In this work, we prove existence and uniqueness fixed point theorems under Banach and Kannan type contractions on $ \mathcal{C}^{\star} $-algebra-valued bipolar metric spaces. To strengthen our main results, an appropriate example and an effective application are presented.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Hüseyin Işık, Fahd Jarad. Fixed point results in $ \mathcal{C}^\star $-algebra-valued bipolar metric spaces with an application[J]. AIMS Mathematics, 2023, 8(4): 7695-7713. doi: 10.3934/math.2023386
In this work, we prove existence and uniqueness fixed point theorems under Banach and Kannan type contractions on $ \mathcal{C}^{\star} $-algebra-valued bipolar metric spaces. To strengthen our main results, an appropriate example and an effective application are presented.
[1] | M. M. Fr$\acute{e}$chet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22 (1906), 1–72. |
[2] | H. Aydi, W. Shatanawi, C. Vetro, On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4222–4229. https://doi.org/10.1016/j.camwa.2011.10.007 doi: 10.1016/j.camwa.2011.10.007 |
[3] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[4] | T. Rasham, P. Agarwal, L. S. Abbasi, S. Jain, A study of some new multivalued fixed point results in a modular like metric space with graph, J. Anal., 30 (2022), 833–844. https://doi.org/10.1007/s41478-021-00372-z doi: 10.1007/s41478-021-00372-z |
[5] | T. Rasham, M. Nazam, H. Aydi, A. Shoaib, C. Park, J. R. Lee, Hybrid pair of multivalued mappings in modular-like metric spaces and applications, AIMS Math., 7 (2022), 10582–10595. https://doi.org/10.3934/math.2022590 doi: 10.3934/math.2022590 |
[6] | T. Rasham, A. Shoaib, S. Alshoraify, C. Park, J. R. Lee, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces, AIMS Math., 7 (2022), 1058–1073. https://doi.org/10.3934/math.2022063 doi: 10.3934/math.2022063 |
[7] | M. Gamal, T. Rasham, W. Cholamjiak, F. G. Shi, C. Park, New iterative scheme for fixed point results of weakly compatible maps in multiplicative $G_{M}$-metric space via various contractions with application, AIMS Math., 7 (2022), 13681–13703. https://doi.org/10.3934/math.2022754 doi: 10.3934/math.2022754 |
[8] | T. Rasham, M. De La Sen, A novel study for hybrid pair of multivalued dominated mappings in b-multiplicative metric space with applications, J. Inequal. Appl., 107 (2022). https://doi.org/10.1186/s13660-022-02845-6 doi: 10.1186/s13660-022-02845-6 |
[9] | T. Rasham, M. Nazam, H. Aydi, R. P. Agarwal, Existence of common fixed points of generalized $\Delta$-implicit locally contractive mappings on closed ball in multiplicative G-metric spaces with applications, Mathematics, 10 (2022), 3369. https://doi.org/10.3390/math10183369 doi: 10.3390/math10183369 |
[10] | A. Mutlu, U. G$\ddot{u}$rdal, An infinite dimensional fixed point theorem on function spaces of ordered metric spaces, Kuwait J. Sci., 42 (2015), 36–49. https://doi.org/10.1016/j.langcom.2015.03.001 doi: 10.1016/j.langcom.2015.03.001 |
[11] | A. Mutlu, U. G$\ddot{u}$rdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05 |
[12] | U. G$\ddot{u}$rdal, A. Mutlu, K. $\ddot{O}$zkan, Fixed point results for $\alpha$-$\psi$-contractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75. |
[13] | G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory A., 2018 (2018), 21. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z |
[14] | G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2020), 601–607. |
[15] | G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412 |
[16] | B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34. http://dx.doi.org/10.14445/22315373/IJMTT-V63P504 doi: 10.14445/22315373/IJMTT-V63P504 |
[17] | G. N. V. Kishore, K. P. R. Rao, H. Işık, B. S. Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. http://dx.doi.org/10.22075/IJNAA.2021.4650 doi: 10.22075/IJNAA.2021.4650 |
[18] | A. Mutlu, K. $\ddot{O}$zkan, U. G$\ddot{u}$rdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388. |
[19] | Y. U. Gaba, M. Aphane, H. Aydi, $(\alpha, BK)$-contractions in bipolar metric spaces, J. Math., 2021 (2021), 5562651. https://doi.org/10.1155/2021/5562651 doi: 10.1155/2021/5562651 |
[20] | K. Roy, M. Saha, R. George, L. Gurand, Z. D. Mitrović, Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications, Filomat, 36 (2022), 1755–1767. https://doi.org/10.2298/FIL2205755R doi: 10.2298/FIL2205755R |
[21] | Z. H. Ma, L. N. Jiang, H. K. Sun, $C^*$-algebras-valued metric spaces and related fixed point theorems, Fixed Point Theory A., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206 |
[22] | S. Batul, T. Kamran, $C^{\star}$-valued contractive type mappings, Fixed Point Theory A., 2015 (2015), 142. https://doi.org/10.1186/s13663-015-0393-3 doi: 10.1186/s13663-015-0393-3 |
[23] | M. Gunaseelan, G. Arul Joseph, A. Ul Haq, I. A. Baloch, F. Jarad, Coupled fixed point theorems on $C^{*}$-algebra-valued bipolar metric spaces. AIMS Math., 7 (2022), 7552–7568. http://dx.doi.org/10.3934/math.2022424 doi: 10.3934/math.2022424 |
[24] | K. R. Davidson, $C^{\star}$-algebras by example, Fields Institute Monographs, American Mathematical Society, 1996. |
[25] | G. J. Murphy, $ C^* $-algebra and operator theory, London, Academic Press, 1990. |
[26] | Q. H. Xu, T. E. D. Bieke, Z. Q. Chen, Introduction to operator algebras and noncommutative Lp spaces, Beijing, Science Press, 2010. |