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and Epanechnikov exponential (EP-EX) marginal distribution, denoted by EP-EX-FGM. The EP-EX
distribution is a complementing distribution, not a rival, to the exponential (EX) distribution. Its simple
function shape and dependence on a single scale parameter make it an ideal choice for marginals
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are examined, including product moments, coefficient of correlation between the internal variables,
moment generating function, conditional distribution, concomitants of order statistics (OSs), mean
residual life function, and vitality function. In addition, we calculated reliability and information
measures including the hazard function, reversed hazard function, positive quadrant dependence
feature, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy.
Estimating model parameters is accomplished by utilizing maximum likelihood, asymptotic confidence
intervals, and Bayesian approaches. Finally, the advantage of EP-EX-FGM over the bivariate Weibull
FGM distribution, bivariate EX-FGM distribution, and bivariate generalized EX-FGM distribution is
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1. Introduction

The use of bivariate distributions is essential in a wide variety of fields since they are used to
represent and analyze the relationship between random variables (RVs). A substantial quantity of
research is involved in developing bivariate distributions. Morgenstern [31] introduced a
straightforward technique for creating a two-variable set of distributions by utilizing marginal values.
Farlie [14] introduced a broader version of Morgenstern’s approach, referred to as the FGM family of
distributions. Several researchers have devised and investigated numerous bivariate distributions. For
example, a new bivariate Fréchet distribution based on FGM and Ali-Mikhail-Haq copulas was
proposed by Almetwally and Muhammed [4]. Furthermore, based on the FGM copula, Almetwally
et al. [5] introduced a bivariate Weibull distribution and obtained some properties of it. Using
generalized OSs, Nagy et al. [32] examined the statistical properties of the q-Weibull distribution in
univariate and bivariate situations. Recently, Fayomi et al. [15] derived several structural statistical
properties for a novel family of bivariate continuous Lomax generators.

Sklar [39] proposed a joint distribution function (JDF) of given two RVs W1 and W2 by using a
copula C(u, v), and the two marginals DFs FW1(w1) = P(W1 ≤ w1) and FW2(w2) = P(W2 ≤ w2) as

FW1,W2(w1,w2) = C(FW1(w1),FW2(w2)). (1.1)

When the JDF is absolutely continuous, we get

fW1,W2(w1,w2) = fW1(w1)fW2(w2)c(FW1(w1),FW2(w2)), (1.2)

where fW1,W2(w1,w2) is the joint probability density function (JPDF) of FW1,W2(w1,w2) and c(u, v) is the
PDF of the copula C(u, v) (for more details about copula and the Sklar theorem, see Barakat et al. [9],
Iordanov and Chervenov [22], Joe [24], and Nelsen [33].

One of the most widespread and beneficial copula is the FGM copula C(u, v) = uv[1 + δ(1 − u)(1 −
v)], 0 ≤ u, v ≤ 1, − 1 ≤ δ ≤ 1, (cf. Nelsen, [33], Eq 3.2.10). The corresponding bivariate DF is the
FGM model

FW1,W2(w1,w2) = FW1(w1)FW2(w2)
[
1 + δF̄W1(w1)F̄W2(w2)

]
, (1.3)

where F̄Wi(wi) is the survival function (or the reliability function F̄Wi(wi) = P(Wi > wi)) of FWi(wi), i =
1, 2. The PDF of the distribution (1.3) is given by

fW1,W2(w1,w2) = fW1(w1)fW2(w2)
[
1 + δ(2FW1(w1) − 1)(2FW2(w2) − 1)

]
. (1.4)

Thanks to the simple shape of the FGM copula, this copula provides numerous benefits when
modeling bivariate distributions. The FGM copula has its versatility in representing a broad spectrum
of dependence structures. Finance, actuarial science, and bioinformatics are a few fields where the
FGM copula is used (cf. Teugels, [41]). Furthermore, the FGM copula enables the creation of
bivariate distributions that encompass a diverse set of marginals, including both continuous and
discrete marginals, cf. Nelsen [33]. In addition, the FGM copula has a straightforward structure,
making it computationally efficient and straightforward to implement in practical applications, cf.
Joe [24]. The FGM distribution is a flexible and valuable family in applications as long as the
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correlation between the variables is not too high. Schucany et al. [37] showed that the correlation
coefficient, ρ, between the two marginal DFs FW1(w1) and FW2(w2) satisfies −1

3 ≤ ρ ≤
1
3 , whenever

these margins are continuous distributions with bounded nonzero variances. Additionally, for uniform
margins, ρ reaches its maximum, 1

3 .

In statistics, a parsimonious model fits the data well by utilizing a small number of independent
variables, as well as a small number of unknown parameters. Models that are parsimony aim towards
simplicity. This idea is consistent with Occam’s razor, which states that if there are two possible
explanations for a given situation, the simplest one is typically correct. The parsimony principle, when
used in statistical models, seeks to explain data with the fewest number of parameters while yet offering
essential advantages.

Alkhazaalh and Al-Zoubi [6] proposed a new continuous distribution using the Epanechnikov kernel
function and the EX distribution. Therefore, this distribution was named the Epanechnikov-exponential
distribution and is denoted as the EP-EX distribution. The DF and PDF of the EP-EX distribution are
respectively given by

FW(w;φ) =
1
2

(
e−3φw − 3e−2φw

)
+ 1, φ > 0, w > 0, (1.5)

and

fW(w;φ) =
3φ
2

(
2e−2φw − e−3φw

)
, φ > 0, w > 0, (1.6)

where φ is the scale parameter. The EP-EX distribution is considered a parsimonious model with no
shape parameter like the EX distribution. Furthermore, the EX and EP-EX distributions have an
analytically straightforward shape. Alkhazaalh and Al-Zoubi [6] demonstrated that the EP-EX
distribution (1.5) is more adaptable and powerful than the EX distribution through an application to an
actual data set. However, theoretically, each of the two distributions can describe groups of various
kinds of data sets, meaning that neither is superior to the other because the kurtosis, 7.7734, and
skewness, 1.7945, of the EP-EX distribution are smaller than the kurtosis, 9, and skewness, 2, of the
EX distribution, respectively. This makes the two distributions complementary to each other rather
than competitors. However, the EP-EX distribution has a non-constant hazard function, unlike the EX
distribution, which gives the EP-EX distribution an advantage in processing the reliability data.
Alkhazaalh and Al-Zoubi [6] showed that the mean, variance, and moment generating function
(MGF) of EP-EX distribution are given, respectively, by

µ = E(W) =
7

12φ
, Var(W) = σ2

W =
43

144φ2 , and MW(t) =
3φ

2φ − t
−

3φ
2(3φ − t)

, φ >
t
2
.

Two parsimonious and complementary bivariate DFs that may describe different kinds of bivariate
data sets are obtained using the FGM copula and the EX and EP-EX marginals. Each of these models
has a single shape parameter, δ. We concentrate on the second model with the EP-EX marginals here
because the first model with the EX marginals has been well-examined in the literature (e.g., see EX-
FGM as a special case of Weibull-FGM bivariate DF introduced by Almetwally et al. [5]). We examine
this model from several statistical angles and information theory.
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The paper is organized in the following manner. Sections 2 and 3 provide a detailed description of
the distributional characteristics of the EP-EX-FGM model. Furthermore, Section 4 explores the
reliability measures, such as the hazard function, reversed hazard (RH) function, and positive
quadrant dependence feature. Moreover, recent information measures such as bivariate extropy,
bivariate weighted extropy, and bivariate cumulative residual extropy (bivariate CREX) are evaluated.
Section 5 employs the maximum likelihood (ML) and Bayesian techniques to estimate the parameters
of the model. Furthermore, the model’s parameter is calculated using confidence intervals based on
asymptotic methods. In Section 6, Monte Carlo simulations were employed to approximate the ML
and Bayesian estimators. The evaluation of bivariate real-world data sets in Section 7 produced
outstanding outcomes. Section 8 serves as the conclusion of the paper.

2. The Epanechnikov-exponential FGM distribution

Let W1 ∼ EP-EX(φ1) and W2 ∼ EP-EX(φ2). Thus, according to (1.1), the JDF of bivariate EP-EX
based on FGM copula, denoted by EP-EX-FGM(φ1;φ2), is given by

FW1,W2(w1,w2)=
(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)(

1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
)[

1 + δ
1
1

×

(
1 −

(
1
2

(e−3φ1w1 − 3e−2φ1w1)+1
))(

1−
(
1
2

(e−3φ2w2 − 3e−2φ2w2)+1
))]
. (2.1)

Moreover, according to (1.2), the corresponding JPDF of the JDF (2.1) is given by

fW1,W2(w1,w2) =
9φ1φ2

4

(
2e−2φ1w1 − e−3φ1w1

) (
2e−2φ2w2 − e−3φ2w2

) [
1 + δ

1
1

×

(
1−2

(
1
2

(e−3φ1w1−3e−2φ1w1)+1
))(

1−2
(
1
2

(e−3φ2w2−3e−2φ2w2)+1
))]
. (2.2)

The 3D Figure 1 illustrates the JPDF for specific parameter values. The graphs depicted in Figure 1
illustrate the remarkable wealth and versatility of this family since it is capable of handling several
forms of data.
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(a) φ1 = 0.4 , φ2 = 0.4 , δ = 0.9 (b) φ1 = 0.4 , φ2 = 0.4 , δ = −0.9

(c) φ1 = 1.5 , φ2 = 1 , δ = 0.5 (d) φ1 = 1 , φ2 = 1.5 , δ = −0.5

(e) φ1 = 3 , φ2 = 1.5 , δ = 0.2 (f) φ1 = 3 , φ2 = 1.5 , δ = −0.2

(g) φ1 = 0.1 , φ2 = 0.9 , δ = 0.3 (h) φ1 = 0.9 , φ2 = 0.4 , δ = −0.6

Figure 1. EP-EX-FGM JPDF dimensions.
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3. Properties of EP-EX-FGM

3.1. Moments

It is easy to show that the (s1, s2)th, s1, s2 = 1, 2, ..., product moments of the EP-EX-FGM(φ1; φ2)
are given by

E(W s1
1 W s2

2 ) =
9φ1φ2

4

∫ ∞

0

∫ ∞

0
ws1

1 ws2
2

(
2e−2φ1w1 − e−3φ1w1

) (
2e−2φ2w2 − e−3φ2w2

) [
1 + δ

1
1

×

(
1 − 2

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
))(

1 − 2
(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]

dw1dw2

=
9Γ(1 + s1)Γ(1 + s2)

4φs1
1 φ

s2
2

[
(2−s1 − 3−s1−1)(2−s2 − 3−s2−1) + δ

(
6−s1−1(1 + 2s1+1)

+ 2−s1(3 × 2−s1−1 − 1) − 5−s1
)(

6−s2−1(1 + 2s2+1) + 2−s2(3 × 2−s2−1 − 1) − 5−s2
)]
.

(3.1)

Thus, by using (3.1) at s1 = s2 = 1, we get

E(W1W2) =
49

144φ1φ2

[
1 + δ

4489
19600

]
.

Therefore, the coefficient of correlation between W1 and W2 is

ρW1 ,W2
=

4489
17200

δ ≈ 0.261δ.

We notice that ρW1 ,W2
= 0 when δ = 0, which implies that W1 and W2 are independent. The maximum

and minimum values of ρW1 ,W2
from EP-EX-FGM(φ1; φ2) are 0.261 and −0.261, respectively.

By using (2.2), the MGF of W1 and W2 is given by

MW1,W2(r1, r2) =
∞∑

i=0

ri
1

i!

∞∑
j=0

r j
2

j!
9Γ(1 + i)Γ(1 + j)

4φi
1φ

j
2

[
(2−i − 3−i−1)(2− j − 3− j−1) + δ

(
6−i−1(1 + 2i+1)

+2−i(3 × 2−i−1 − 1) − 5−i
) (

6− j−1(1 + 2 j+1) + 2− j(3 × 2− j−1 − 1) − 5− j
)]
.

3.2. Conditional distribution and concomitants of OSs

After simple algebra, the conditional PDF and DF of W2 given W1 = w1 are respectively given by

fW2 |W1(w2|w1) =
3φ2

2

(
2e−2φ2w2 − e−3φ2w2

) [
1 + δ

(
1 − 2

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
))

×

(
1 − 2

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]
,

AIMS Mathematics Volume 9, Issue 11, 32299–32327.
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and

FW2 |W1(w2|w1)=
(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
) [

1 + δ
(
1 − 2

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
))

×

(
1 −

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]
.

Consequently, for the EP-EX-FGM(φ1; φ2), the regression curve for W2 given W1 = w1 is

E(W2|W1 = w1) =
7

12φ2

[
1 −

67δ
140

(
1 − 2

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
))]
.

Thus, the conditional expectation is non-linear with respect to w1.

The concomitants are a vital tool when selection and prediction problems are involved. The idea
of concomitants of OSs was first proposed by David [12]. Many studies have been published on the
concomitants of the OS model. Researchers such as Abd Elgawad et al. [2], Barakat et al. [8, 10], and
Scaria and Nair [36] have studied this issue.

Let (W1i,W2i), i = 1, 2, ..., n, be a random sample from a continuous bivariate DF FW1,W2(w1,w2).
If we denote W1r:n as the rth OS of the W1 sample values, then the W2 values associated with W1r:n

are called the concomitants of the rth OS and are denoted by W2[r:n], r = 1, 2, ..., n. The PDF of the
concomitant of the rth OS is given by

f2[r:n](w2) =
∫ ∞

−∞

fW2 |W1(w2|w1)f1r,n(w1)dw1,

where f1r,n(w1) is the PDF of the rth OS of W1i, i = 1, 2, ..., n. Thus, the PDF of W2[r:n] is given by

f2[r:n](w2)=
∫ ∞

w1=0
fW2 |W1(w2|w1)f1r,n(w1)dw1

=

∫ ∞

w1=0

fW2,W1(w2,w1)
fW1(w1)

f1r,n(w1)dw1

=
n!

(r − 1)!(n − r)!

∫ ∞

w1=0

fW2,W1(w2,w1)
fW1(w1)

fW1(w1)
[
FW1(w1)

]r−1 [
1 − FW1(w1)

]n−r dw1

=
9φ1φ2

4
n!

(r − 1)!(n − r)!

∫ ∞

w1=0

(
2e−2φ1w1 − e−3φ1w1

) (
2e−2φ2w2 − e−3φ2w2

)
[1 + δ

×

(
1 − 2

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)) (

1 − 2
(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]

×

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)r−1 (

−1
2

(e−3φ1w1 − 3e−2φ1w1)
)n−r

dw1

=
3φ2

2

(
2e−2φ2w2 − e−3φ2w2

) [
1 + δ

(
n − 2r + 1

n + 1

) (
1 − 2

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]
.

Also, the MGF of W2[r:n] is given by
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MW2[r:n](t)=
∫ ∞

w2=0

3φ2

2
etw2

(
2e−2φ2w2 − e−3φ2w2

)
×

[
1 + δ

(
n − 2r + 1

n + 1

) (
1 − 2

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]

dw2

=
3
2
φ2

(
1

t − 3φ2
−

2
t − 2φ2

)
−

3δφ2(n − 2r + 1)
(

1
t−3φ2
+ 6

t−4φ2
− 5

t−5φ2
+ 1

t−6φ2
− 2

t−2φ2

)
2(n + 1)

.

The ℓth moment of W2[r:n] is given by

µ(ℓ)
[r:n] =

∫ ∞

w2=0

3φ2

2
wℓ2

(
2e−2φ2w2 − e−3φ2w2

)
×

[
1 + δ

(
n − 2r + 1

n + 1

) (
1 − 2

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
))]

dw2

= 2−ℓ−13−ℓ
(
3ℓ+1 − 2ℓ

)
φ−ℓ2 Γ(ℓ + 1)

+
4−ℓ−115−ℓ

(
5ℓ

(
2ℓ + 22ℓ+1 + 3ℓ+2 − 6ℓ+1

)
− 22ℓ+13ℓ+1

)
δφ−ℓ2 Γ(ℓ + 1)(n − 2r + 1)

n + 1
.

3.3. Mean residual life (MRL)

The MRL is the average life of a unit after it has survived for a specific amount of time t. The
MRL function is like the PDF or the characteristic function for a distribution with a finite mean, the
MRL completely determines the distribution via an inversion formula (cf. Guess and Proschan, [17]).
The MRL is not only used for parametric modeling, but also for nonparametric modeling. Actuaries
apply MRL to set rates and benefits for life insurance. In the biomedical setting, researchers analyze
survivorship studies by MRL. Shanbag and Kotz [38] introduced the concept of the MRL for vector-
valued RVs as

m(w1,w2) = (m1(w1,w2),m2(w1,w2)) , (3.2)

where
m1(w1,w2) = E(W1 − w1|W1 ≥ w1,W2 ≥ w2)

and
m2(w1,w2) = E(W2 − w2|W1 ≥ w1,W2 ≥ w2).

The expressions for m1(w1,w2) and m2(w1,w2) in EP-EX-FGM(φ1; φ2) are obtained as

m1(w1,w2)=
7

6φ1

(
1 − 67δ

140 D2

)
(
3e−2φ1w1 − e−3φ1w1

) [
1 + δ4 (1 + D1)(1 + D2)

] (3.3)

and

m2(w1,w2)=
7

6φ2

(
1 − 67δ

140 D1

)
(
3e−2φ2w2 − e−3φ2w2

) [
1 + δ4 (1 + D1)(1 + D2)

] , (3.4)

where D j =
(
2
(

1
2 (e−3φ jw j − 3e−2φ jw j) + 1

)
− 1

)
, j = 1, 2. Substituting (3.3) and (3.4) in (3.2) yields

EP-EX-FGM’s MRL.

AIMS Mathematics Volume 9, Issue 11, 32299–32327.



32307

3.4. Vitality function

The vitality function is a helpful tool for modeling lifetime data. It was thoroughly explored by
Kupka and Loo [28] in relation to their research on the aging process. This idea was applied by Kotz
and Shanbhag [27] to produce multiple lifetime distribution characterizations. The vitality function
offers a more direct assessment of the failure pattern since it is expressed in terms of an increased
average lifespan, whereas the hazard rate represents the chance of sudden death within a lifespan. The
vitality function linked to a non-negative RV W is defined as m(w) = E(W |W > w). The bivariate
vitality function of a random vector (W1,W2) is defined on a positive domain as a binomial vector as

V(w1,w2) = (V1(w1,w2),V2(w1,w2)) , (3.5)

where
V1(w1,w2) = E(W1|W1 ≥ w1,W2 ≥ w2)

and
V2(w1,w2) = E(W2|W1 ≥ w1,W2 ≥ w2).

For more details, see Sankaran and Nair [35]. Also, Vi(w1,w2) is related to mi(w1,w2) by

Vi(w1,w2) = wi + mi(w1,w2), i = 1, 2. (3.6)

Here, V1(w1,w2) computes the expected lifetime of the first component as the sum of current age
w1 and the average lifetime remaining for it, assuming the second component has survived past age
w2. V2(w1,w2) has a similar interpretation. Using (3.3) and (3.4) in (3.6), we obtain V1(w1,w2) and
V2(w1,w2) of EP-EX-FGM as

V1(w1,w2)=
7

6φ1

(
1 − 67δ

140 D2

)
(
3e−2φ1w1 − e−3φ1w1

) [
1 + δ4 (1 + D1)(1 + D2)

] + w1 (3.7)

and

V2(w1,w2)=
7

6φ2

(
1 − 67δ

140 D1

)
(
3e−2φ2w2 − e−3φ2w2

) [
1 + δ4 (1 + D1)(1 + D2)

] + w2. (3.8)

From (3.7) and (3.8), the vitality function of EP-EX-FGM can be obtained using (3.5).

4. Reliability and information measures

In this section, we derive reliability measures such as hazard function, RH function, MRL, vitality
function, positive quadrant dependence feature, bivariate extropy, bivariate weighted extropy, and
bivariate CREX in the context of EP-EX-FGM(φ1; φ2). Sreelakshmi [40] introduced the relationship
between copula and reliability function, which is defined as follows:

R(w1,w2) = 1 − FW1(w1) − FW2(w2) +C
(
FW1(w1),FW2(w2)

)
.

The reliability function R(w1,w2) = P(W1 > w1,W2 > w2) for the EP-EX-FGM(φ1; φ2) is

R(w1,w2) =
1
4

(
3e−2φ1w1 − e−3φ1w1

) (
3e−2φ2w2 − e−3φ2w2

) [
1 + δ

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)

×

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
)]
.
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4.1. Hazard function

The bivariate hazard function at a point (w1,w2) is defined, according to Basu [11], by H(w1,w2) =
fW1 ,W2 (w1,w2)

R(w1,w2) . Thus, we get

H(w1,w2)=
9φ1φ2(2e−2φ1w1 − e−3φ1w1)(2e−2φ2w2 − e−3φ2w2) [1 + δD1D2]

(3e−2φ1w1 − e−3φ1w1)(3e−2φ2w2 − e−3φ2w2)
[
1 + δ4 (1 + D1)(1 + D2)

] . (4.1)

One of the key constraints of Basu [11] is that H(w1,w2), as defined by (4.1), is not a vector quantity,
as defined by R2 → R. The bivariate hazard function was created in vector form by Johnson et al. [25]
and Sreelakshmi [40] to get around this restriction.

H(w1,w2)=
(
−∂ ln R(w1,w2)

∂w1
,
−∂ ln R(w1,w2)

∂w2

)
, (4.2)

where R denotes the bivariate reliability function for the FGM copula. For the FGM copula,
Vaidyanathan [42] studied the elements in vector (4.2). For the EP-EX-FGM copula, we can, after
simple algebra, get the following relations:

−∂ ln R(w1,w2)
∂w1

=
3φ1(2e−2φ1w1 − e−3φ1w1)

(3e−2φ1w1 − e−3φ1w1)

1 − δ4 (3e−2φ1w1 − e−3φ1w1)(1 + D2)[
1 + δ4 (1 + D1)(1 + D2)

]  (4.3)

and

−∂ ln R(w1,w2)
∂w2

=
3φ2(2e−2φ2w2 − e−3φ2w2)

(3e−2φ2w2 − e−3φ2w2)

1 − δ4 (3e−2φ2w2 − e−3φ2w2)(1 + D1)[
1 + δ4 (1 + D1)(1 + D2)

]  . (4.4)

The vector hazard function of EP-EX-FGM(φ1; φ2) is obtained by substituting (4.3) and (4.4) in (4.2).
Figure 2 depicts 3D plots of the joint hazard function (JHF) of an EP-EX-FGM for various parameter
values.
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(a) φ1 = 0.5 , φ2 = 0.5 , δ = 0.2 (b) φ1 = 0.5 , φ2 = 0.5 , δ = −0.2

(c) φ1 = 0.8 , φ2 = 0.4 , δ = 0.8 (d) φ1 = 0.25 , φ2 = 0.75 , δ = 0.6

(e) φ1 = 0.9 , φ2 = 1.5 , δ = 0.5 (f) φ1 = 0.01 , φ2 = 0.6 , δ = 0.1

(g) φ1 = 0.6 , φ2 = 0.6 , δ = −0.2 (h) φ1 = 1.5, φ2 = 0.9, δ = −0.9

Figure 2. EP-EX-FGM JHF dimensions.
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4.2. Reversed hazard function

The RH function at a point (w1,w2) is defined as RH(w1,w2) = fW1 ,W2 (w1,w2)
FW1 ,W2 (w1,w2) . Thus, we get

RH(w1,w2)=
9φ1φ2(2e−2φ1w1 − e−3φ1w1)(2e−2φ2w2 − e−3φ2w2) [1 + δD1D2]

(1 + D1)(1 + D2)
[
1 + δ4 (1 − D1) (1 − D2)

] .

4.3. Positive quadrant dependence

Our goal in this section is to examine the positive quadrant dependence property, denoted by PQD,
(negative quadrant dependence, denoted by NQD) of the RVs W1 and W2 associated with the EP-EX-
FGM. As a type of RV dependence, PQD was introduced by Lehmann [30]. This kind of dependence
describes the joint behavior of two RVs when they are both large (or small). More specifically, two
RVs are PQD if there is at least as much chance that they are both tiny at the same time as there would
be if they were independent. The following theorem reveals these properties for the EP-EX-FGM(φ1;
φ2).

Theorem 4.1. The EP-EX-FGM(φ1; φ2) is PQD (NQD) for positive (negative) values of δ.

Proof. Consider

P(W1 > w1,W2 > w2) − P(W1 > w1)P(W2 > w2) = R(w1,w2) − R(w1)R(w2)

=
1
4

(
3e−2φ1w1 − e−3φ1w1

) (
3e−2φ2w2 − e−3φ2w2

) [
1 + δ

(
1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)

×

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
)]
−

1
4

(
3e−2φ1w1 − e−3φ1w1

) (
3e−2φ2w2 − e−3φ2w2

)

=
δ

4

(
3e−2φ1w1 − e−3φ1w1

) (
3e−2φ2w2 − e−3φ2w2

) (1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)

×

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
)
= δϕ(w1,w2),

where

ϕ(w1,w2) =
1
4

(
3e−2φ1w1 − e−3φ1w1

) (
3e−2φ2w2 − e−3φ2w2

) (1
2

(e−3φ1w1 − 3e−2φ1w1) + 1
)

×

(
1
2

(e−3φ2w2 − 3e−2φ2w2) + 1
)
= F(w1)F(w2)R(w1)R(w2).

For all values of w1 and w2, ϕ(w1,w2) is always non-negative because the DF and reliability function
take values ranging from zero to one. On the other hand, we have for positive values of δ, δϕ(w1,w2) ≥
0 ∀w1,w2, that the EP-EX-FGM is PQD. Likewise, for negative values of δ, δϕ(w1,w2) ≤ 0 ∀w1,w2,

the EP-EX-FGM is NQD. Thus, EP-EX-FGM has both PQD and NQD. □
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4.4. Bivariate extropy, bivariate weighted extropy, and bivariate CREX

Lad et al. [29] introduced the concept of extropy as dual to entropy, facilitating the comparison of
uncertainties of two RVs. If the extropy of W1 is less than that of another variable W2, then W1 is
said to have more uncertainty than W2. Due to the difficulty of deriving the entropy for model (1.6),
our focus in this subsection will be on the extropy. Extropy has several applications, such as scoring
the forecasting distributions using the total scoring rule, comparing the uncertainties of two RVs, etc.
Recently, the literature has numerous research works on this measure, e.g. Abd Elgawad et al. [1],
Husseiny and Syam [20], and Husseiny et al. [21].

It is possible to introduce a bivariate version of extropy based on the FGM family in the following
theorem.

Theorem 4.2. Consider two non-negative continuous RVs W1 and W2 with JPDF fW1,W2(w1,w2). Then,
the bivariate version of extropy based on FGM is given by

J(W1,W2) = (1 + δ)2J(W1)J(W2) + 4δ2ΨW1(2)ΨW2(2) + 2δ(2δ + 1)ΨW1(1)ΨW2(1)
− 4δ2 (

ΨW1(2)ΨW2(1) + ΨW1(1)ΨW2(2)
)
+ 2δ(δ + 1)

(
ΨW1(1)J(W2)+

+ ΨW2(1)J(W1)
)
− 2δ2 (

ΨW1(2)J(W2) + ΨW2(2)J(W1)
)
, (4.5)

where

J(Wi) = −
1
2

E(fWi(Wi)) and ΨWi(p) = E(fWi(Wi)F
p
Wi

(Wi)), i = 1, 2, p = 1, 2. (4.6)

Proof. By using (1.4), we get

J(W1,W2) =
1
4

E(fW1,W2(W1,W2)) =
1
4

∫ ∞

0

∫ ∞

0
f2W1,W2

(w1,w2)dw1dw2

=
1
4

∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)

[
1 + δ2(2FW1(w1) − 1)2(2FW2(w2) − 1)2 + 2δ(2FW1(w1) − 1)

× (2FW2(w2) − 1)
]
dw1dw2=

(1+δ)2

4

∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)dw1dw2

+ 4δ2
∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)F2

W1
(w1)F2

W2
(w2)dw1dw2

+ 2δ(2δ + 1)
∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)FW1(w1)FW2(w2)dw1dw2−4δ2

[∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)

×
(
F2

W1
(w1)FW2(w2)+FW1(w1)F2

W2
(w2)

)
dw1dw2

]
+δ2

[∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)

(
F2

W1
(w1)

+ F2
W2

(w2)
)

dw1dw2

]
−δ(δ + 1)

[∫ ∞

0

∫ ∞

0
f2W1

(w1)f2W2
(w2)

(
FW1(w1) + FW2(w2)

)
dw1dw2

]
.

Since each bivariate integral in the above formula is separable into the product of its univariate
integrals, and by incorporating (4.6) in the above integrations, the required result directly follows. This
completes the proof. □
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Corolary 4.1. Let W1 ∼ EP(φ1) and W2 ∼ EP(φ2). Using (4.6), and after simple algebra, we get
J(Wi) = −

33φi
80 , Ψwi(1) = 643φi

2240 , and Ψwi(2) = 725φi
4928 , i = 1, 2. Thus, by using Theorem 4.2, the bivariate

extropy based on EP-EX-FGM is

J(W1,W2) =
9φ2

(
δ(5339912δ+9554281)φ1

27720 +
9317φ1

5

)
98560

.

In a spirit similar to that of the bivariate version of extropy, we can also introduce bivariate weighted
extropy based on FGM family in the following theorem.

Theorem 4.3. Let W1 and W2 be non-negative continuous RVs with JPDF fW1,W2(w1,w2). Then, the
bivariate weighted extropy based on FGM is given by

Jw(W1,W2) = (1 + δ)2Jw(W1)Jw(W2) + 4δ2Ψw
w1

(2)Ψw
W2

(2) + 2δ(2δ + 1)Ψw
W1

(1)Ψw
W2

(1)

−4δ2
(
Ψw

W1
(2) Ψw

W2
(1) + Ψw

W1
(1)Ψw

W2
(2)

)
+ 2δ(δ + 1)

(
Ψw

W1
(1)J(W2)

+Ψw
W2

(1)J(W1)
)
− 2δ2

(
Ψw

W1
(2) Jw(W2) + Ψw

W2
(2)Jw(W1)

)
, (4.7)

where

Jw(Wi) = −
1
2

E(WifWi(Wi)), and Ψw
Wi

(p) = E(WifWi(Wi)F
p
Wi

(Wi)), i = 1, 2, p = 1, 2. (4.8)

Proof. We obtain the results by applying Theorem 4.2’s proving techniques. □

Corolary 4.2. Let W1 ∼ EP(φ1) and W2 ∼ EP(φ2). Using (4.8), and after simple algebra, we get
Jw(Wi) = − 53

400 , Ψ
w
Wi

(1) = 836497
5644800 , and Ψw

Wi
(2) = 33010783

341510400 , i = 1, 2. Thus, by using Theorem 4.3, the
bivariate weighted extropy based on EP-EX-FGM is

Jw(W1,W2) =
101114226580249δ2

384199200 + 949009137241δ
6350400 + 133236488

25

303564800
.

Proposition 4.1. Let W1 and W2 follow an FGM family.

• If W2 = aW1 + b, then J(W2) = 1
a J(W1).

• If δ = 0, then J(W1,W2) = J(W1)J(W2).

It is worth noting that, as was shown by Balakrishnan et al. [7], there exist distributions with the
same extropy, but different weighted extropy. Moreover, there exist distributions with the same
weighted extropy, but different extropy.

Replacing the PDF in the extropy function with the survival function, Jahanshahi et al. [23] proposed
a new measure of uncertainty of a non-negative continuous RV called cumulative residual extropy
(CREX). Jahanshahi et al. [23] showed that if two RVs W1 and W2 are lifetimes of two systems A and
B, and if the CREX of W1 is less than the CREX of W2, then system A has less uncertainty than system
B.We can define the bivariate CREX based on FGM family in the following theorem.

Theorem 4.4. Let W1 and W1 be non-negative continuous RVs with JDF FW1,W2(w1,w2). Then, the
bivariate CREX based on FGM is given by

Jc(W1,W2) = Jc(W1)Jc(W2) +
δ2

4
Ψc

W1
(2)Ψc

W2
(2) +

δ

2
Ψc

W1
(1)Ψc

W2
(1), (4.9)
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where

Jc(Wi)=−
1
2

∫ ∞

0

(
FWi(wi)

)2
dwi and Ψc

Wi
(p)=

∫ ∞

0

(
FWi(wi)

)2
Fp

Wi
(wi)dwi, i = 1, 2, p = 1, 2. (4.10)

Proof. By using (1.3), we get

Jc(W1,W2)=
1
4

∫ ∞

0

∫ ∞

0

(
FW1,W2(w1,w2)

)2
dw1dw2

=
1
4

∫ ∞

0

∫ ∞

0
(FW1(w1))2(FW2(w2))2

[
1 + δ2F2

W1
(w1)F2

W2
(w2) + 2δFW1(w1)FW2(w2)

]
dw1dw2

=
1
4

∫ ∞

0

∫ ∞

0
(FW1(w1))2(FW2(w2))2dw1dw2+

δ2

4

∫ ∞

0

∫ ∞

0
F2

W1
(w1)F2

W2
(w2)(FW1(w1))2

× (FW2(w2))2dw1dw2+
δ

2

∫ ∞

0

∫ ∞

0
FW1(w1)FW2(w2)(FW1(w1))2(FW2(w2))2dw1dw2.

Since each bivariate integral in the formula above can be divided into the product of its univariate
integrals, the required result can be obtained immediately by incorporating (4.10) in the integrations
above. The proof is now complete. □

Corolary 4.3. Let W1 ∼ EP(φ1) and W2 ∼ EP(φ2). Using (4.10), and after simple algebra, we get
Jc(Wi) = − 73

480φi
, Ψc

Wi
(1) = 1957

20160φi
, and Ψc

Wi
(2) = 20987

443520φi
, i = 1, 2. Thus, by using Theorem 4.4, the

bivariate CREX based on EP-EX-FGM is

Jc(W1,W2) =
δ(440454169δ + 3707293832) + 18199089216

786839961600φ1φ2
.

(a) J(W1,W2) at δ = 0.9 (b) J(W1,W2) at δ = −0.9

-0.5 0.5
δ

0.0176

0.0178

0.0180

0.0182

0.0184

0.0186

J
w (W1, W2)

(c) Jw(W1,W2) (d) Jc(W1,W2) at δ = 0.9

Figure 3. Bivariate extropy, weighted extropy, and CREX based on EP-EX-FGM.
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Figure 3 displays the values of bivariate extropy, weighted extropy, and CREX in EP-EX-FGM.
In 3D representation (a,b), we find that the value of J(W1,W2) increases as the values of φ1 and φ2

increase. Also, there is symmetry for the Jw(W1,W2) values in the 2D plot (c) according to δ values.

5. Methods of estimation

In this section, we discuss two estimation methods for estimating the unknown parameters of the EP-
EX-FGM distribution: ML and Bayesian estimations. Moreover, we construct asymptotic confidence
intervals by using the Fisher information matrix (FIM) for the model’s parameters.

5.1. The ML estimation

The ML technique is a widely used and significant statistical technique. By using the ML technique,
one can obtain estimates of parameters that have favorable statistical properties, such as consistency,
asymptotic unbiasedness, efficiency, and normality asymptotically. It is necessary to calculate the
parameter estimates that maximize the probability of the sample data to obtain the parameter estimates
with the ML method. The log-likelihood function ln L is obtained by using the PDF given in (2.2).

ln L= n ln
3φ1

2
+ n ln

3φ2

2
+

n∑
i=1

ln(2e−2φ1wi1 − e−3φ1wi1) +
n∑

i=1

ln(2e−2φ2wi2 − e−3φ2wi2)

+

n∑
i=1

ln
[
1 + δ

(
1 − 2

(
1
2

(e−3φ1wi1 − 3e−2φ1wi1) + 1
))(

1 − 2
(
1
2

(e−3φ2wi2 − 3e−2φ2wi2) + 1
))]
.

We obtain the following normal equations by partially differentiating ln L with respect to the vector of
parameters τ = (φ1, φ2, δ) and equating them to zero. The following are those derivatives:

∂ ln L(τ)
∂φl

=

n∑
i=1

3δwile−3φlwil(3e−2φ jwi j − e−3φ jwi j − 1)(1 − 2eφlwil)[
1 + δe−3(φlwil+φ jwi j)(1 − 3eφ jwi j + e3φ jwi j)(1 − 3eφlwil + e3φlwil)

]
+

n
φl
+

n∑
i=1

(3 − 4eφlwil)wil

(2eφlwil − 1)
,

and

∂ ln L(τ)
∂δ

=

n∑
i=1

(3e−2φ jwi j − e−3φ jwi j − 1)(3e−2φlwil − e−3φlwil − 1)[
1 + δe−3(φlwil+φ jwi j)(1 − 3eφ jwi j + e3φ jwi j)(1 − 3eφlwil + e3φlwil)

] ,
where l, j = 1, 2, and l , j.

Because the likelihood equations for φ1, φ2, and δ are nonlinear and challenging to solve
analytically, numerical methods like the Newton-Raphson method can be employed to find the ML
estimates of the distribution parameters φ1, φ2, and δ.

5.2. Asymptotic confidence intervals

Based on the asymptotic normality of the ML estimates, the FIM is frequently used to create
asymptotic confidence intervals for the unknown parameters in τ (for more details about other uses of
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FIM, see Barakat et al., [8]). Under specific assumptions of regularity, the ML estimates denoted as τ̂
are distributed according to the normal distribution. As the sample size n tends to infinity, the
distribution of the estimator τ̂ = (φ̂1, φ̂2, δ̂) approaches a normal distribution with mean τ and
covariance matrix equal to the inverse of the FIM, denoted as II−1(τ). The FIM consists of the negative
expected values of the second-order derivatives of ln L, as expressed by

II(τ)=−E


Iφ̂1φ̂1

Iφ̂2φ̂1 Iφ̂2φ̂2

Iδ̂φ̂1
Iδ̂φ̂2

Iδ̂δ̂

 . (5.1)

The entries of the matrix in (5.1) are given by

Iφlφl =
∂2L(τ)
∂φ2

l

=
−n
φ2

l

−

n∑
i=1

2w2
ile
φlwil

(1 − 2eφlwil)2 +

n∑
i=1

3δw2
ile
φlwil

×
[δ + δe2φlwil(4eφlwil−3)−3δeφ jwi j(1−3e2φlwil+4e3φlwil)+e3φ jwi j(δ + e2φlwil(4eφlwil−3)(1+δ))]

[δ+δeφlwil(e2φlwil−3)−3δeφ jwi j(1−3eφlwil+e3φlwil)+eφ jwi j(δ−3δeφlwil+(1+δ)e3φlwil)]2 ,

Iφlφ j=

n∑
i=1

[9δwilwi je3φlwile3φ jwi j(2eφlwil − 1)(eφ jwi j − 1)]
[δ + δeφlwil(e2φlwil − 3)−3δeφ jwi j(1 − 3eφlwil + e3φlwil) + eφ jwi j(δ − 3δe3φlwil + (1 + δ)e3φlwil)]2 ,

Iφlδ=

n∑
i=1

[3e3wilφl+3wi jφ j(2ewilφl)(1 − 3ewi jφ j + e3wi jφ j)]
[δ + δeφlwil(e2φlwil − 3)−3δeφ jwi j(1 − 3eφlwil + e3φlwil) + eφ jwi j(δ − 3δeφlwil + (1 + δ)e3φlwil)]2 ,

Iδδ=−
n∑

i=1

(1 − 3eφlwil + e3φlwil)2(1 − 3eφ jwi j + e3φ jwi j)2

[δ + δeφlwil(e2φlwil − 3)−3δeφ jwi j(1 − 3eφlwil + e3φlwil) + eφ jwi j(δ − 3δe3φlwil + (1 + δ)e3φlwil)]2 ,

where l, j = 1, 2, l , j. According to Jia et al. [26], in cases where it is challenging to obtain the
anticipated values directly, an alternative approach is to estimate them by calculating the negative
second-order derivatives of the natural logarithm of the likelihood function, evaluated at the ML
estimates. Hence, we approximate the expected values by the negatives of the second-order
derivatives evaluated at the ML estimates τ̂. Thus, the estimated value of the FIM is II (̂τ). Moreover,
100(1 − θ) asymptotic confidence intervals for the parameter τ can be constructed as follows:

φ̂l ± Z θ
2

√
Jφ̂lφ̂l ; δ̂ ± Z θ

2

√
Jδ̂̂δ , l = 1, 2,

where Jqlql , ql = φ̂l, δ̂, is the element in II−1(̂τ), corresponding to the element Iqlql in the estimated
matrix II (̂τ), and Z θ

2
is the percentile of the standard normal distribution with right tail probability θ2 .

5.3. Bayesian estimation

The Bayesian estimation technique is a powerful tool for estimating unknown parameters based on
observable data. Using Bayes, theorem, a concept in probability theory, new information can be
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gathered to update the probability of a hypothesis. Because this approach takes prior knowledge into
account when estimating, it provides some advantages over the traditional ML approach. Moreover, it
is capable of assessing the degree of uncertainty surrounding each parameter. We must select an
acceptable prior PDF and hyper-parameter values that reflect our belief regarding the data. While
employing a Bayesian technique, the data analyst needs to be more explicit about all modeling
assumptions. Choosing a suitable prior distribution usually involves taking into consideration the
distribution’s basic form (shape and domain) as well as its key characteristics (variance and mean).
For the parameters φl, l = 1, 2, we select gamma-independent priors, specifically

Π(φl) ∝ φ
al−1
l e−vlφl , φl > 0, al, vl > 0, l = 1, 2,

while the copula parameter δ has uniform prior distribution defined on (−1, 1). The prior JPDF is
given by

Π(τ) ∝ φal−1
l e−vlφl .

The likelihood method’s estimate and variance-covariance matrix can be used to determine how to
elicit the independent joint prior’s hyper-parameters. The gamma prior’s mean and variance can be
used to represent the derived hyper-parameters. For more information, see Gupta and Kundu [18], Dey
et al. [13], and Hamdy and Almetwally [19]. The parameters φl, l = 1, 2, of EP-EX-FGM should be
well-known and positive. The likelihood function is given by

L(τ) = (
3φ1

2
)n

n∏
i=1

(2e−2φ1wi1 − e−3φ1wi1)(
3φ2

2
)n

n∏
i=1

(2e−2φ2wi2 − e−3φ2wi2)

×

n∏
i=1

[
1 + δ

(
1 − 2

(
1
2

(e−3φ1wi1 − 3e−2φ1wi1) + 1
))(

1 − 2
(
1
2

(e−3φ2wi2 − 3e−2φ2wi2) + 1
))]
.

The corresponding posterior density is given as follows:

Π(τ|w1,w2) ∝ (
3
2

)nφn+a1−1
1 e−v1φ1

n∏
i=1

(2e−2φ1wi1 − e−3φ1wi1)(
3
2

)nφn+a2−1
2 e−v2φ2

n∏
i=1

(2e−2φ2wi2 − e−3φ2wi2)

×

n∏
i=1

[
1 + δ

(
1 − 2

(
1
2

(e−3φ1wi1 − 3e−2φ1wi1) + 1
))(

1 − 2
(
1
2

(e−3φ2wi2 − 3e−2φ2wi2) + 1
))]
.

The marginal posterior distributions Π(φl|δ,w1,w2), and Π(δ|φl,w1,w2) of the parameter φl, l = 1, 2,
may be found by integrating out the nuisance parameters from the posterior distribution Π(τ|w1,w2) as
follows:

Π(φl|w1,w2) ∝ φn+al−1
l e−vlφl

n∏
i=1

(2e−2φlwil − e−3φlwil)
n∏

i=1

[
1 + δ

(
1 − 2

(
1
2

(e−3φ1wi1 − 3e−2φ1wi1) + 1
))

×

(
1 − 2

(
1
2

(e−3φ2wi2 − 3e−2φ2wi2) + 1
))]
,

and

Π(δ|w1,w2)∝
n∏

i=1

[
1 + δ

(
1 − 2

(
1
2

(e−3φ1wi1 − 3e−2φ1wi1) + 1
))(

1 − 2
(
1
2

(e−3φ2wi2 − 3e−2φ2wi2) + 1
))]
,
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where l = 1, 2. We use the well-known squared error loss function, which yields the posterior means
as the Bayes estimates of τ, say (φ̂l, δ̂), which are given by φ̂l =

∫ ∞
0
φlΠ(φl|w1,w2)dφl and

δ̂ =
∫ 1

−1
δΠ(δ|w1,w2)dδ. Notice that the preceding integrals cannot be obtained explicitly. Because of

this, we use the Monte Carlo method to find an approximate value of these integrals, see Tables 1–4.

6. Simulation

The performance of ML and Bayesian estimates are contrasted numerically in this section. For the
parameters of the EP-EX-FGM model, the performance of the various techniques and the analytically
deduced results may be evaluated exactly. The Mathcad package was used, and 1000 samples from an
EP-EX-FGM model had been gathered. The values of the parameters can be defined as follows:

• In Table 1: φ1 = 0.6, φ2 = 3.
• In Table 2: φ1 = 2, φ2 = 0.3.
• In Table 3: φ1 = 0.5, φ2 = 0.7.
• In Table 4: φ1 = 2, φ2 = 4.

The sample-sizes n are 20, 50,100, and 150. The simulation results of bias and mean squared error
(MSE) on 5000 iterations of Monte Carlo simulation are shown in Tables 1–4. The following
conclusions can be drawn from Tables 1–4:

• The ML and Bayesian estimates of unknown parameters are fairly good in terms of bias and MSE.
• With an increase in sample size, the MSEs decrease and the estimated values of the parameters

approach the nominal values of the parameters.
• For δ = −0.4, both ML and Bayesian estimate values are smaller than the case of δ = 0.5.

Moreover, Figure 4 shows the comparison between ML and Bayesian estimations for both φ1 and φ2

at specific values of the parameters. This figure shows that the two techniques give close values.

Table 1. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.
φ1 = 0.6, φ2 = 3

δ −0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MS E Bias MS E Bias MS E Bias MS E
20 φ1 0.045 0.257 0.032 0.245 0.087 0.357 0.054 0.321

φ2 0.098 0.784 0.085 0.699 0.110 0.821 0.099 0.711
δ 0.074 0.457 0.071 0.416 0.085 0.524 0.078 0.511

50 φ1 0.038 0.241 0.029 0.233 0.078 0.328 0.042 0.299
φ2 0.082 0.698 0.072 0.587 0.096 0.745 0.082 0.621
δ 0.071 0.421 0.065 0.387 0.068 0.389 0.052 0.354

100 φ1 0.029 0.239 0.022 0.198 0.062 0.289 0.034 0.247
φ2 0.075 0.631 0.064 0.514 0.082 0.687 0.071 0.587
δ 0.067 0.401 0.059 0.345 0.056 0.341 0.048 0.312

150 φ1 0.015 0.214 0.014 0.167 0.058 0.245 0.028 0.187
φ2 0.064 0.543 0.052 0.489 0.075 0.578 0.068 0.517
δ 0.058 0.389 0.041 0.312 0.051 0.287 0.038 0.287
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Table 2. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.
φ1 = 2, φ2 = 0.3

δ −0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MS E Bias MS E Bias MS E Bias MS E
20 φ1 0.075 0.547 0.065 0.511 0.095 0.655 0.078 0.625

φ2 0.109 0.324 0.099 0.301 0.125 0.387 0.134 0.336
δ 0.041 0.245 0.032 0.211 0.058 0.389 0.049 0.380

50 φ1 0.069 0.537 0.056 0.489 0.089 0.587 0.065 0.587
φ2 0.098 0.287 0.087 0.287 0.117 0.354 0.128 0.312
δ 0.032 0.231 0.028 0.201 0.047 0.345 0.041 0.311

100 φ1 0.058 0.510 0.048 0.452 0.074 0.543 0.052 0.521
φ2 0.082 0.241 0.075 0.265 0.099 0.299 0.114 0.278
δ 0.025 0.201 0.018 0.241 0.041 0.311 0.038 0.289

150 φ1 0.042 0.465 0.035 0.421 0.062 0.487 0.041 0.487
φ2 0.075 0.211 0.069 0.214 0.078 0.254 0.102 0.263
δ 0.021 0.187 0.012 0.411 0.032 0.266 0.024 0.211

Table 3. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.
φ1 = 0.5 φ2 = 0.7

δ −0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MS E Bias MS E Bias MS E Bias MS E
20 φ1 0.057 0.258 0.049 0.245 0.078 0.289 0.069 0.257

φ2 0.069 0.298 0.054 0.285 0.089 0.314 0.075 0.301
δ 0.111 0.435 0.095 0.411 0.121 0.542 0.102 0.521

50 φ1 0.048 0.246 0.035 0.234 0.069 0.258 0.053 0.241
φ2 0.055 0.278 0.042 0.262 0.065 0.295 0.069 0.278
δ 0.096 0.421 0.091 0.387 0.112 0.487 0.087 0.410

100 φ1 0.035 0.232 0.029 0.221 0.052 0.241 0.045 0.225
φ2 0.042 0.265 0.034 0.251 0.052 0.274 0.061 0.197
δ 0.085 0.411 0.081 0.398 0.089 0.478 0.085 0.456

150 φ1 0.028 0.211 0.021 0.202 0.043 0.234 0.037 0.215
φ2 0.031 0.245 0.021 0.243 0.035 0.251 0.052 0.165
δ 0.079 0.398 0.079 0.378 0.081 0.415 0.074 0.741

Table 4. ML and Bayesian estimation methods for the parameters of the EP-EX-FGM model.
φ1 = 2 φ2 = 4

δ −0.4 0.5
ML estimate Bayesian estimate ML estimate Bayesian estimate

n Bias MS E Bias MS E Bias MS E Bias MS E
20 φ1 0.086 0.457 0.075 0.421 0.092 0.511 0.084 0.498

φ2 0.098 0.578 0.085 0.543 0.099 0.654 0.095 0.625
δ 0.078 0.254 0.069 0.247 0.089 0.347 0.081 0.321

50 φ1 0.078 0.423 0.068 0.387 0.085 0.482 0.071 0.453
φ2 0.085 0.562 0.078 0.523 0.087 0.589 0.081 0.601
δ 0.069 0.242 0.061 0.241 0.081 0.341 0.074 0.298

100 φ1 0.065 0.387 0.053 0.354 0.075 0.421 0.053 0.421
φ2 0.074 0.523 0.062 0.478 0.072 0.512 0.063 0.587
δ 0.062 0.214 0.059 0.201 0.078 0.287 0.071 0.274

150 φ1 0.058 0.345 0.042 0.299 0.068 0.388 0.046 0.401
φ2 0.062 0.487 0.058 0.463 0.066 0.483 0.058 0.536
δ 0.054 0.203 0.041 0.189 0.069 0.251 0.061 0.232
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(a) φ1 = 0.6 , φ2 = 0.3 , δ = −0.4 (b) φ1 = 2 , φ2 = 0.3 , δ = −0.4

(c) φ1 = 0.5 , φ2 = 0.7 , δ = −0.4 (d) φ1 = 2 , φ2 = 4 , δ = −0.4

Figure 4. The comparison between ML and Bayesian estimates.

7. Real data applications

In this section, we use the EP-EX-FGM model to examine two bivariate real data sets. The benefits
of EP-EX-FGM over alternative bivariate models will be thoroughly discussed in the first one, which
focuses on computer science. Additionally, several arguments supporting the fit of the estimated
theoretical model to the empirical data will be presented. We talk briefly about the second application,
which relates to medical applications.

7.1. Computer science data set

Based on Oliveira et al. [34], data was gathered and analyzed. The data set contains n = 50
simulated rudimentary computer systems with processors (W1) and memory (W2). An operating
computer will be able to operate when both parts are working properly (the processors and memory).
Assume the system is nearing the end of its lifecycle. The degeneration advances rapidly in a short
period. In the case of the first component, a deadly shock can destroy either it or the second
component at random, due to the system’s greater vulnerability to shocks (see, Ahmad et al. [3]). The
independence presumption is not accurate because both components can be killed by a deadly shock
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at the same time, so we discuss this issue using the FGM copula. We fit the EP-EX distribution to the
processor lifetime and memory lifetime separately. The ML estimates of the scale and shape
parameters are φ̂1 = 0.345952, φ̂2 = 0.362599, and δ̂ = 0.452819. To analyze the maximum values of
the estimators by profile likelihood, Figures 5 and 6 were constructed based on W1 and W2. Also,
Figures 7–12 illustrate statistical visualizations, including a scatter plot, empirical CDF, Q-Q plot, a
density plot, paired smooth histogram, and a paired violin plot. Table 5 clearly shows that, in terms of
data fit, the EP-EX-FGM model performs better than the bivariate generalized EX-FGM distribution
(GEX-FGM), the bivariate exponential FGM distribution (EX-FGM), and the bivariate Weibull FGM
distribution (W-FGM). Furthermore, by using the Python programming language, our data set, and
the Kolmogorov-Smirnov (KS) test, the EP-EX-FGM model demonstrates an outstanding match with
a p-value of 0.832 and a test statistic of 0.085.

Table 5. − ln L, AIC, AICc, BIC, HQIC, CAIC.

− ln L AIC AICc BIC HQIC CAIC
EP-EX-FGM 150.679 307.358 307.88 313.095 309.543 307.88
GEX-FGM 148.861 307.722 309.086 317.282 311.363 309.086
EX-FGM 151.412 308.823 309.345 314.559 311.007 309.345
W-FGM 149.915 309.829 311.193 319.389 313.47 311.193
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Figure 5. ML estimates of processor lifetime.
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Figure 6. ML estimates of memory lifetime.
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Figure 7. The scatter plot of processors and memory data.

Figure 8. The empirical CDF of processors and memory data.

Figure 9. The Q-Q plot of processors and memory data.
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Figure 10. The density plot of processors and memory data.
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Figure 11. Paired smooth histogram representation of processor and memory lifetime.
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Figure 12. Violin plots processor and memory lifetime.
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7.2. Medical science data set

We now use the EP-EX-FGM family to fit a second real data set that Grover et al. [16] covered.
We conducted our investigation using two data sets. Retrospective data on 132 individuals diagnosed
with type 2 diabetes according to ADA guidelines is included in the first dataset, which originates from
Dr. Lal’s Path Lab, a respected NABL-certified path lab. To collect up-to-date pathology reports for
these patients, researchers conducted a house-to-house survey that began when they were diagnosed
with diabetes and ended in November 2007. The duration of diabetes, fasting blood glucose, diastolic
blood pressure, systolic blood pressure, low-density lipoprotein, and serum creatinine levels were all
documented for each patient, starting from childhood and continuing into adulthood. The mean serum
creatinine level (SrCr) and the mean duration of diabetes are represented by the RVs W1 and W2,

respectively.
This study only looks at kidney problems caused by type 2 diabetes, therefore it automatically

ignores the effects on the eyes, heart, and other organs. Additionally, we have removed cases where
renal problems occurred before diabetes. Participants in our research with individuals with the same
duration of diabetes experience variable degrees of kidney function. A patient’s renal health is
evaluated using SrCr because its fast rise in value is a critical sign for DN risk prediction. So, the data
were split into two groups based on SrCr values: DN (SrCr 1.4 mg/dL) and NDN (Non-Diabetic
Nephropathy; SrCr 1.4 mg/dL). At the end of the trial, 60 (or 45.45%) of the 132 individuals had DN,
and 72 (or 54.55% of the total) had NDN. The ML estimates of the scale and shape parameters are
φ̂1 = 0.423, φ̂2 = 0.0433, and δ̂ = 0.98. Moreover, we estimate AIC=202.373 and BIC=205.206.

8. Conclusions

This study introduces a new bivariate EP-EX-FGM model: an improved version of the bivariate
distribution based on the FGM copula. In the area of bivariate modeling, the proposed distribution
represents a substantial and original contribution. This study introduces a new statistical model called
EP-EX-FGM, which is a bivariate EP-EX distribution based on the FGM copula. Within the analysis
of bivariate data, this work is both important and innovative in the field of bivariate modeling. The
correlation coefficient between W1 and W2 for the suggested distribution EP-EX-FGM ranges from a
maximum value of 0.261 to a minimum value of −0.261. In addition, we have explored dependability
measures such as the hazard function, the MRL function, and the vitality function. Moreover, it has
been demonstrated that the proposed model satisfies the PQD(NQD) characteristic, depending on the
sign of the shape. The parameter estimators were generated using ML and Bayesian approaches, and
the overall outcome indicates that Bayesian estimation outperforms its counterpart. Furthermore, a
Monte Carlo simulation study was conducted to assess the performance of the estimators. Asymptotic
confidence intervals for the likelihood estimation were produced for the parameters in this model.
Finally, the significance and adaptability of the EP-EX-FGM were investigated through the analysis of
real data sets.
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