculate β(t) and λ(t).
(7) Repeat Steps 3 − 6 N times.
(8) Acquire the BEs of β and λ and obtain the entropy measure concerning the LOFs.

To compute the BEs, we implemented the MCMC algorithm with a dataset of N = 10000 observations.
Initially, we used the MLEs for the unknown parameters λ and β as starting values for the MCMC
algorithm. However, it is important to note that the initial values may differ from the final converged
values. Therefore, we discarded the first M = 1000 values to account for this discrepancy. To verify
the convergence of the MCMC samples and determine the burn-in period, we conducted diagnostic
tests, examined trace plots, and assessed posterior density plots for various parameters and censoring
schemes. These analyses helped us identify the burn-in period and ensure the convergence of the
MCMC algorithm before analyzing the data further.

The method proposed by Chen and Shao [34] is employed to construct the 100(1 − ω)% HPD
credible intervals for entropy measures.
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From Figures 1 and 2, the estimation demonstrates that all of the generated posteriors closely match
the theoretical posterior density functions, and it is evident that a big MCMC loop yields results that
are comparable and more effective than smaller loops. These plots have no significant lengthy upward
or downward trends, which are convergence markers.

Figure 1. The posterior sample trace plots for different measures of entropy.

Figure 2. The posterior sample histograms for different measures of entropy.
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4. Simulation analysis and outcomes

This section is dedicated to evaluating the performance of all previously suggested estimators for
entropy measures. To achieve this, a simulation study is conducted for estimation purposes.
Additionally, an analysis of actual data is provided to further support the study.

4.1. Simulation study

The MCMC simulations were performed to compare the estimates using Mathematica 12. Using
the following procedure, the simulation research is carried out.

(1) A random sample of sizes n = 150 and 250, with true parameter values

λ = 2.5, β = 1.5,

and entropy values

E1 = 0.267853, E2 = 0.183147, E3 = 0.27472, and E4 = 0.312651,

was generated from the Weibull distribution using the quantile function. The MLE of β was
obtained using an iterative technique based on Eq (3.7). Subsequently, the MLE of λ was derived
by substituting the estimated β̂ into Eq (3.6).

(2) Using the invariance property, the MLEs for the entropy values E1, E2, E3, and E4 were calculated
by inserting β̂ and λ̂ into Eqs (3.8)–(3.11), respectively. After obtaining these estimates, the 95%
ACIs, ALs, and CPs were computed.

(3) The BEs were then calculated using the proposed LOF through the M-H algorithm, as described
in subsection (3.4). The values of q were assumed to be (−4, 4). For the different measures of
entropy, the 95% HPD intervals, ALs, and CPs were calculated at ζ = 1.5 and 0.5.

(4) To enhance the stability of the model and simplify its complexity, fixed values for
the hyperparameters were chosen as

a1 = 0.6, b1 = 1.2, a2 = 2, and b2 = 0.4,

based on prior evidence supporting these values. The parameters n, r, T1, and T2 were selected
according to Table 1, and steps (1–4) were repeated 1000 times. The MSEs of the various
entropy estimates were then computed. The outcomes of the simulation study are recorded in
Tables 2–9.

Table 1. Selected values of n, r,T1, and T2.

n r T1 T2

250 200 (2, 5) 7
150 120 (2, 5) 7
250 (200, 170) 0.2 1.2
150 (120, 80) 0.2 1.2
250 200 1.5 (3, 7)
150 120 1.5 (3, 7)
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Table 2. Different entropy estimates and associated MSE at T1 = 0.2 and T2 = 1.2 under
different values of r at ζ = 1.5.

Entropy n r MLE SE LINEX GE

q = (−4) q = (4) q = (−4) q = (4)

E1 150 120 1.36712 1.51529 1.57698 1.4603 1.54341 1.46821

0.60911 0.61993 0.78749 0.47828 0.69251 0.5022

E2 0.19348 0.14388 0.15158 0.13615 0.17786 0.01169

0.0026 0.00428 0.00363 0.00507 0.00157 0.03013

E3 0.29022 0.21582 0.23314 0.19842 0.26679 0.01753

0.0059 0.00964 0.00754 0.01239 0.00353 0.0678

E4 0.33029 0.24562 0.26804 0.22307 0.30362 0.01995

0.0077 0.01249 0.00946 0.0166 0.00457 0.08781

E1 150 80 1.45558 1.59925 1.70715 1.51007 1.64329 1.52503

.43429 0.88746 1.21708 0.63845 1.01106 0.68956

E2 0.14164 0.12597 0.13823 0.1136 0.18205 0.00373

0.00183 0.00796 0.00644 0.00983 0.00175 0.03244

E3 0.21247 0.18895 0.2165 0.16107 0.27307 0.00559

0.0041 0.01791 0.01305 0.02451 0.00394 0.07299

E4 0.2418 0.21504 0.2507 0.17889 0.31078 0.00636

0.00532 0.0232 0.0162 0.03311 0.0051 0.09454

E1 250 200 1.41556 1.47743 1.51066 1.44628 1.49357 1.45048

0.42562 0.49233 0.57613 0.41596 0.53207 0.42718

E2 0.18265 0.16257 0.1671 0.15803 0.1816 0.05219

0.0188 0.0166 0.0147 0.019 0.0093 0.02149

E3 0.27397 0.24386 0.25404 0.23364 0.2724 0.07828

0.0423 0.0374 0.0312 0.0457 0.021 0.04836

E4 0.3118 0.27753 0.29072 0.26429 0.31001 0.08909

0.00547 0.0484 0.0395 0.0609 0.0272 0.06263

E1 250 170 1.43521 1.02243 1.03456 1.01037 1.03126 1.00721

0.7071 0.57443 0.59289 0.55637 0.58775 0.55186

E2 0.17722 0.46139 0.46597 0.45683 0.46873 0.44847

0.00349 0.0779 0.08047 0.07539 0.08202 0.07092

E3 0.26582 0.69208 0.70242 0.68185 0.7031 0.67271

0.00784 0.17527 0.184 0.16684 0.18454 0.15957

E4 0.30253 0.78764 0.80104 0.77439 0.80017 0.76559

0.01016 0.22701 0.23991 0.21462 0.23902 0.20668
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Table 3. Different entropy estimates and associated MSE at T2 = 7 under different values of
T1 at ζ = 1.5.

Entropy n T1 MLE SE LINEX GE

q = (−4) q = (4) q = (−4) q = (4)

E1 150 2 1.42207 1.10074 1.12712 1.07561 1.11805 1.07101

0.74852 0.71389 0.75988 0.67162 0.74317 0.66525

E2 0.18175 0.33537 0.3417 0.32909 0.34903 0.304

0.00373 0.02404 0.02599 0.02218 0.02829 0.01683

E3 0.27262 0.50306 0.51733 0.48895 0.52355, 0.45599

0.00838 0.0541 0.06077 0.0479 0.06366 0.03786

E4 0.31026 0.57252 0.59102 0.55425 0.59583 0.51895

0.01086 0.07006 0.07995 0.06098 0.08245 0.04904

E1 150 5 1.4257 1.09124 1.11732 1.06638 1.10857 1.06145

0.35491 0.696 0.74062 0.65491 0.72485 0.64805

E2 0.1727 0.33467 0.34102 0.32838 0.34835 0.30641

0.00347 0.02359 0.02554 0.02173 0.02785 0.01618

E3 0.25905 0.50201 0.51631 0.48787 0.52252 0.45961

0.0078 0.05307 0.05974 0.04687 0.06266 0.0364

E4 0.29482 0.57132 0.58986 0.55302 0.59467 0.52307

0.01011 0.06874 0.07862 0.05965 0.08116 0.04714

E1 250 2 1.42515 1.08207 1.09661 1.06792 1.09196 1.06535

0.5497 0.67419 0.69842 0.65104 0.6904 0.64724

E2 0.1791 0.35346 0.35724 0.34969 0.36132 0.33912

0.00256 0.02935 0.03065 0.02808 0.03207 0.02472

E3 0.26866 0.53018 0.53871 0.52171 0.54198 0.50868

0.00575 0.06603 0.07045 0.06178 0.07215 0.05562

E4 0.30575 0.60339 0.61444 0.59241 0.61682 0.57892

0.00745 0.08552 0.09206 0.07928 0.09345 0.07204

E1 250 5 1.43201 1.074 1.08855 1.05981 1.08398 1.0570

0.36655 0.66264 0.68669 0.63962 0.67882 0.63567

E2 0.16956 0.35109 0.35487 0.34733 0.35901 0.33668

0.00258 0.02859 0.02987 0.02734 0.03129 0.02401

E3 0.25435 0.52664 0.53516 0.51817 0.53851 0.50502

0.00581 0.06432 0.06868 0.06014 0.07039 0.05403

E4 0.28946 0.59935 0.6104 0.58839 0.61286 0.57474

0.00752 0.08331 0.08975 0.07717 0.09117 0.06998
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Table 4. Different entropy estimates and associated MSE at T1 = 1.5 under different values
of T2 at ζ = 1.5.

Entropy n T2 MLE SE LINEX GE

q = (−4) q = (4) q = (−4) q = (4)

E1 150 3 1.44174 1.10164 1.12749 1.07697 1.11865 1.07244

0.69463 0.71086 0.7555 0.66966 0.73956 0.66315

E2 0.17451 0.34042 0.34679 0.33409 0.35394 0.31117

0.00411 0.0254 0.02744 0.02346 0.02978 0.01788

E3 0.26176 0.51063 0.525 0.49642 0.53092 0.46676

0.00925 0.05716 0.06412 0.05069 0.067 0.04023

E4 0.2979 0.58113 0.59976 0.56274 0.60422 0.5312

0.01198 0.07404 0.08435 0.06454 0.08678 0.05211

E1 150 7 1.45241 1.09892 1.12479 1.07423 1.116 1.06958

0.41651 0.70499 0.74941 0.664 0.73368 0.65728

E2 0.16415 0.3389 0.34527 0.33257 0.35247 0.31123

0.0043 0.02485 0.02687 0.02293 0.02921 0.01722

E3 0.24623 0.50835 0.52272 0.49412 0.5287 0.46684

0.00967 0.05592 0.06282 0.0495 0.06572 0.03875

E4 0.28022 0.57853 0.59716 0.56012 0.6017 0.5313

0.01253 0.07243 0.08265 0.0630 0.08512 0.05019

E1 250 3 1.43076 1.0857 1.10019 1.07159 1.09552 1.06909

0.36052 0.67711 0.70126 0.654 0.69327 0.65021

E2 0.1783 0.35307 0.35684 0.34933 0.36091 0.33882

0.00213 0.02927 0.03056 0.02801 0.03197 0.02468

E3 0.26745 0.52961 0.5381 0.52119 0.54137 0.50823

0.00479 0.06585 0.07024 0.06164 0.07194 0.05553

E4 0.30438 0.60274 0.61373 0.59183 0.61612 0.5784

0.00621 0.0853 0.09178 0.0791 0.09317 0.07192

E1 250 7 1.43755 1.09109 1.10581 1.07676 1.10102 1.07429

0.35688 0.68555 0.71023 0.66196 0.702 0.6582

E2 0.17673 0.35121 0.35498 0.34746 0.35909 0.33684

0.00222 0.02865 0.02993 0.02741 0.03134 0.02408

E3 0.2651 0.52681 0.53531 0.51838 0.53864 0.50526

0.00499 0.06447 0.06882 0.0603 0.07052 0.05418

E4 0.3017 0.59955 0.61056 0.58863 0.61301 0.57502

0.00646 0.0835 0.08993 0.07737 0.09134 0.07018
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Table 5. Different entropy estimates and associated MSE at T1 = 0.2 and T2 = 1.2 under
different values of r at ζ = 0.5.

Entropy n r MLE SE LINEX GE

q = (−4) q = (4) q = (−4) q = (4)

E1 150 80 1.44582 1.603 1.73021 1.50082 1.65364 1.51755

0.40585 0.92552 1.32941 0.63469 1.06945 0.69625

E2 0.44828 0.39371 0.41826 0.37158 0.43654 0.25012

0.00698 0.01149 0.00913 0.01474 0.00655 0.06768

E3 0.22414 0.19686 0.20282 0.19119 0.21827 0.12506

0.00174 0.00287 0.00255 0.00326 0.00164 0.01692

E4 0.54112 0.47525 0.51149 0.4433 0.52695 0.30192

0.01017 0.01675 0.0128 0.02258 0.00955 0.09861

E1 150 120 1.43487 1.5157 1.57724 1.46066 1.54378 1.46853

0.37627 0.61997 0.78671 0.47843 0.69239 0.50217

E2 0.44775 0.41609 0.42997 0.40302 0.43997 0.36094

0.00522 0.00589 0.00495 0.00714 0.00406 0.01896

E3 0.22388 0.20805 0.21146 0.20473 0.21998 0.18047

0.00131 0.00147 0.00134 0.00162 0.00101 0.00474

E4 0.54049 0.50227 0.52262 0.48332 0.53109 0.43569

0.00761 0.00859 0.00699 0.01083 0.00591 0.02762

E1 250 170 1.44429 1.01809 1.03028 1.00595 1.027 1.0027

0.39576 0.5683 0.58679 0.5502 0.58168 0.5456

E2 0.43933 0.99617 1.02445 0.97078 1.0163 0.96342

0.00699 0.29079 0.32224 0.26396 0.31289 0.2566

E3 0.21966 0.49809 0.50495 0.49158 0.50815 0.48171

0.00175 0.0727 0.07646 0.06922 0.07822 0.06415

E4 0.53032 1.20248 1.24422 1.16586 1.22679 1.16296

0.01019 0.42372 0.48007 0.37722 0.45592 0.3739

E1 250 200 1.42666 1.07694 1.09132 1.06292 1.08678 1.06027

0.5947 0.46296 0.48666 0.44027 0.47897 0.43631

E2 0.4528 0.75476 0.76948 0.74095 0.76889 0.73139

0.00397 0.08851 0.09748 0.08049 0.09706 0.07525

E3 0.2264 0.37738 0.381 0.37387 0.38445 0.3657

0.00099 0.02213 0.02322 0.0211 0.02427 0.01881

E4 0.54658 0.91107 0.93268 0.89108 0.92814 0.88287

0.00578 0.12897 0.14495 0.11502 0.14143 0.10965
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Table 6. Different entropy estimates and associated MSE at T2 = 7 under different values of
T1at ζ = 0.5.

Entropy n T1 MLE SE LINEX GE

q = (−4) q = (4) q = (−4) q = (4)

E1 150 2 1.43621 1.08769 1.11309 1.0634 1.10461 1.05858

0.38391 0.68731 0.73053 0.64734 0.71542 0.64047

E2 0.44669 0.74201 0.76687 0.71968 0.76569 0.70293

0.00752 0.08279 0.09771 0.07048 0.09677 0.06223

E3 0.22335 0.37101 0.37704 0.36528 0.38284 0.35146

0.00188 0.0207 0.02247 0.01909 0.02419 0.01556

E4 0.5392 0.89569 0.93237 0.86347 0.92427 0.84851

0.01096 0.12064 0.14747 0.09936 0.141 0.09068

E1 150 5 1.45913 1.11113 1.13795 1.08562 1.12859 1.08114

0.33642 0.63146 0.67869 0.58809 0.66129 0.58194

E2 0.44216 0.7227 0.74673 0.70098 0.74627 0.68352

0.00626 0.07177 0.08517 0.06067 0.08473 0.05273

E3 0.22108 0.36134 0.36719 0.35579 0.37313 0.34175

0.00157 0.01794 0.01953 0.01649 0.02118 0.01318

E4 0.53374 0.87237 0.90781 0.84102 0.90082 0.82508

0.00913 0.10457 0.12865 0.08539 0.12345 0.07684

E1 250 2 1.42519 1.08909 1.10364 1.07491 1.09892 1.07243

0.44944 0.68529 0.70973 0.66191 0.70155 0.65823

E2 0.46296 0.75583 0.77058 0.74198 0.76997 0.73241

0.00409 0.08983 0.0989 0.08172 0.09843 0.07648

E3 0.23148 0.37791 0.38154 0.3744 0.38498 0.3662

0.00102 0.02246 0.02356 0.02142 0.02461 0.01912

E4 0.55884 0.91237 0.93402 0.89231 0.92943 0.88409

0.00996 0.13089 0.14704 0.11679 0.14342 0.11143

E1 250 5 1.43915 1.08467 1.09935 1.07035 1.09464 1.06776

0.3813 0.67743 0.70194 0.65398 0.69382 0.65014

E2 0.44599 0.74805 0.76262 0.73437 0.76216 0.72469

0.0048 0.08519 0.09392 0.0774 0.09356 0.07223

E3 0.22299 0.37402 0.37761 0.37055 0.38108 0.36234

0.0012 0.0213 0.02236 0.0203 0.02339 0.01806

E4 0.53835 0.90297 0.92436 0.88316 0.92001 0.87478

0.007 0.12414 0.13968 0.11058 0.13633 0.10525
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Table 7. Different entropy estimates and associated MSE at T1 = 1.5 under different values
of T2 at ζ = 0.5.

Entropy n T2 MLE SE LINEX GE

q = (−4) q = (4) q = (−4) q = (4)

E1 150 3 1.4405 1.10344 1.12943 1.07871 1.12043 1.07437

0.924 0.71613 0.76153 0.67439 0.745 0.66824

E2 0.17586 0.34206 0.34844 0.33572 0.35556 0.31302

0.00344 0.02604 0.02809 0.02408 0.03042 0.01859

E3 0.26378 0.5131 0.52749 0.49886 0.53337 0.46953

0.00774 0.0586 0.06561 0.05207 0.06846 0.04182

E4 0.3002 0.58394 0.60258 0.56552 0.607 0.53439

0.01002 0.07589 0.08627 0.06632 0.08866 0.05418

E1 150 7 1.44209 1.10927 1.13531 1.08448 1.12627 1.08014

0.79386, 0.62524 0.67072 0.58337 0.65418 0.57719

E2 0.17903 0.34127 0.34767 0.33492 0.35482 0.31269

0.00275 0.02572 0.02778 0.02376 0.03012 0.01796

E3 0.26854 0.51191 0.52633 0.49764 0.53222 0.46903

0.00844 0.05787 0.0649 0.05134 0.06777 0.04041

E4 0.30562 0.58259 0.60129 0.56412 0.60571 0.53379

0.01093 0.07496 0.08536 0.06537 0.08778 0.05234

E1 250 3 1.42874 1.08905 1.10354 1.07494 1.09884 1.07249

0.55561 0.78152 0.77575 0.67835 0.79771 0.6946

E2 0.18196 0.3545 0.35827 0.35075 0.36231 0.34031

0.00272 0.02977 0.03107 0.0285 0.03248 0.02516

E3 0.27294 0.53175 0.54025 0.52332 0.54347 0.51047

0.00611 0.06697 0.0714 0.06272 0.07309 0.0566

E4 0.31062 0.60517 0.61618 0.59426 0.61851 0.58095

0.00792 0.08675 0.09329 0.08049 0.09466 0.07331

E1 250 7 1.43871 1.094 1.10877 1.07963 1.10393 1.07719

0.38096 0.6932 0.71814 0.66939 0.70972 0.66574

E2 0.17714 0.3506 0.35439 0.34684 0.35853 0.33616

0.00238 0.02842 0.0297 0.02718 0.03111 0.02385

E3 0.26571 0.5259 0.53443 0.51744 0.53779 0.50424

0.00535 0.06395 0.06829 0.05977 0.07001 0.05365

E4 0.3024 0.59852 0.60956 0.58756 0.61204 0.57386

0.00693 0.08282 0.08925 0.07669 0.09067 0.06949
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Table 8. The 95% ACI and HPD intervals for entropy measures at ζ = 1.5.

Entropy n ACI HPD
Interval AL CP Interval AL CP

E1 150 r = 120 1.32397(1.54377) 0.2198 0.92 1.204 (1.8658) 0.6618 0.9
E2 0.07005 (0.27138) 0.20133 0.96 0.02202 (0.26484) 0.24282 0.94
E3 0.10508 (0.40707) 0.30199 0.96 0.03303 (0.39726) 0.36423 0.94
E4 0.11958 (0.46327) 0.34369 0.96 0.03759 (0.45212) 0.41452 0.94
E1 150 r = 80 1.31453 (1.58589) 0.27136 0.953 1.2048 (2.05354) 0.84873 0.935
E2 0.04964 (0.29784) 0.2482 0.97 -0.02797 (0.27811) 0.30608 0.96
E3 0.07447 (0.44676) 0.3723 0.97 -0.04195 (0.41717) 0.45912 0.96
E4 0.08475 (0.50845) 0.4237 0.97 -0.04774 (0.47477) 0.52251 0.96
E1 250 r = 200 1.33008 (1.50104) 0.17096 0.912 1.24128 (1.73582) 0.49454 0.89
E2 0.10495 (0.26035) 0.1554 0.93 0.06898 (0.25542) 0.18644 0.925
E3 0.15742 (0.39053) 0.23311 0.93 0.10347 (0.38313) 0.27967 0.925
E4 0.17916 (0.44445) 0.26529 0.93 0.11776 (0.43603) 0.31828 0.925
E1 250 r = 170 1.30827 (1.56216) 0.25389 0.95 0.87087 (1.17569) 0.30482 0.930
E2 0.0614 (0.29303) 0.23163 0.97 0.36874 (0.5565) 0.18775 0.942
E3 0.0921 (0.43955) 0.34745 0.97 0.55311 (0.83474) 0.28163 0.943
E4 0.10481 (0.50024) 0.39543 0.97 0.62948( 0.95) 0.32051 0.942
E1 150 T1 = 5 1.28738( 1.55676) 0.26939 0.952 0.88645 (1.33038) 0.44393 0.92
E2 0.05928 (0.30422) 0.24494 0.971 0.22668( 0.4469) 0.22022 0.91
E3 0.08892 (0.45633) 0.36741 0.971 0.34002( 0.67035) 0.33033 0.912
E4 0.10119 (0.51934) 0.41814 0.971 0.38697(0.76291) 0.37594 0.912
E1 150 T1 = 2 1.29124 (1.56016) 0.26892 0.94 0.87814 (1.32003) 0.44189 0.94
E2 0.04976 (0.29565) 0.24589 0.98 0.22572 (0.44618) 0.22046 0.95
E3 0.07464 (0.44347) 0.36883 0.98 0.33858 (0.66927) 0.3307 0.95
E4 0.08494 (0.5047) 0.41976 0.98 0.38532 (0.76168) 0.37636 0.95
E1 250 T1 = 5 1.32001 (1.53028) 0.21027 0.88 0.92047 (1.25225) 0.33179 0.92
E2 0.08331 (0.2749) 0.19158 0.92 0.26901 (0.43942) 0.17041 0.92
E3 0.12497 (0.41235) 0.28738 0.92 0.40351 (0.65913) 0.25562 0.92
E4 0.14222 (0.46928) 0.32705 0.92 0.45923( 0.75014) 0.29091 0.92
E1 250 T1 = 2 1.32681 (1.53722) 0.21041 0.931 0.91238 (1.24443) 0.33205 0.94
E2 0.07314 (0.26599) 0.19285 0.96 0.26679 (0.43719) 0.1704 0.94
E3 0.10971 (0.39898) 0.28927 0.96 0.40018 (0.65578) 0.25561 0.94
E4 0.12486 (0.45407) 0.32921 0.96 0.45543 (0.74633) 0.2909 0.94
E1 150 T2 = 7 1.30623 (1.57724) 0.27101 0.93 0.88947 (1.3293) 0.43983 0.92
E2 0.05067 (0.29834) 0.24767 0.95 0.23143 (0.45226) 0.22083 0.94
E3 0.076 (0.44751) 0.37151 0.95 0.34715 (0.67839) 0.33124 0.94
E4 0.0865 (0.5093) 0.42281 0.95 0.39508 (0.77205) 0.37697 0.94
E1 150 T2 = 3 1.31687 (1.58794) 0.27108 0.93 0.88647 (1.32694) 0.44047 0.93
E2 0.03946 (0.28884) 0.24937 0.94 0.22951 (0.45066) 0.22115 0.92
E3 0.0592 (0.43326) 0.37406 0.94 0.34427 (0.67599) 0.33172 0.92
E4 0.06737 (0.49308) 0.42571 0.94 0.39181 (0.76933) 0.37752 0.92
E1 250 T2 = 7 1.3256 (1.53593) 0.21033 0.93 0.92428 (1.25566) 0.33138 0.94
E2 0.08241 (0.27419) 0.19178 0.95 0.26889 (0.43892) 0.17003 0.951
E3 0.12362 (0.41129) 0.28767 0.95 0.40334 (0.65838) 0.25504 0.951
E4 0.14068 (0.46808) 0.32739 0.95 0.45903(0.74928) 0.29025 0.951
E1 250 T2 = 3 1.33245 (1.54265) 0.2102 0.952 0.92852 (1.26253) 0.33402 0.972
E2 0.08078 (0.27268) 0.1919 0.98 0.26694 (0.437) 0.17005 0.973
E3 0.12118 (0.40902) 0.28784 0.98 0.40042 (0.6555) 0.25508 0.97
E4 0.13791 (0.4655) 0.32759 0.98 0.4557 (0.746) 0.2903 0.972
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Table 9. The 95% ACI and HPD intervals for entropy measures at ζ = 0.5.

Entropy n ACI HPD
Interval AL CP Interval AL CP

E1 150 r = 120 1.32451 (1.54522) 0.22071 0.912 1.20353 (1.86439) 0.66086 0.94
E2 0.31014 (0.58536) 0.27522 0.93 0.26572 (0.58693) 0.3212 0.952
E3 0.15507 (0.29268) 0.13761 0.93 0.13286 (0.29346) 0.1606 0.951
E4 0.37438 (0.7066) 0.33222 0.93 0.32076 (0.70848) 0.38773 0.952
E1 150 r = 80 1.30054 (1.59109) 0.29055 0.92 1.18112 (2.09479) 0.91367 0.94
E2 0.2672 (0.62936) 0.36215 0.95 0.19976 (0.62205) 0.42229 0.96
E3 0.1336( 0.31468) 0.18108 0.95 0.09988 (0.31103) 0.21114 0.96
E4 0.32254 (0.7597) 0.43716 0.95 0.24114 (0.75088) 0.50975 0.960
E1 250 r = 200 1.32132 (1.53199) 0.21067 0.90 0.91591 (1.24612) 0.33021 0.938
E2 0.32109 (0.58451) 0.26342 0.96 0.60057 (0.93122) 0.33065 0.941
E3 0.16055 (0.29225) 0.13171 0.96 0.30029 (0.46561) 0.16532 0.94
E4 0.38759 (0.70556) 0.31797 0.96 0.72496 (1.12409) 0.39913 0.941
E1 250 r = 170 1.31742 (1.57116) 0.25374 0.951 0.86563 (1.17167) 0.30604 0.95
E2 0.28194 (0.59672) 0.31479 0.98 0.78845 (1.24102) 0.45257 0.95
E3 0.14097 (0.29836) 0.15739 0.98 0.39422( 0.62051) 0.22629 0.951
E4 0.34033 (0.72031) 0.37998 0.98 0.95174 (1.49804) 0.5463 0.951
E1 150 T1 = 5 1.32346( 1.5948) 0.27135 0.292 0.89618 (1.34279) 0.44661 0.90
E2 0.27375 (0.61058) 0.33683 0.95 0.53076 (0.94919) 0.41843 0.94
E3 0.13687( 0.30529) 0.16842 0.95 0.26536(0.47461) 0.20924 0.94
E4 0.33044 (0.73704) 0.40659 0.95 0.64065 (1.14576) 0.5051 0.94
E1 150 T1 = 3 1.30039 (1.57202) 0.27163 0.891 0.87685 (1.31329) 0.43644 0.88
E2 0.27726 (0.61612) 0.33886 0.94 0.54827 (0.9726) 0.42433 0.93
E3 0.13863 (0.30806) 0.16943 0.94 0.27414 (0.4863) 0.21217 0.93
E4 0.33468 (0.74373) 0.40905 0.94 0.66182 (1.17403) 0.51221 0.93
E1 250 T1 = 5 1.31995 (1.53043) 0.21048 0.94 0.92732 (1.25933) 0.33201 0.97
E2 0.33064 (0.59527) 0.26462 0.97 0.60102 (0.93213) 0.33111 0.96
E3 0.16532 (0.29763) 0.13231 0.97 0.30051 (0.46607) 0.16556 0.96
E4 0.39912 (0.71855) 0.31943 0.97 0.72549 (1.12518) 0.39969 0.96
E1 250 T1 = 2 1.33397 (1.54433) 0.21036 0.88 0.92234 (1.25581) 0.33347 0.89
E2 0.31502 (0.57695) 0.26194 0.91 0.59443 (0.92381) 0.32939 0.92
E3 0.15751 (0.28848) 0.13097 0.91 0.29721 (0.46191) 0.16469 0.92
E4 0.38026 (0.69645) 0.31619 0.91 0.71753 (1.11514) 0.3976 0.92
E1 150 T2 = 7 1.30473 (1.57627) 0.27154 0.93 0.89139 (1.33151) 0.44012 0.94
E2 0.05189 (0.29982) 0.24793 0.96 0.23277 (0.45373) 0.22096 0.95
E3 0.07784 (0.44973) 0.37189 0.96 0.34912 (0.68059) 0.33146 0.95
E4 0.08858 (0.51183) 0.42324 0.96 0.39734 (0.77451) 0.37717 0.95
E1 150 T2 = 3 1.30623 (1.57796) 0.27172 0.94 0.89652 (1.33842) 0.44189 0.93
E2 0.05519 (0.30286) 0.24767 0.97 0.23189 (0.45337) 0.22149 0.94
E3 0.08279 (0.45429) 0.3715 0.97 0.34783 (0.68006) 0.33223 0.94
E4 0.09422 (0.51701) 0.42279 0.97 0.39585 (0.77396) 0.37811 0.94
E1 250 T2 = 7 1.32349 (1.53398) 0.21048 0.92 0.92772 (1.25923) 0.33151 0.956
E2 0.08622 (0.2777) 0.19149 0.96 0.27025 (0.44047) 0.17022 0.981
E3 0.12932 (0.41655) 0.28723 0.96 0.40537 (0.6607) 0.25533 0.981
E4 0.14718 (0.47407) 0.32689 0.96 0.46134 (0.75193) 0.29058 0.951
E1 250 T2 = 3 1.33356 (1.54387) 0.21031 0.91 0.93109 (1.26572) 0.33463 0.899
E2 0.08117 (0.27311) 0.19194 0.945 0.26625 (0.43669) 0.17044 0.91
E3 0.12176 (0.40967) 0.28791 0.945 0.39937 (0.65503) 0.25566 0.912
E4 0.13857 (0.46623) 0.32766 0.945 0.45451 (0.74547) 0.29096 0.912
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4.2. Simulation results

Here are some observations on the MLEs and BEs of entropy measure performance as shown in
Tables 2–9 above.

(1) The MSEs of MLEs and BEs decrease when T1 increases for all entropy measures in most cases
and this satisfies Case 1 in the GT-II HCS.

(2) The MSEs of MLEs and BEs decrease when r increases for all entropy measures in most cases
and this satisfies Case 2 in the GT-II HCS.

(3) The MSEs of MLEs and BEs decrease when T2 increases for all entropy measures in most cases
and this satisfies Case 3 in the GT-II HCS (see Tables 2–7). Additional clarification is available
in Figures 3–6.

Figure 3. The MSEs of Shannon entropy at n = 250 and different values of r.

Figure 4. The MSEs of ζ-entropy at n = 250 and different values of r.

Figure 5. The MSEs of Arimoto entropy at n = 250 and different r values.
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Figure 6. The MSEs of HC entropy at n = 250 and different values of r.

(4) In most circumstances, the BEs of all entropy measurements under LINEX LOF provide the best
values and are greater than data gathered under other LOFs (see Tables 2–7).

(5) The MSE at ζ = 1.5 is smaller than the MSE at ζ = 0.5 for most entropy measurements, and as
the value of ζ increases, the BEs of all entropy measurements improve (see Tables 2–7).

(6) The BEs of all entropy measurements under LINEX LOF and GE LOF (q = −4) provide more
information, exhibiting smaller MSE values and consequently less uncertainty in most cases (see
Tables 2–7). Further explanation is available in Figure 7.

Figure 7. The MSEs of BEs at n = 150 and r = 120 for all entropy measures under three
LOFs.

(7) Estimating entropy measures for the Weibull distribution aids in analyzing reliability data,
enabling better decision-making regarding product reliability and risk assessment. Bayesian
entropy estimates can also be utilized to analyze financial data involving Weibull distributions,
helping evaluate financial risk and time-to-event outcomes.

(8) The developed estimators can be applied to analyze survival data in medical studies, contributing
to understanding disease progression and patient outcomes.

(9) As seen in Tables 8 and 9, the length of the interval decreases and the CP values drop as the
values of r,T1, and T2 increase. The CPs of the BEs for the entropy measures are smaller than
those corresponding to the MLEs.

4.3. Data analysis

This paper is structured as a case study in which we look at some fiber strength data. The sample
consists of experimental data from the National Physical Laboratory in England on the strength of 1.5-
cm-long glass fibers. The data set is obtained from Alizadeh et al. [35]:
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0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42,
1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61,
1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77,
1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

According to the Kolmogorov-Smirnov goodness of fit test applied to this genuine data, the Weibull
distribution matches the data where the p-value = 0.53 and the statistic value = 0.0311. Figure 8
illustrates the estimated PDF and CDF of the Weibull distribution.

Figure 8. Estimated PDF and CDF of the Weibull distribution.

We will now examine what occurs if the data are censored. Using this data set, we produce three
artificial GT-II HCS sets in the manner described below:

Case 1 : T1 = 1.5,T2 = 2, r = 30 where D = 32,C = T1 = 1.5.
Case 2 : T1 = 1.5,T2 = 2, r = 40 where D = 40,C = xr = 1.63.
Case 3 : T1 = 1.5,T2 = 2, r = 60 where D = 55,C = T2 = 2.

For entropy measurements in these situations, we applied ML and Bayesian techniques. We employed
the MCMC algorithm with a dataset of N = 10000 observations and M = 1000 as burn-in at various
LOFs. To compute the BEs, we utilize a non-informative prior because we do not know anything about
the priors. We take a1 = b1 = a2 = b2 = 0.0001, which are almost identical to Jeffrey’s prior as
mentioned by Congdon [36]. The value of ζ is selected as ζ = 1.5.

The BE of entropy via LINEX LOF and the GE LOF at q = −4 have a large value as shown in
Table 10. In the end, it is concluded that the actual data matches the simulated research findings.
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Table 10. MLEs and BEs of different entropy measures under the GT-II HCS.

Entropy MLE SE LINEX GE
q = (4) q = (−4) q = (4) q = (−4)

E1 0.87621 0.80134 0.81222 0.79066 0.81134 0.78419
E2 Case 1 0.43147 0.49738 0.50214 0.49264 0.50444 0.48498
E3 0.64721 0.74759 0.75809 0.7372 0.75794 0.72962
E4 0.73657 0.85118 0.86477 0.83793 0.8629 0.83111

E1 0.8699 0.74041 0.75034 0.73028 0.75034 0.72235
E2 Case 2 0.32401 0.43615 0.4409 0.43133 0.44414 0.42118
E3 0.48601 0.65422 0.66488 0.64335 0.66621 0.63178
E4 0.55312 0.74455 0.75835 0.73046 0.7582 0.71901

E1 0.77377 0.61321 0.6271 0.5993 0.62968 0.58181
E2 Case 3 0.32039 0.37454 0.38353 0.36519 0.39153 0.3149
E3 0.48059 0.56181 0.58189 0.54052 0.5873 0.47235
E4 0.54695 0.63938 0.6653 0.61165 0.66839 0.53757

5. Conclusions

Entropy is a useful metric for measuring information uncertainty. Likewise, in the fields of
survival analysis and reliability engineering, the Weibull distribution is a crucial lifetime model. Thus
this work examines the maximum likelihood and Bayesian estimators of Shannon entropy, ζ-entropy,
Arimoto entropy, and Havrda and Charvat entropy for the Weibull distribution using the GT-II HCS.
The Weibull distribution’s entropy expressions are established in Section 2. In classical estimation,
the ML estimators of parameters are first derived, next the ML entropy estimators may be acquired
through the invariance property, and then the ACIs are calculated in terms of their average length and
CPs. In Bayesian estimation, the SLOF and the ASLOF are selected. Nevertheless, computing the
forms of Bayesian estimators and HPD is challenging due to their complexity. This issue is resolved
by applying the MCMC techniques, specifically employing the M-H algorithm. The numerical results
lead to the following conclusions:

• The MLEs and BEs for different entropy measurements show a decreasing trend in their MSEs as
the termination time increases in most scenarios.
• Bayesian estimates under different LOFs outperform the MLEs for all entropy measurements in

the majority of cases, indicating superior performance.
• Bayesian estimates of entropy measurements using LINEX and GE LOFs at q = −4 exhibit a high

level of uncertainty, suggesting potential challenges in estimating entropy under these conditions.
• The CPs of the BEs for the entropy measures are smaller than that corresponding to the MLEs

and the average length of the intervals decreases when the sample size increases.
• The results obtained from the analysis of real data examples align with those from the simulated

data, indicating the reliability and validity of the findings across different data sets.

One of the study’s drawbacks is that it only considers the Weibull distribution when utilizing both
classical and Bayesian estimation approaches under the GT-II HCS. Furthermore, simulation studies
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are conducted using large sample sizes. Future research could explore alternative probability
distributions beyond the Weibull distribution and investigate the performance of different loss
functions in entropy estimation. Additionally, alternative methods such as the Lindley and
Tierney-Kadane approximation methods could be considered for calculating entropy measures.
Furthermore, conducting simulation studies with both small and large sample sizes would provide a
comprehensive understanding of the behavior of entropy estimation methods across different data
scenarios.
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