
In this work, we prove existence and uniqueness fixed point theorems under Banach and Kannan type contractions on C⋆-algebra-valued bipolar metric spaces. To strengthen our main results, an appropriate example and an effective application are presented.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Hüseyin Işık, Fahd Jarad. Fixed point results in C⋆-algebra-valued bipolar metric spaces with an application[J]. AIMS Mathematics, 2023, 8(4): 7695-7713. doi: 10.3934/math.2023386
[1] | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Fahd Jarad . Coupled fixed point theorems on $ \mathcal{C}^\star $-algebra valued bipolar metric spaces. AIMS Mathematics, 2022, 7(5): 7552-7568. doi: 10.3934/math.2022424 |
[2] | Astha Malhotra, Deepak Kumar, Choonkil Park . $ C^* $-algebra valued $ \mathcal{R} $-metric space and fixed point theorems. AIMS Mathematics, 2022, 7(4): 6550-6564. doi: 10.3934/math.2022365 |
[3] | Mohammed Shehu Shagari, Trad Alotaibi, OM Kalthum S. K. Mohamed, Arafa O. Mustafa, Awad A. Bakery . On existence results of Volterra-type integral equations via $ C^* $-algebra-valued $ F $-contractions. AIMS Mathematics, 2023, 8(1): 1154-1171. doi: 10.3934/math.2023058 |
[4] | Ouafaa Bouftouh, Samir Kabbaj, Thabet Abdeljawad, Aiman Mukheimer . On fixed point theorems in $ C^{*} $-algebra valued $ b $-asymmetric metric spaces. AIMS Mathematics, 2022, 7(7): 11851-11861. doi: 10.3934/math.2022661 |
[5] | Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817 |
[6] | Saleh Omran, Ibtisam Masmali . $ \alpha $-Admissible mapping in $ C^{*} $-algebra-valued b-metric spaces and fixed point theorems. AIMS Mathematics, 2021, 6(9): 10192-10206. doi: 10.3934/math.2021590 |
[7] | Xudong Wang, Tingting Xiang . Dual Brunn-Minkowski inequality for $ C $-star bodies. AIMS Mathematics, 2024, 9(4): 7834-7847. doi: 10.3934/math.2024381 |
[8] | Abdellah Taqbibt, M'hamed Elomari, Milica Savatović, Said Melliani, Stojan Radenović . Fixed point results for a new $ \alpha $-$ \theta $-Geraghty type contraction mapping in metric-like space via $ \mathcal{C}_\mathcal{G} $-simulation functions. AIMS Mathematics, 2023, 8(12): 30313-30334. doi: 10.3934/math.20231548 |
[9] | Saif Ur Rehman, Arjamand Bano, Hassen Aydi, Choonkil Park . An approach of Banach algebra in fuzzy metric spaces with an application. AIMS Mathematics, 2022, 7(5): 9493-9507. doi: 10.3934/math.2022527 |
[10] | Mohammad Asim, Reny George, Mohammad Imdad . Suzuki type multivalued contractions in C*-algebra valued metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1126-1139. doi: 10.3934/math.2021068 |
In this work, we prove existence and uniqueness fixed point theorems under Banach and Kannan type contractions on C⋆-algebra-valued bipolar metric spaces. To strengthen our main results, an appropriate example and an effective application are presented.
Frˊechet[1] introduced the notion of metric spaces in 1906. Since then, metric spaces have been widely generalised by removing or relaxing certain axioms, modifying the metric function, or abstracting the concept. These structures have been more prominent in fixed point investigations in recent years, and numerous useful findings have been made in this area [1,2,3,4,5,6,7,8,9,10]. One of the most recent generalizations is that of a bipolar metric space, introduced by Mutlu and G¨urdal [11], the motivation being that in many real-life applications, distances arise between elements of two different sets, rather than between points of a unique set. Hence, bipolar metrics came to formalize these types of distances. Some basic examples are distance between lines and points in an Euclidean space, distance between points and sets in a metric spaces, affinity between a class of students and a set of activities, lifetime mean distances between people and places, and many more. G¨urdal, Mutlu and ¨Ozkan[12] introduced the notion of α-ψ contractive type covariant and contravariant mappings in the bipolar metric spaces, which provides a framework to study distances between dissimilar objects. Kishore, Agarwal, Rao and Rao[13] proved existence and uniqueness of the solution for three self mappings in a complete bipolar metric space under a new Caristi type contraction. Kishore, Prasad, Rao and Baghavan[14] proved existence of common coupled fixed point results for two covariant mappings in bipolar metric spaces. Kishore, Rao, Sombabu and Rao [15] introduced the concept of multivalued contraction mappings in partially ordered bipolar metric spaces and proved existence of unique coupled fixed point results for multivalued contractive mapping by using mixed monotone property in partially ordered bipolar metric spaces. Rao, Kishore and Kumar [16] proved existence of common coupled fixed point results of two covariant mappings in a complete bipolar metric spaces under Geraghty type contraction by using weakly compatible mappings. Kishore, Rao, Işık, Rao and Sombabu [17] proved existence and uniqueness of common coupled fixed point results for three covariant mappings in bipolar metric spaces. Mutlu, ¨Ozkan and G¨urdal [18] introduced the concepts of (ϵ, λ)-uniformly locally contractive and weakly contractive mappings, which are generalizations of Banach contraction mapping and proved fixed point theorems on bipolar metric spaces. Gaba, Aphane and Aydi [19] introduced the concept of (α,BK)-contractions and proved the existence of fixed points for contravariant mappings on bipolar metric spaces. Roy, Saha, George, Gurand and Mitrović [20] introduced the concept of bipolar p-metric space and proved fixed point theorems on bipolar p-metric space.
Definition 1.1. [11] Let Φ and Ψ be two non-void subsets of a set V and φ:Φ×Ψ→R+ be a function such that
(a) φ(η,σ)=0 iff η=σ;
(b) φ(η,σ)=φ(σ,η), for all η,σ∈Φ∩Ψ;
(c) φ(η,σ)≤φ(η,σ1)+φ(η1,σ1)+φ(η1,σ), for all η,η1∈Φ and σ,σ1∈Ψ.
The triple (Φ,Ψ,φ) is called a bipolar metric space.
In 2014, Ma et al. [21] proved fixed point theorems on C⋆-algebra-valued metric spaces. Batul and Kamran [22] introduced the notion of continuity in the context of C⋆-valued metric spaces and proved fixed point theorems on C⋆-algebra-valued metric spaces. Recently, Gunaseelan, Arul Joseph, Ul Haq, Baloch and Jarad [23], introduced the notion of a C⋆-algebra-valued bipolar metric space and proved coupled fixed theorems. In this paper, we prove fixed point theorems on C⋆-algebra-valued bipolar metric space. The details on C⋆-algebra-valued are available in [24,25,26].
A complex algebra H, together with a conjugate linear involution map p⟼p⋆, is called a ⋆-algebra if (pq)⋆=q⋆p⋆ and (p⋆)⋆=p for all p,q∈H. Moreover, the pair (H,⋆) is called a unital ⋆-algebra if H contains an identity element 1H. By a Banach ⋆-algebra we mean a complete normed unital ⋆-algebra (H,⋆) such that the norm on H is submultiplicative and satisfies ‖p⋆‖=‖p‖ for all p∈H. Further, if for all p∈H, we have ‖p⋆p‖=‖p‖2 in a Banach ⋆-algebra (H,⋆), then H is known as a C⋆-algebra. A positive element of H is an element p∈H such that p=p⋆ and its spectrum σ(p)⊂R+, where σ(p) = {ℵ∈C:ℵ1H−pis non invertible}. The set of all positive elements will be denoted by H+. Such elements allow us to define a partial ordering ⪰ on the elements of H. That is,
q⪰pif and only ifq−p∈H+. |
If p∈H is positive, then we write p⪰0H, where 0H is the zero element of H. Each positive element p of a C⋆-algebra H has a unique positive square root denoted by p12 in H. From now on, by H we mean a unital C⋆-algebra with identity element 1H. Further, H+ = {p∈H:p⪰0H} and (p⋆p)1/2 = ||p||.
In this article, we prove existence and uniqueness fixed point theorems on C⋆-algebra-valued bipolar metric spaces. The main objectives of this article are as follows:
● To prove several fixed point theorems for contraction mappings.
● To find the existence and uniqueness of the solution of an integral equation.
In 2022, Gunaseelan, Arul Joseph, Ul Haq, Baloch and Jarad [23], introduced the notion of a bipolar metric space in the setting of C⋆-algebra and proved coupled fixed point theorem as follows.
Definition 2.1. [23] Let H be a C⋆-algebra, Φ, Ψ be two non-void subset of a set V, and φ:Φ×Ψ→H+ be a mapping such that
(a) φ(η,σ)=0H iff η=σ;
(b) φ(η,σ)=φ(σ,η), for all η,σ∈Φ∩Ψ;
(c) φ(η,σ)≤φ(η,σ1)+φ(η1,σ1)+φ(η1,σ), for all η,η1∈Φ and σ,σ1∈Ψ.
The 4-tuple (Φ,Ψ,H,φ) is called a C⋆-algebra-valued bipolar metric space.
Example 2.2. Let Φ=[0,1], Ψ=[−1,1], H=C and φ:Φ×Ψ→H+ be defined by
φ(η,σ)=|η−σ| |
for all η∈Φ and σ∈Ψ. Then (Φ,Ψ,H,φ) is a C⋆-algebra-valued bipolar metric space.
Lemma 2.3. [25] Suppose that H is a unital C⋆-algebra with a unit I.
(A1) For any η∈H+ we have η⪯I iff ||η||≤1.
(A2) If p∈H+ with ||p||<12, then I−p is invertible and ||p(I−p)−1||<1.
(A3) If p,q∈H+ and pq=qp, then pq∈H+.
(A4) By H′ we denote the set {p∈H:pq=qp,∀q∈H}. Let p∈H′, if q,c∈H with q⪰c⪰0H, and I−p∈H′+ is an invertible operator, then
(I−p)−1q⪰(I−p)−1c. |
Notice that in a C⋆-algebra, if p,q∈H+, one cannot conclude that pq∈H+.
Definition 2.4. [23] Let (Φ1,Ψ1,H,φ1) and (Φ2,Ψ2,H,φ2) be C⋆-algebra-valued bipolar metric spaces and take any mapping Γ:Φ1∪Ψ1→Φ2∪Ψ2.
(B1) If Γ(Φ1)⊆Φ2 and Γ(Ψ1)⊆Ψ2, then Γ is called a covariant map from (Φ1,Ψ1,H,φ1) to (Φ2,Ψ2,H,φ2) and this is written as Γ:(Φ1,Ψ1,H,φ1)⇉(Φ2,Ψ2,H,φ2).
(B2) If Γ(Φ1)⊆Ψ2 and Γ(Ψ1)⊆Φ2, then Γ is called a contravariant map from (Φ1,Ψ1,H,φ1)to(Φ2,Ψ2,H,φ2) and this is denoted as Γ:(Φ1,Ψ1,H,φ1)⇆(Φ2,Ψ2,H,φ2).
Theorem 2.5. [23] Let (Φ,Ψ,H,φ) be a complete C⋆-algebra-valued bipolar metric space. Suppose Γ:(Φ2,Ψ2,H,φ)⇉(Φ,Ψ,H,φ) is a covariant mapping such that
φ(Γ(η,σ),Γ(u,v))⪯ℵ⋆φ(η,u)ℵ+ℵ⋆φ(σ,v)ℵfor allη,σ∈Φ,u,v∈Ψ, |
where ℵ∈H with 2||ℵ||2<1. Then the function Γ:Φ2∪Ψ2→Φ∪Ψ has a unique coupled fixed point.
Motivated by the above theorem, we prove fixed point theorems on C⋆-algebra-valued bipolar metric space.
Definition 2.6. (C1) The mapping Γ:(Φ1,Ψ1,H,φ1)⇉(Φ2,Ψ2,H,φ2) is called left continuous at a point η∈Φ1 if for every sequence {σα}⊂Ψ1 with {σα}→η, we have {Γ(σα)}→Γη in (Φ2,Ψ2,H,φ2).
(C2) The mapping Γ:(Φ1,Ψ1,H,φ1)⇉(Φ2,Ψ2,H,φ2) is called right continuous at a point σ∈Ψ1 if for every sequence {ηα}⊂Φ1 with {ηα}→σ, we have {Γ(ηα)}→Γσ in (Φ2,Ψ2,H,φ2).
(C3) The mapping Γ:(Φ1,Ψ1,H,φ1)⇉(Φ2,Ψ2,H,φ2) is said to be continuous if it is left continuous at each point η∈Φ1 and right continuous at each point σ∈Ψ1.
(C4) A contravariant mapping Γ:(Φ1,Ψ1,H,φ1)⇆(Φ2,Ψ2,H,φ2) is continuous if and only if it is continuous as a covariant map Γ:(Φ1,Ψ1,H,φ1)⇉(Ψ2,Φ2,H,φ2).
This definition implies that a contravariant or a covariant map Γ, which is defined from (Φ1,Ψ1,H,φ1) to (Φ2,Ψ2,H,φ2), is continuous, iff {ηα}→σ on (Φ1,Ψ1,H,φ1) implies {Γ(ηα)}→Γσ on (Φ2,Ψ2,H,φ2).
Definition 2.7. Let (Φ1,Ψ1,H,φ1) and (Φ2,Ψ2,H,φ2) be C⋆-algebra-valued bipolar metric spaces. A covariant map Γ:(Φ1,Ψ1,H,φ1)⇉(Φ2,Ψ2,H,φ2) such that
φ2(Γ(η),Γ(σ))⪯ℵ⋆φ1(η,σ)ℵfor allη∈Φ1,σ∈Ψ1 |
or a contravariant map Γ:(Φ1,Ψ1,H,φ1)⇆(Φ2,Ψ2,H,φ2) such that
φ2(Γ(σ),Γ(η))⪯ℵ⋆φ1(η,σ)ℵfor allη∈Φ1,σ∈Ψ1, |
for some element ℵ∈H, is called Lipschitz continuous. If ℵ=1, then this covariant or contravariant map is said to be non-expansive, and if ℵ∈H with ||ℵ||2<1, it is called a contraction.
Example 2.8. Let H=C, then H is a C⋆-algebra with pointwise operations of addition, multiplication, and scalar multiplication. The norm on H is defined by
||(η,σ)||=max |
Let \varPhi = [0, 1] , \varPsi = [1, 2] and \varphi : \varPhi \times \varPsi \to \mathcal{H}_{+} be defined by
\begin{equation*} \varphi(\eta, \sigma) = \vert \eta - \sigma\vert, \end{equation*} |
for all \eta \in \varPhi and \sigma\in \varPsi . Then \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi) \rightrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) , given by
\begin{equation*} \varGamma(\eta) = \frac{\eta+4}{5}, \, \, \forall\eta \in \varPhi\cup \varPsi \end{equation*} |
is continuous with respect to \mathcal{H} since
\begin{align*} ||\varphi(\varGamma\eta, \varGamma\sigma)|| = \bigg\rVert\varphi(\frac{\eta+4}{5}, \frac{\sigma+4}{5})\bigg\lVert = \bigg\rVert\frac{\eta}{5}-\frac{\sigma}{5}\bigg\lVert < \epsilon\, \, \text{whenever}\, \, ||\eta-\sigma|| < \delta = 5\epsilon. \end{align*} |
Clearly, Lipschitz continuous, which implies the continuity.
Definition2.9. [23] Let (\varPhi, \varPsi, \mathcal{H}, \varphi) be a \mathcal{C}^{\star} -algebra-valued bipolar metric space.
(F1) A sequence (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) on the set \varPhi \times \varPsi is called a bisequence on (\varPhi, \varPsi, \mathcal{H}, \varphi) .
(F2) A point \eta\in\varPhi\cup\varPsi is said to be a left point if \eta\in \varPhi , a right point if \eta\in \varPsi and a central point if both hold. Similarly, a sequence \{\eta_{\alpha}\} on the set \varPhi and a sequence \{\sigma_{\alpha}\} on the set \varPsi are called a left and right sequence (with respect to \mathcal{H} ), respectively.
(F3) A sequence \{\eta_{\alpha}\} converges to a point \sigma (with respect to \mathcal{H} ) if \{\eta_{\alpha}\} is a left sequence, \sigma is a right point and \lim\limits_{\alpha\to \infty}\varphi(\eta_{\alpha}, \sigma) = 0_\mathcal{H} or \{\eta_{\alpha}\} is a right sequence, \sigma is a left point and \lim\limits_{\alpha\to \infty}\varphi(\sigma, \eta_{\alpha}) = 0_\mathcal{H} .
(F4) If both \{\eta_{\alpha}\} and \{\sigma_{\alpha}\} converge (with respect to \mathcal{H} ), then the bisequence (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) is said to be convergent (with respect to \mathcal{H} ). If \{\eta_{\alpha}\} and \{\sigma_{\alpha}\} both converge (with respect to \mathcal{H} ) to a same point u\in \varPhi\cap \varPsi , then this bisequence is said to be biconvergent (with respect to \mathcal{H} ).
(F5) A bisequence (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) on (\varPhi, \varPsi, \mathcal{H}, \varphi) is said to be a Cauchy bisequence (with respect to \mathcal{H} ), if \lim\limits_{\alpha, \mathfrak{m}\to \infty}\varphi(\eta_{\alpha}, \sigma_{\mathfrak{m}}) = 0_\mathcal{H} .
(F26) (\varPhi, \varPsi, \mathcal{H}, \varphi) is complete, if every Cauchy bisequence (with respect to \mathcal{H} ) is convergent.
Proposition 2.10. In a \mathcal{C}^{\star} -algebra-valued bipolar metric space, every convergent Cauchy bisequence is biconvergent.
Proof. Let (\varPhi, \varPsi, \mathcal{H}, \varphi) be a \mathcal{C}^{\star} -algebra-valued bipolar metric space and (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) be a Cauchy bisequence, such that \{\eta_{\alpha}\} \rightarrow \sigma\in \varPsi and \{\sigma_{\alpha}\} \rightarrow \eta \in \varPhi . Then \varphi (\eta, \sigma)\leq \varphi (\eta, \sigma_{m})+\varphi (\eta_{\alpha}, \sigma_{m})+\varphi (\eta_{\alpha}, \sigma) . So, being a convergent Cauchy bisequence implies \varphi (\eta, \sigma) = 0 . Thus (\eta_{\alpha}, \sigma_{\alpha}) biconverges to the point \eta = \sigma . Let (\varPhi, \varPsi, \mathcal{H}, \varphi) be a \mathcal{C}^{\star} -algebra-valued bipolar metric space. The set
\begin{align*} \mathcal{B}_{\varphi}(\eta;\epsilon) = \{\sigma\in \varPsi:\varphi(\eta, \sigma) < \epsilon\} \end{align*} |
is called open ball of radius 0_\mathcal{H} < \epsilon\in \mathcal{H} and at center \eta\in \varPhi . Similarly, the set
\begin{align*} \mathcal{B}_{\varphi}[\eta;\epsilon] = \{\sigma\in \varPsi:\varphi(\eta, \sigma)\leq\epsilon\} \end{align*} |
is called closed ball of radius 0_\mathcal{H} < \epsilon\in \mathcal{H} and at center \eta\in \varPhi . The set of open balls
\begin{align*} \mathcal{U} = \{\mathcal{B}_{\varphi}(\eta;\epsilon): \eta\in \varPhi, \epsilon > 0_\mathcal{H}\}, \end{align*} |
form a basis of some topology \tau_{2} on \varPsi . The set
\begin{align*} \mathfrak{B}_{\varphi}(\sigma;\epsilon) = \{\eta\in \varPhi:\varphi(\eta, \sigma) < \epsilon\} \end{align*} |
is called open ball of radius 0_\mathcal{H} < \epsilon\in \mathcal{H} and at center \sigma\in \varPsi . Similarly, the set
\begin{align*} \mathfrak{B}_{\varphi}[\sigma;\epsilon] = \{\eta\in \varPhi:\varphi(\eta, \sigma)\leq\epsilon\} \end{align*} |
is called closed ball of radius 0_\mathcal{H} < \epsilon\in \mathcal{H} and at center \sigma\in \varPsi . The set of open balls
\begin{align*} \mathcal{V} = \{\mathfrak{B}_{\varphi}(\sigma;\epsilon): \sigma\in \varPsi, \epsilon > 0_\mathcal{H}\}, \end{align*} |
form a basis of some topology \tau_{1} on \varPhi . Let \mathit{B} denote the family of all subsets of \varPhi\times\varPsi of the form \mathit{U}\times \mathit{V} , where \mathit{U} is open in \varPhi and \mathit{V} open in \varPsi . Then \bigcup\mathit{B} = \varPhi\times\varPsi and the intersection of any two members of \mathit{B} lies in \mathit{B} . Therefore \mathit{B} is a base for a topology on \varPhi\times\varPsi . This topology is called the product topology.
Now, we present our main results.
Theorem 3.1. Let (\varPhi, \varPsi, \mathcal{H}, \varphi) be a complete \mathcal{C}^{\star} -algebra-valued bipolar metric space and given a covariant contraction \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi) \rightrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) . Then the mapping \varGamma: \varPhi \cup \varPsi \rightarrow \varPhi \cup \varPsi has a unique fixed point.
Proof. If \mathcal{H} = \{{0}_\mathcal{H}\} , then there is nothing to prove. Assume that \mathcal{H}\neq\{{0}_\mathcal{H}\} . Let \eta_{0} \in \varPhi and \sigma_{0} \in \varPsi . For each \alpha\in \mathbb{Z}^{+}\cup\{0\} , define \varGamma(\eta_{\alpha}) = \eta_{\alpha+1} and \varGamma(\sigma_{\alpha}) = \sigma_{\alpha+1} . Therefore (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) is a bisequence on (\varPhi, \varPsi, \mathcal{H}, \varphi) . Let \mathcal{M}: = \varphi(\eta_{0}, \sigma_{0})+\varphi(\eta_{0}, \sigma_{1}) and \mathcal{S}: = \varphi(\eta_{0}, \sigma_{0})+\varphi(\eta_{1}, \sigma_{0}) . Then, for each \alpha, \mathfrak{p}\in \mathbb{Z}^{+} ,
\begin{align*} \varphi(\eta_\alpha, \sigma_\alpha) = & \varphi(\varGamma\eta_{\alpha-1}, \varGamma\sigma_{\alpha-1})\\ &\preceq \aleph^{\star}\varphi(\eta_{\alpha-1}, \sigma_{\alpha-1})\aleph\\ & = \aleph^{\star}\varphi(\varGamma\eta_{\alpha-2}, \varGamma\sigma_{\alpha-2})\aleph\\ &\preceq (\aleph^{\star})^{2}\varphi(\eta_{\alpha-2}, \sigma_{\alpha-2})\aleph^{2}\\ &\preceq (\aleph^{\star})^{3}\varphi(\eta_{\alpha-3}, \sigma_{\alpha-3})\aleph^{3}\\ &\ \ \vdots\\ & \preceq (\aleph^{\star})^{\alpha}\varphi(\eta_{0}, \sigma_{0})\aleph^{\alpha}, \end{align*} |
\begin{align*} \varphi(\eta_\alpha, \sigma_{\alpha+1}) = & \varphi(\varGamma\eta_{\alpha-1}, \varGamma\sigma_{\alpha})\\ &\preceq \aleph^{\star}\varphi(\eta_{\alpha-1}, \sigma_{\alpha})\aleph\\ & = \aleph^{\star}\varphi(\varGamma\eta_{\alpha-2}, \varGamma\sigma_{\alpha-1})\aleph\\ &\preceq (\aleph^{\star})^{2}\varphi(\eta_{\alpha-2}, \sigma_{\alpha-1})\aleph^{2}\\ &\preceq (\aleph^{\star})^{3}\varphi(\eta_{\alpha-3}, \sigma_{\alpha-2})\aleph^{3}\\ &\ \ \vdots\\ & \preceq (\aleph^{\star})^{\alpha}\varphi(\eta_{0}, \sigma_{1})\aleph^{\alpha} \end{align*} |
and
\begin{align*} \varphi(\eta_{\alpha+1}, \sigma_{\alpha}) = & \varphi(\varGamma\eta_{\alpha}, \varGamma\sigma_{\alpha-1})\\ &\preceq \aleph^{\star}\varphi(\eta_{\alpha}, \sigma_{\alpha-1})\aleph\\ & = \aleph^{\star}\varphi(\varGamma\eta_{\alpha-1}, \varGamma\sigma_{\alpha-2})\aleph\\ &\preceq (\aleph^{\star})^{2}\varphi(\eta_{\alpha-1}, \sigma_{\alpha-2})\aleph^{2}\\ &\preceq (\aleph^{\star})^{3}\varphi(\eta_{\alpha-2}, \sigma_{\alpha-3})\aleph^{3}\\ &\ \ \vdots\\ & \preceq (\aleph^{\star})^{\alpha}\varphi(\eta_{1}, \sigma_{0})\aleph^{\alpha}. \end{align*} |
Also,
\begin{align*} \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha})&\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+1})+ \varphi(\eta_{\alpha}, \sigma_{\alpha+1})+\varphi(\eta_{\alpha}, \sigma_{\alpha})\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+1})+ (\aleph^{\star})^{\alpha}\mathcal{M}\aleph^{\alpha}\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+2})+ \varphi(\eta_{\alpha+1}, \sigma_{\alpha+2})+\varphi(\eta_{\alpha+1}, \sigma_{\alpha+1})+(\aleph^{\star})^{\alpha}\mathcal{M}\aleph^{\alpha}\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+2}) +(\aleph^{\star})^{\alpha+1}\mathcal{M}\aleph^{\alpha+1}+(\aleph^{\star})^{\alpha}\mathcal{M}\aleph^{\alpha}\\ &\ \ \vdots\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+\mathfrak{p}})+(\aleph^{\star})^{\alpha+\mathfrak{p}-1}\mathcal{M}\aleph^{\alpha+\mathfrak{p}-1}+\cdots +(\aleph^{\star})^{\alpha+1}\mathcal{M}\aleph^{\alpha+1}+(\aleph^{\star})^{\alpha}\mathcal{M}\aleph^{\alpha}\\ &\preceq (\aleph^{\star})^{\alpha+\mathfrak{p}}\mathcal{M}\aleph^{\alpha+\mathfrak{p}}+(\aleph^{\star})^{\alpha+\mathfrak{p}-1}\mathcal{M}\aleph^{\alpha+\mathfrak{p}-1}+\cdots +(\aleph^{\star})^{\alpha+1}\mathcal{M}\aleph^{\alpha+1}+(\aleph^{\star})^{\alpha}\mathcal{M}\aleph^{\alpha}\\ & = \sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}(\aleph^{\star})^{\mathfrak{k}}\mathcal{M}\aleph^{\mathfrak{k}}\\ & = \sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}(\aleph^{\star})^{\mathfrak{k}}\mathcal{M}^{\frac{1}{2}}\mathcal{M}^{\frac{1}{2}}\aleph^{\mathfrak{k}}\\ & = \sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}(\mathcal{M}^{\frac{1}{2}}\aleph^{\mathfrak{k}})^{\star}\mathcal{M}^{\frac{1}{2}}\aleph^{\mathfrak{k}}\\ &\preceq\sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}||\mathcal{M}^{\frac{1}{2}}\aleph^{\mathfrak{k}}||^{2}1_{\mathcal{H}}\\ &\preceq\sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}||\mathcal{M}^{\frac{1}{2}}||^{2}||\aleph^{\mathfrak{k}}||^{2}1_{\mathcal{H}}\\ &\preceq||\mathcal{M}^{\frac{1}{2}}||^{2}\sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}||\aleph||^{2\mathfrak{k}}1_{\mathcal{H}}\\ &\to 0_\mathcal{H}\, \, \text{as}\, \, \alpha, \mathfrak{p}\to \infty, \; since\; ||\aleph||^{2} < 1, \end{align*} |
and
\begin{align*} \varphi(\eta_{\alpha}, \sigma_{\alpha+\mathfrak{p}})&\preceq \varphi(\eta_{\alpha}, \sigma_{\alpha})+ \varphi(\eta_{\alpha+1}, \sigma_{\alpha})+\varphi(\eta_{\alpha+1}, \sigma_{\alpha+\mathfrak{p}})\\ &\preceq (\aleph^{\star})^{\alpha}\varphi(\eta_{0}, \sigma_{0})\aleph^{\alpha}+(\aleph^{\star})^{\alpha}\varphi(\eta_{1}, \sigma_{0})\aleph^{\alpha}+ \varphi(\eta_{\alpha+1}, \sigma_{\alpha+\mathfrak{p}})\\ &\preceq (\aleph^{\star})^{\alpha}\mathcal{S}\aleph^{\alpha}+ \varphi(\eta_{\alpha+1}, \sigma_{\alpha+1})+\varphi(\eta_{\alpha+2}, \sigma_{\alpha+1})+\varphi(\eta_{\alpha+2}, \sigma_{\alpha+\mathfrak{p}})\\ &\preceq (\aleph^{\star})^{\alpha}\mathcal{S}\aleph^{\alpha}+(\aleph^{\star})^{\alpha+1}\mathcal{S}\aleph^{\alpha+1}+\varphi(\eta_{\alpha+2}, \sigma_{\alpha+\mathfrak{p}})\\ &\ \ \vdots\\ &\preceq (\aleph^{\star})^{\alpha}\mathcal{S}\aleph^{\alpha}+(\aleph^{\star})^{\alpha+1}\mathcal{S}\aleph^{\alpha+1}+\cdots+(\aleph^{\star})^{\alpha+\mathfrak{p}-1}\mathcal{S}\aleph^{\alpha+\mathfrak{p}-1}+\varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+\mathfrak{p}})\\ &\preceq (\aleph^{\star})^{\alpha}\mathcal{S}\aleph^{\alpha}+(\aleph^{\star})^{\alpha+1}\mathcal{S}\aleph^{\alpha+1}+\cdots+(\aleph^{\star})^{\alpha+\mathfrak{p}-1}\mathcal{S}\aleph^{\alpha+\mathfrak{p}-1}+(\aleph^{\star})^{\alpha+\mathfrak{p}}\mathcal{S}\aleph^{\alpha+\mathfrak{p}}\\ & = \sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}(\aleph^{\star})^{\mathfrak{k}}\mathcal{S}\aleph^{\mathfrak{k}}\\ & = \sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}(\aleph^{\star})^{\mathfrak{k}}\mathcal{S}^{\frac{1}{2}}\mathcal{S}^{\frac{1}{2}}\aleph^{\mathfrak{k}}\\ & = \sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}(\mathcal{S}^{\frac{1}{2}}\aleph^{\mathfrak{k}})^{\star}\mathcal{S}^{\frac{1}{2}}\aleph^{\mathfrak{k}}\\ &\preceq\sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}||\mathcal{S}^{\frac{1}{2}}\aleph^{\mathfrak{k}}||^{2}1_{\mathcal{H}}\\ &\preceq\sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}||\mathcal{S}^{\frac{1}{2}}||^{2}||\aleph^{\mathfrak{k}}||^{2}1_{\mathcal{H}}\\ &\preceq||\mathcal{S}^{\frac{1}{2}}||^{2}\sum\limits_{\mathfrak{k} = \alpha}^{\alpha+\mathfrak{p}}||\aleph||^{2\mathfrak{k}}1_{\mathcal{H}}\\ &\to 0_\mathcal{H}\, \, \text{as}\, \, \alpha, \mathfrak{p}\to \infty, \; since\; ||\aleph||^{2} < 1. \end{align*} |
Therefore, (\{\eta_{\alpha}\}, \{\sigma_{\alpha+\mathfrak{p}}\}) is a Cauchy bisequence with respect to \mathcal{H} . By completeness of (\varPhi, \varPsi, \mathcal{H}, \varphi) , (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) converges, and as a convergent Cauchy bisequence, in particular it biconverges, it follows that \eta_{\alpha}\rightarrow \mu and \sigma_{\alpha}\rightarrow \mu , where \mu\in \varPhi\cap \varPsi . Since \varGamma is continuous, \varGamma(\eta_{\alpha})\to \varGamma(\mu) . Therefore, \varGamma(\mu) = \mu . Hence \mu is a fixed point of \varGamma .
We now show uniqueness. Let \omega \in \varPsi be another fixed point of \varGamma . Then
\begin{align*} {0}_\mathcal{H} \preceq \varphi(\mu, \omega) = \varphi(\varGamma\mu, \varGamma\omega) \preceq \aleph^{*}\varphi(\mu, \omega)\aleph. \end{align*} |
Using the norm of \mathcal{H} , we have
\begin{align*} {0} \leq \Big\|\varphi(\mu, \omega)\Big\| \leq \Big\| \aleph^{*}\varphi(\mu, \omega)\aleph\Big\| \leq \Big\|\aleph^{*}\Big\|\Big\|\varphi(\mu, \omega)\Big\|\big\|\aleph\big\| = \big\|\aleph\big\|^{2}\Big\|\varphi(\mu, \omega)\Big\|. \end{align*} |
Since ||\aleph||^{2} < 1 , the above inequality holds only when \varphi(\mu, \omega) = {0}_{\mathcal{H}} . Hence, \mu = \omega . Similar arguments hold if \omega \in\varPhi .
Example 3.2. Let \varPhi = [0, 1] , \varPsi = [1, 2] , \mathcal{H} = \mathcal{M}_{2}(\mathbb{C}) and \varphi : \varPhi \times \varPsi \to \mathcal{H}_{+} be defined by
\begin{equation*} \varphi(\eta, \sigma) = \begin{bmatrix} \begin{array}{c c } \vert \eta - \sigma\vert& 0 \\ 0 & \Bbbk \vert \eta - \sigma\vert\\ \end{array} \end{bmatrix} \end{equation*} |
for all \eta \in \varPhi and \sigma\in \varPsi , where \Bbbk \geq 0 is a constant. Then (\varPhi, \varPsi, \mathcal{H}, \varphi) is a complete C^{\star} -algebra-valued bipolar metric space. Define \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi) \rightrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) by
\begin{equation*} \varGamma(\eta) = \frac{\eta+3}{4}, \, \, \forall\eta \in \varPhi\cup \varPsi. \end{equation*} |
Then we get
\begin{align*} \varphi(\varGamma \eta, \varGamma\sigma) & = \begin{bmatrix} \begin{array}{c c } \vert \varGamma\eta - \varGamma\sigma\vert& 0 \\ 0 & \Bbbk \vert \varGamma\eta - \varGamma\sigma\vert\\ \end{array} \end{bmatrix}\\ & = \begin{bmatrix} \begin{array}{c c } \vert \frac{\eta}{4} - \frac{\sigma}{4}\vert& 0 \\ 0 & \Bbbk \vert\frac{\eta}{4} - \frac{\sigma}{4}\vert\\ \end{array} \end{bmatrix}\\ & = \frac{1}{4}\begin{bmatrix} &\begin{array}{c c } \vert\eta -\sigma\vert& 0 \\ 0 & \Bbbk \vert\eta -\sigma\vert\\ \end{array} \end{bmatrix}\\ & = \aleph^{\star}\varphi(\eta, \sigma) \aleph, \end{align*} |
where
\begin{equation*} \aleph = \begin{bmatrix} \begin{array}{c c } \frac{1}{2}& 0 \\ 0 & \frac{1}{2}\\ \end{array} \end{bmatrix} \end{equation*} |
and ||\aleph|| = \frac{1}{2} < 1 . All the conditions of Theorem 3.1 are fulfilled and \varGamma has a unique fixed point \eta = 1 .
Below we prove a similar result for contravariant maps.
Theorem 3.3. Let (\varPhi, \varPsi, \mathcal{H}, \varphi) be a complete \mathcal{C}^{\star} -algebra-valued bipolar metric space and given a contravariant contraction \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi)\leftrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) . Then the mapping \varGamma: \varPhi \cup \varPsi \rightarrow \varPhi \cup \varPsi has a unique fixed point.
Proof. If \mathcal{H} = \{{0}_\mathcal{H}\} , then there is nothing to prove. Assume that \mathcal{H}\neq\{{0}_\mathcal{H}\} . Let \eta_{0} \in \varPhi . For each \alpha\in \mathbb{Z}^{+}\cup\{0\} , define \varGamma(\eta_{\alpha}) = \sigma_{\alpha} and \varGamma(\sigma_{\alpha}) = \eta_{\alpha+1} . Then (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) is a bisequence on (\varPhi, \varPsi, \mathcal{H}, \varphi) . Let \mathcal{G}: = \varphi(\eta_{0}, \sigma_{0}) . Then, for each \alpha, \mathfrak{p}\in \mathbb{Z}^{+} ,
\begin{align*} \varphi(\eta_\alpha, \sigma_\alpha) = & \varphi(\varGamma\sigma_{\alpha-1}, \varGamma\eta_{\alpha})\\ &\preceq \aleph^{\star}\varphi(\eta_{\alpha}, \sigma_{\alpha-1}, )\aleph\\ & = \aleph^{\star}\varphi(\varGamma\sigma_{\alpha-1}, \varGamma\eta_{\alpha-1})\aleph\\ &\preceq (\aleph^{\star})^{2}\varphi(\eta_{\alpha-1}, \sigma_{\alpha-1})\aleph^{2}\\ &\preceq (\aleph^{\star})^{4}\varphi(\eta_{\alpha-2}, \sigma_{\alpha-2})\aleph^{4}\\ &\ \ \vdots\\ & \preceq (\aleph^{\star})^{2\alpha}\varphi(\eta_{0}, \sigma_{0})\aleph^{2\alpha}, \end{align*} |
and
\begin{align*} \varphi(\eta_{\alpha+1}, \sigma_{\alpha}) = & \varphi(\varGamma\sigma_{\alpha}, \varGamma\eta_{\alpha})\\ &\preceq \aleph^{\star}\varphi(\eta_{\alpha}, \sigma_{\alpha})\aleph\\ & \preceq (\aleph^{\star})^{2\alpha+1}\varphi(\eta_{0}, \sigma_{0})\aleph^{2\alpha+1}. \end{align*} |
Also,
\begin{align*} \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha})&\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+1})+ \varphi(\eta_{\alpha+1}, \sigma_{\alpha+1})+\varphi(\eta_{\alpha+1}, \sigma_{\alpha})\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+1})+(\aleph^{\star})^{2\alpha+2}\mathcal{G}\aleph^{2\alpha+2}+ (\aleph^{\star})^{2\alpha+1}\mathcal{G}\aleph^{2\alpha+1}\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+2})+ \varphi(\eta_{\alpha+2}, \sigma_{\alpha+2})+\varphi(\eta_{\alpha+2}, \sigma_{\alpha+1})+(\aleph^{\star})^{2\alpha+2}\mathcal{G}\aleph^{2\alpha+2}\\ &+ (\aleph^{\star})^{2\alpha+1}\mathcal{G}\aleph^{2\alpha+1}\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+2})+ (\aleph^{\star})^{2\alpha+4}\mathcal{G}\aleph^{2\alpha+4}+ (\aleph^{\star})^{2\alpha+3}\mathcal{G}\aleph^{2\alpha+3}\\ &+(\aleph^{\star})^{2\alpha+2}\mathcal{G}\aleph^{2\alpha+2}+ (\aleph^{\star})^{2\alpha+1}\mathcal{G}\aleph^{2\alpha+1}\\ & \vdots\\ &\preceq \varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha+\mathfrak{p}-1})+ (\aleph^{\star})^{2\alpha+2\mathfrak{p}-2}\mathcal{G}\aleph^{2\alpha+2\mathfrak{p}-2}\\ &+\cdots+ (\aleph^{\star})^{2\alpha+1}\mathcal{G}\aleph^{2\alpha+1}\\ &\preceq (\aleph^{\star})^{2\alpha+2\mathfrak{p}-1}\mathcal{G}\aleph^{2\alpha+2\mathfrak{p}-1}+ (\aleph^{\star})^{2\alpha+2\mathfrak{p}-2}\mathcal{G}\aleph^{2\alpha+2\mathfrak{p}-2}\\ &+\cdots+ (\aleph^{\star})^{2\alpha+1}\mathcal{G}\aleph^{2\alpha+1}\\ & = \sum\limits_{\mathfrak{k} = 2\alpha+1}^{2\alpha+2\mathfrak{p}-1}(\aleph^{\star})^{\mathfrak{k}}\mathcal{G}\aleph^{\mathfrak{k}}\\ & = \sum\limits_{\mathfrak{k} = 2\alpha+1}^{2\alpha+2\mathfrak{p}-1}(\aleph^{\star})^{\mathfrak{k}}\mathcal{G}^{\frac{1}{2}}\mathcal{G}^{\frac{1}{2}}\aleph^{\mathfrak{k}}\\ & = \sum\limits_{\mathfrak{k} = 2\alpha+1}^{2\alpha+2\mathfrak{p}-1}(\mathcal{G}^{\frac{1}{2}}\aleph^{\mathfrak{k}})^{\star}(\mathcal{G}^{\frac{1}{2}}\aleph^{\mathfrak{k}})\\ &\preceq\sum\limits_{\mathfrak{k} = 2\alpha+1}^{2\alpha+2\mathfrak{p}-1}||\mathcal{G}^{\frac{1}{2}}\aleph^{\mathfrak{k}}||^{2}1_{\mathcal{H}}\\ &\preceq\sum\limits_{\mathfrak{k} = 2\alpha+1}^{2\alpha+2\mathfrak{p}-1}||\mathcal{G}^{\frac{1}{2}}||^{2}||\aleph^{\mathfrak{k}}||^{2}1_{\mathcal{H}}\\ &\preceq||\mathcal{G}^{\frac{1}{2}}||^{2}||\sum\limits_{\mathfrak{k} = 2\alpha+1}^{2\alpha+2\mathfrak{p}-1}||\aleph||^{2\mathfrak{k}}1_{\mathcal{H}}\\ &\to 0_\mathcal{H}\, \, \text{as}\, \, \alpha, \mathfrak{p}\to \infty, \; since\; ||\aleph||^{2} < 1, \end{align*} |
and
\begin{align*} \varphi(\eta_{\alpha}, \sigma_{\alpha+\mathfrak{p}})& = \varphi(\Gamma\sigma_{\alpha-1}, \Gamma\eta_{\alpha+\mathfrak{p}})\\ &\preceq \aleph^{\star}\varphi(\eta_{\alpha+\mathfrak{p}}, \sigma_{\alpha-1})\aleph \end{align*} |
and apply the above case. Therefore, (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) is a Cauchy bisequence with respect to \mathcal{H} . By completeness of (\varPhi, \varPsi, \mathcal{H}, \varphi) , (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) converges, and as a convergent Cauchy bisequence, in particular it biconverges, it follows that \eta_{\alpha}\rightarrow \mu and \sigma_{\alpha}\rightarrow \mu , where \mu\in \varPhi\cap \varPsi . Since \varGamma is continuous, \varGamma(\eta_{\alpha})\to \varGamma(\mu) . Therefore, \varGamma(\mu) = \mu . Hence \mu is a fixed point of \varGamma .
We now show uniqueness. Let \omega \in \varPhi \cap \varPsi be another fixed point of \varGamma . Then
\begin{align*} {0}_\mathcal{H} \preceq \varphi(\mu, \omega) = \varphi(\varGamma\mu, \varGamma\omega) \preceq \aleph^{*}\varphi(\omega, \mu)\aleph. \end{align*} |
Using the norm of \mathcal{H} , we have
\begin{align*} {0} \leq \Big\|\varphi(\mu, \omega)\Big\| \leq \Big\| \aleph^{*}\varphi(\mu, \omega)\aleph\Big\| \leq \Big\|\aleph^{*}\Big\|\Big\|\varphi(\mu, \omega)\Big\|\big\|\aleph\big\| = \big\|\aleph\big\|^{2}\Big\|\varphi(\mu, \omega)\Big\|. \end{align*} |
Since ||\aleph||^{2} < 1 , the above inequality holds only when \varphi(\mu, \omega) = {0}_{\mathcal{H}} . Hence, \mu = \omega .
Example 3.4. Let \varPhi = \{0, 1, 2, 7\} , \varPsi = \{0, \frac{2}{5}, \frac{7}{5}, 3\} , \mathcal{H} = \mathcal{M}_{2}(\mathbb{C}) and \varphi : \varPhi \times \varPsi \to \mathcal{H}_{+} be defined by
\begin{equation*} \varphi(\eta, \sigma) = \begin{bmatrix} \begin{array}{c c } \vert \eta - \sigma\vert& 0 \\ 0 & \Bbbk \vert \eta - \sigma\vert\\ \end{array} \end{bmatrix} \end{equation*} |
for all \eta \in \varPhi and \sigma\in \varPsi , where \Bbbk \geq 0 is a constant. Then (\varPhi, \varPsi, \mathcal{H}, \varphi) is a complete C^{\star} -algebra-valued bipolar metric space. Define \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi)\leftrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) by
\begin{equation*} \varGamma(\eta) = \begin{cases} \frac{\eta}{5}, & \text{if}\ \eta \in \{2, 7\} , \\ 0, & \text{if}\ \eta\in \{0, \frac{2}{5}, \frac{7}{5}, 1, 3\} . \end{cases} \end{equation*} |
Then we get
\begin{align*} \varphi(\varGamma\sigma, \varGamma \eta) & = \begin{bmatrix} \begin{array}{c c } \vert \varGamma\sigma-\varGamma\eta \vert& 0 \\ 0 & \Bbbk \vert \varGamma\sigma-\varGamma\eta \vert\\ \end{array} \end{bmatrix}\\ &\preceq\frac{1}{2}\begin{bmatrix} &\begin{array}{c c } \vert\eta -\sigma\vert& 0 \\ 0 & \Bbbk \vert\eta -\sigma\vert\\ \end{array} \end{bmatrix}\\ & = \aleph^{\star}\varphi(\eta, \sigma) \aleph, \end{align*} |
where
\begin{equation*} \aleph = \begin{bmatrix} \begin{array}{c c } \frac{1}{\sqrt{2}}& 0 \\ 0 & \frac{1}{\sqrt{2}}\\ \end{array} \end{bmatrix} \end{equation*} |
and ||\aleph|| = \frac{1}{\sqrt{2}} < 1 . All the conditions of Theorem 3.2 are fulfilled and \varGamma has a unique fixed point \eta = 0 .
Theorem 3.5. Let (\varPhi, \varPsi, \mathcal{H}, \varphi) be a complete \mathcal{C}^{\star} -algebra-valued bipolar metric space. Suppose \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi)\leftrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) is contravariant mapping such that
\begin{align*} \varphi( \varGamma(\sigma), \varGamma(\eta)) \preceq \aleph(\varphi(\eta, \varGamma\eta)+\varphi(\varGamma\sigma, \sigma)) \, \, \mathit{\text{for all}} \, \, \eta \in \varPhi, \sigma \in \varPsi, \end{align*} |
where \aleph\in \mathcal{H}'_{+} with ||\aleph|| < \frac{1}{2} . Then the mapping \varGamma: \varPhi \cup \varPsi \rightarrow \varPhi \cup \varPsi has a unique fixed point.
Proof. If \mathcal{H} = \{{0}_\mathcal{H}\} , then there is nothing to prove. Assume that \mathcal{H}\neq\{{0}_\mathcal{H}\} . Let \eta_{0} \in \varPhi . For each \alpha\in \mathbb{Z}^{+}\cup\{0\} , define \varGamma(\eta_{\alpha}) = \sigma_{\alpha} and \varGamma(\sigma_{\alpha}) = \eta_{\alpha+1} . Therefore (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) is a bisequence on (\varPhi, \varPsi, \mathcal{H}, \varphi) . Let \mathcal{G}: = \varphi(\eta_{0}, \sigma_{0}) . Then, for each \alpha\in \mathbb{Z}^{+} ,
\begin{align*} \varphi(\eta_\alpha, \sigma_\alpha) = & \varphi(\varGamma\sigma_{\alpha-1}, \varGamma\eta_{\alpha})\\ &\preceq \aleph(\varphi(\eta_{\alpha}, \varGamma\eta_{\alpha})+\varphi(\sigma_{\alpha-1}, \varGamma\sigma_{\alpha-1}))\\ & = \aleph(\varphi(\eta_{\alpha}, \sigma_{\alpha})+\varphi(\eta_{\alpha}, \sigma_{\alpha-1})), \end{align*} |
which implies that
\begin{align*} (1-\aleph) \varphi(\eta_\alpha, \sigma_\alpha)\preceq \aleph \varphi(\eta_{\alpha}, \sigma_{\alpha-1}). \end{align*} |
Since ||\aleph|| < \frac{1}{2} , 1-\aleph is invertible, and can be expressed as (1-\aleph)^{-1} = \sum_{\alpha = 0}^{\infty}\aleph^{\alpha} , which together with \aleph\in \mathcal{H}'_{+} yield (1-\aleph)^{-1}\in\mathcal{H}'_{+} . By Lemma 2.3 (A4), we know
\begin{align*} \varphi(\eta_\alpha, \sigma_\alpha)\preceq \mathfrak{h} \varphi(\eta_{\alpha}, \sigma_{\alpha-1}), \end{align*} |
where \mathfrak{h} = \aleph(1-\aleph)^{-1}\in \mathcal{H}'_{+} . Now,
\begin{align*} \varphi(\eta_\alpha, \sigma_{\alpha-1}) = & \varphi(\varGamma\sigma_{\alpha-1}, \varGamma\eta_{\alpha-1})\\ &\preceq \aleph(\varphi(\eta_{\alpha-1}, \varGamma\eta_{\alpha-1})+\varphi(\varGamma\sigma_{\alpha-1}, \sigma_{\alpha-1}))\\ & = \aleph(\varphi(\eta_{\alpha-1}, \sigma_{\alpha-1})+\varphi(\eta_{\alpha}, \sigma_{\alpha-1})), \end{align*} |
which implies that
\begin{align*} (1-\aleph) \varphi(\eta_\alpha, \sigma_{\alpha-1})\preceq \aleph \varphi(\eta_{\alpha-1}, \sigma_{\alpha-1}). \end{align*} |
As before, we get
\begin{align*} \varphi(\eta_\alpha, \sigma_{\alpha-1})\preceq \mathfrak{h} \varphi(\eta_{\alpha-1}, \sigma_{\alpha-1}). \end{align*} |
Therefore
\begin{align*} \varphi(\eta_\alpha, \sigma_{\alpha})\preceq \mathfrak{h}^{2\alpha} \varphi(\eta_{0}, \sigma_{0}), \end{align*} |
and
\begin{align*} \varphi(\eta_\alpha, \sigma_{\alpha-1})\preceq \mathfrak{h}^{2\alpha-1} \varphi(\eta_{0}, \sigma_{0}). \end{align*} |
Let \alpha\leq\mathfrak{m} , \alpha, \mathfrak{m}\in \mathbb{Z}^{+} , then we get
\begin{align*} \varphi(\eta_{\alpha}, \sigma_{\mathfrak{m}})&\preceq \varphi(\eta_{\alpha}, \sigma_{\alpha})+ \varphi(\eta_{\alpha+1}, \sigma_{\alpha})+\varphi(\eta_{\alpha+1}, \sigma_{\mathfrak{m}})\\ &\preceq\mathfrak{h}^{2\alpha}\varphi(\eta_{0}, \sigma_{0})+ \mathfrak{h}^{2\alpha+1}\varphi(\eta_{0}, \sigma_{0})+ \varphi(\eta_{\alpha+1}, \sigma_{\mathfrak{m}})\\ &\ \ \vdots\\ &\preceq\mathfrak{h}^{2\alpha}\varphi(\eta_{0}, \sigma_{0})+ \mathfrak{h}^{2\alpha+1}\varphi(\eta_{0}, \sigma_{0})+\cdots+ \mathfrak{h}^{2\mathfrak{m}}\varphi(\eta_{0}, \sigma_{0})\\ & = (\mathfrak{h}^{2\alpha}+ \mathfrak{h}^{2\alpha+1}+\cdots+ \mathfrak{h}^{2\mathfrak{m}})\varphi(\eta_{0}, \sigma_{0})\\ & = (\mathfrak{h}^{2\alpha}+ \mathfrak{h}^{2\alpha+1}+\cdots+ \mathfrak{h}^{2\mathfrak{m}})\mathcal{G}\\ &\preceq||\mathfrak{h}^{2\alpha}+ \mathfrak{h}^{2\alpha+1}+\cdots+ \mathfrak{h}^{2\mathfrak{m}}||||\mathcal{G}||1_{\mathcal{H}}\\ &\preceq(||\mathfrak{h}||^{2\alpha}+ ||\mathfrak{h}||^{2\alpha+1}+\cdots+ ||\mathfrak{h}||^{2\mathfrak{m}})||\mathcal{G}||1_{\mathcal{H}}\\ & = \frac{||\mathfrak{h}||^{2\alpha}}{1-||\mathfrak{h}||}||\mathcal{G}||1_{\mathcal{H}}\\ &\to 0_\mathcal{H}\, \, \text{as}\, \, \alpha, \mathfrak{m}\to \infty, \, \, since\, \, ||\mathfrak{h}|| < 1\, \, by\, \, Lemma\, \, 2.3 (A2). \end{align*} |
Let \mathfrak{m} < \alpha , \alpha, \mathfrak{m}\in \mathbb{Z}^{+} , then we get
\begin{align*} \varphi(\eta_{\alpha}, \sigma_{\mathfrak{m}})&\preceq \varphi(\eta_{\mathfrak{m}+1}, \sigma_{\mathfrak{m}})+ \varphi(\eta_{\mathfrak{m}+1}, \sigma_{\mathfrak{m}+1})+\varphi(\eta_{\alpha}, \sigma_{\mathfrak{m}+1})\\ &\preceq\mathfrak{h}^{2\mathfrak{m}+1}\varphi(\eta_{0}, \sigma_{0})+ \mathfrak{h}^{2\mathfrak{m}+2}\varphi(\eta_{0}, \sigma_{0})+ \varphi(\eta_{\alpha}, \sigma_{\mathfrak{m}+1})\\ &\ \ \vdots\\ &\preceq\mathfrak{h}^{2\mathfrak{m}+1}\varphi(\eta_{0}, \sigma_{0})+ \mathfrak{h}^{2\mathfrak{m}+2}\varphi(\eta_{0}, \sigma_{0})+\cdots+ \mathfrak{h}^{2\alpha}\varphi(\eta_{0}, \sigma_{0})\\ & = (\mathfrak{h}^{2\mathfrak{m}+1}+ \mathfrak{h}^{2\mathfrak{m}+2}+\cdots+ \mathfrak{h}^{2\alpha})\varphi(\eta_{0}, \sigma_{0})\\ & = (\mathfrak{h}^{2\mathfrak{m}+1}+ \mathfrak{h}^{2\mathfrak{m}+2}+\cdots+ \mathfrak{h}^{2\alpha})\mathcal{G}\\ &\preceq||\mathfrak{h}^{2\mathfrak{m}+1}+ \mathfrak{h}^{2\mathfrak{m}+2}+\cdots+ \mathfrak{h}^{2\alpha}||||\mathcal{G}||1_{\mathcal{H}}\\ &\preceq(||\mathfrak{h}||^{2\mathfrak{m}+1}+ ||\mathfrak{h}||^{2\mathfrak{m}+2}+\cdots+ ||\mathfrak{h}||^{2\alpha})||\mathcal{G}||1_{\mathcal{H}}\\ & = \frac{||\mathfrak{h}||^{2\mathfrak{m}+1}}{1-||\mathfrak{h}||}||\mathcal{G}||1_{\mathcal{H}}\\ &\to 0_\mathcal{H}\, \, \text{as}\, \, \alpha, \mathfrak{m}\to \infty, \, \, since\, \, ||\mathfrak{h}|| < 1\, \, by\, \, Lemma\, \, 2.3 (A2). \end{align*} |
Therefore, (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) is a Cauchy bisequence with respect to \mathcal{H} . By completeness of (\varPhi, \varPsi, \mathcal{H}, \varphi) , (\{\eta_{\alpha}\}, \{\sigma_{\alpha}\}) converges, and as a convergent Cauchy bisequence, in particular it biconverges, it follows that \eta_{\alpha}\rightarrow \mu and \sigma_{\alpha}\rightarrow \mu , where \mu\in \varPhi\cap \varPsi . Then
\begin{align*} \varphi(\varGamma\eta_{\alpha}, \varGamma\mu) \preceq \aleph(\varphi(\mu, \varGamma\mu)+\varphi(\varGamma\eta_{\alpha}, \eta_{\alpha})). \end{align*} |
As \alpha\to \infty ,
\begin{align*} \varphi(\mu, \varGamma\mu)\preceq\aleph \varphi(\mu, \varGamma\mu). \end{align*} |
Hence \mu is a fixed point of \varGamma .
We now show uniqueness. Let \omega \in \varPhi \cap \varPsi be another fixed point of \varGamma . Then
\begin{align*} \varphi(\mu, \omega) = \varphi(\varGamma\mu, \varGamma\omega)\preceq\aleph(\varphi(\omega, \varGamma\omega)+ \varphi(\varGamma\mu, \mu)) = \aleph(\varphi(\omega, \omega)+\varphi(\mu, \mu)) = 0. \end{align*} |
Hence, \mu = \omega .
In this section, we study the existence and unique solution to an integral equation as an application of Theorem 3.1.
Theorem 4.1. Let us consider the integral equation
\begin{align*} \eta(\mathfrak{t}) = \mathfrak{q}(\mathfrak{t})+\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}\mathcal{G}\mathfrak(\mathfrak{t}, \mathfrak{s}, \eta(\mathfrak{s}))d\mathfrak{s}, \, \, \mathfrak{t}\in \mathcal{H}_{1}\cup\mathcal{H}_{2}, \end{align*} |
where \mathcal{H}_{1}\cup\mathcal{H}_{2} is a Lebesgue measurable set. Suppose
(T1) \mathcal{G}:(\mathcal{H}_{1}\cup\mathcal{H}_{2})\times (\mathcal{H}_{1}\cup\mathcal{H}_{2})\times[0, \infty)\to[0, \infty) and \mathfrak{q}\in L^{\infty}(\mathcal{H}_{1})\cap L^{\infty}(\mathcal{H}_{2}) ,
(T2) there is a continuous function \theta :(\mathcal{H}_{1}\cup\mathcal{H}_{2})\times(\mathcal{H}_{1}\cup\mathcal{H}_{2})\to [0, \infty) such that
\begin{align*} |\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \eta(\mathfrak{s}))-\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \sigma(\mathfrak{s})|\leq \frac{1}{2}|\theta(\mathfrak{t}, \mathfrak{s})||\eta(\mathfrak{s})-\sigma(\mathfrak{s})|, \end{align*} |
for all \mathfrak{t}, \mathfrak{s}\in\mathcal{H}_{1}\cup\mathcal{H}_{2} ,
(T3) \sup_{\mathfrak{t}\in\mathcal{H}_{1}\cup\mathcal{H}_{2}}\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}|\theta(\mathfrak{t}, \mathfrak{s})|d\mathfrak{s}\leq 1 .
Then the integral equation has a unique solution in L^{\infty}(\mathcal{H}_{1})\cup L^{\infty}(\mathcal{H}_{2}) .
Proof. Let \varPhi = L^{\infty}(\mathcal{H}_{1}) and \varPsi = L^{\infty}(\mathcal{H}_{2}) be two normed linear spaces, where \mathcal{H}_{1}, \mathcal{H}_{2} are Lebesgue measurable sets and m(\mathcal{H}_{1}\cup\mathcal{H}_{2}) < \infty . Let \mathcal{H} = L^{2}(\mathcal{H}_{1}\cup\mathcal{H}_{2}) . Consider \varphi:\varPhi\times \varPsi\to L(\mathcal{H}) defined by \varphi(\eta, \sigma) = \sup_{\mathfrak{t}\in\mathcal{H}_{1}\cup\mathcal{H}_{2}}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})| for all \eta \in \varPhi and \sigma\in \varPsi . Then (\varPhi, \varPsi, \mathcal{H}, \varphi) is a complete \mathcal{C}^{\star} -algebra-valued bipolar metric space. Define \varGamma: \varPhi \cup \varPsi \rightarrow \varPhi \cup \varPsi by
\begin{align*} \varGamma(\eta(\mathfrak{t})) = \mathfrak{q}(\mathfrak{t})+\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \eta(\mathfrak{s}))d\mathfrak{s}, \, \, \mathfrak{t}\in \mathcal{H}_{1}\cup\mathcal{H}_{2}. \end{align*} |
We claim that \varGamma is a covariant mapping. For this, let \eta\in\varPhi . Then
\begin{align*} \varGamma(\eta(\mathfrak{t}))& = \mathfrak{q}(\mathfrak{t})+\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \eta(\mathfrak{s}))d\mathfrak{s}\\ &\in \varPhi. \end{align*} |
Let \sigma\in\varPsi . Then
\begin{align*} \varGamma(\sigma(\mathfrak{t}))& = \mathfrak{q}(\mathfrak{t})+\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \sigma(\mathfrak{s}))d\mathfrak{s}\\ &\in \varPsi. \end{align*} |
Therefore, \varGamma is a covariant mapping. For any \eta\in L^{\infty}(\mathcal{H}_{1}) , \sigma\in L^{\infty}(\mathcal{H}_{2}) ,
\begin{align*} \varphi(\varGamma\eta, \varGamma\sigma)& = \sup\limits_{\mathfrak{t}\in\mathcal{H}_{1}\cup\mathcal{H}_{2}}|\varGamma\eta(\mathfrak{t})-\varGamma\sigma(\mathfrak{t})|\\ & = \sup\limits_{\mathfrak{t}\in\mathcal{H}_{1}\cup\mathcal{H}_{2}}\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}\big|\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \eta(\mathfrak{s}))-\mathcal{G}(\mathfrak{t}, \mathfrak{s}, \sigma(\mathfrak{s}))\big|d\mathfrak{s}\\ &\leq\sup\limits_{\mathfrak{t}\in\mathcal{H}_{1}\cup\mathcal{H}_{2}}\int_{\mathcal{H}_{1}\cup\mathcal{H}_{2}}\frac{1}{2}|\theta(\mathfrak{t}, \mathfrak{s})|\eta(\mathfrak{s})-\sigma(\mathfrak{s})|d\mathfrak{s}\\ &\leq\frac{1}{2}\varphi(\eta, \sigma)\\ & = \aleph^{\star}\varphi(\eta, \sigma)\aleph, \end{align*} |
where \aleph = \frac{1}{\sqrt{2}} and ||\aleph|| = \frac{1}{\sqrt{2}} < 1 . Since ||\aleph|| < 1 , the mapping \varGamma is a covariant contraction. Therefore, all the conditions of Theorem 3.1 are fulfilled. Hence, the integral equation has a unique solution.
In this section, we study the existence and unique solution to an electric circuit differential equation as an application of Theorem 3.1.
Let us consider a series electric circuit which contain a resistor ( \mathcal{R} , Ohms) a capacitor ( \mathcal{C} , Faradays), an inductor ( \mathcal{L} , Henries) a voltage ( \mathcal{V} , Volts) and an electromotive force ( \mathcal{E} , Volts), as in the following scheme, Figure 1.
Considering the definition of the intensity of electric current \mathcal{I} = \frac{\text{d}\mathfrak{q}}{\text{d}\mathfrak{t}} , where \mathfrak{q} denote the electric charge and \mathfrak{t} -the time, let us recall the following usual formulas:
● \mathcal{V}_\mathcal{R} = \mathcal{I}\mathcal{R};
● \mathcal{V}_{\mathcal{C}} = \frac{\mathfrak{q}}{\mathcal{C}}
● \mathcal{V}_\mathcal{L} = \mathcal{L}\frac{\text{d}\mathcal{I}}{\text{d}\mathfrak{t}}
Since in a series circuit there is only one current flowing, then \mathcal{I} have the same value in the entire circuit. Kirchhoff's Voltage Law is the second of his fundamental laws we can use for circuit analysis. His voltage law states that for a closed loop series path the algebraic sum of all the voltages around any closed loop in a circuit is equal to zero. The Kirchhoff's Voltage Law states: "The algebraic sum of all the voltages around any closed loop in a circuit is equal to zero".
The main idea of the Kirchhoff's Voltage Law is that as you move around a closed loop/circuit, you will end up back to where you started in the circuit. Therefore you come back to the same initial potential without voltage losses around the loop. Therefore, any voltage drop around the loop must be equal to any voltage source encountered along the way. Mathematical expression of this consequence of the Kirchhoff's Voltage Law is: "the sum of voltage rises across any loops is equal to the sum of voltage drops across that loop". Then we have the following relation:
\begin{align*} \mathcal{I}\mathcal{R}+\frac{\mathfrak{q}}{\mathcal{C}}+\mathcal{L}\frac{\text{d}\mathcal{I}}{\text{d}\mathfrak{t}} = \mathcal{V} = \mathcal{V}_{v}(\mathfrak{t}) = \mathfrak{f}(\mathfrak{t}, \mathfrak{q}(\mathfrak{t})). \end{align*} |
We can write this voltage equation in the parameters of a second-order differential equation as follows.
\begin{align} \mathcal{L}\frac{\text{d}^{2}{\mathfrak{q}}}{\text{d}\mathfrak{t}^{2}}+\mathcal{R}\frac{\text{d}\mathfrak{q}}{\text{d}\mathfrak{t}}+\frac{\mathfrak{q}}{\mathcal{C}} = \mathcal{V}_{v}(\mathfrak{t}) = \mathfrak{f}(\mathfrak{t}, \mathfrak{q}(\mathfrak{t})), \text{with the initial conditions}, \mathfrak{q}(0) = 0, \mathfrak{q}^{'}(0) = 0, \end{align} | (5.1) |
where \tau = \frac{\mathcal{R}}{2\mathcal{L}} - the nondimensional time for the resonance case in Physics. The Green function associated with Eq 5.1 is the following:
\begin{align*} \mathcal{G}(\mathfrak{t}, \mathfrak{s}) = \frac{1}{\mathcal{L}} (\mathfrak{t}-\mathfrak{s})\mathfrak{e}^{-\tau(\mathfrak{t}-\mathfrak{s})}, \end{align*} |
where \mathcal{C} = \frac{4\mathcal{L}}{\mathcal{R}^{2}} .
In these conditions, the differential problem 5.1 can be written as the following integral equation.
\begin{align} \eta(\mathfrak{t}) = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \eta(\mathfrak{s}))\text{d}\mathfrak{s}, \, \, \text{where}\, \, \mathfrak{t}\in[0, 1] \end{align} | (5.2) |
and \mathfrak{f} : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} is a continuous function such that for all \mathfrak{s} \in [0, 1] , \mathfrak{f}(\mathfrak{s}, 0) = 0 . Let \varPhi = (C[0, 1], [0, +\infty)) be the set of all continuous functions defined on [0, 1] with values in the interval [0, +\infty) and \varPsi = (C[0, 1], (-\infty, 0]) be the set of all continuous functions defined on [0, 1] with values in the interval (-\infty, 0] . Let \mathcal{H} = \mathcal{M}_{2}(\mathbb{C}) and \varphi:\varPhi\times \varPsi\to \mathcal{H}_{+} to be defined by
\begin{equation*} \varphi(\eta, \sigma) = \begin{bmatrix} \begin{array}{c c } \sup\limits_{\mathfrak{t}\in[0, 1]}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|& 0 \\ 0 & \Bbbk\sup\limits_{\mathfrak{t}\in[0, 1]}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|\\ \end{array} \end{bmatrix} \end{equation*} |
for all \eta \in \varPhi and \sigma\in \varPsi , where \Bbbk \geq 0 is a constant. Then (\varPhi, \varPsi, \mathcal{H}, \varphi) is a complete \mathcal{C}^{\star} -algebra-valued bipolar metric space.
Further, let us give the main result of the section.
Theorem 5.1. Let \varGamma : (\varPhi, \varPsi, \mathcal{H}, \varphi) \rightrightarrows (\varPhi, \varPsi, \mathcal{H}, \varphi) be a function such that the following assertions hold:
(i) \mathcal{G} is the Green function defined as above;
(ii) \mathfrak{f}\colon[0, 1]\times\mathbb{R}\rightarrow \mathbb{R} is a continuous function such that for all \mathfrak{s}\in[0, 1] , \mathfrak{f}(\mathfrak{s}, 0) = 0 and for (\eta, \sigma)\in(\varPhi, \varPsi) , we have the inequality:
\begin{align*} |\mathfrak{f}(\mathfrak{t}, \eta)-\mathfrak{f}(\mathfrak{t}, \sigma)|\leq\frac{1}{2}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|. \end{align*} |
Then the voltage differential equation (5.1) has a unique solution in \varPhi\cup\varPsi .
Proof. Define \varGamma: \varPhi \cup \varPsi \rightarrow \varPhi \cup \varPsi by
\begin{align*} \varGamma\eta(\mathfrak{t}) = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})\mathfrak{f}(\mathfrak{s}, \eta(\mathfrak{s}))\mathit{\text{d}}\mathfrak{s}. \end{align*} |
We claim that \varGamma is a covariant mapping. For this, let \eta\in\varPhi . Then
\begin{align*} \varGamma(\eta(\mathfrak{t}))& = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \eta(\mathfrak{s}))\mathit{\text{d}}\mathfrak{s}\\ &\in \varPhi. \end{align*} |
Let \sigma\in\varPsi . Then
\begin{align*} \varGamma(\sigma(\mathfrak{t}))& = \int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s}) \mathfrak{f}(\mathfrak{s}, \eta(\mathfrak{s}))\mathit{\text{d}}\mathfrak{s}\\ &\in \varPsi. \end{align*} |
Therefore, \varGamma is a covariant mapping. Now,
\begin{align*} \varphi(\varGamma \eta, \varGamma\sigma) & = \begin{bmatrix} \begin{array}{c c } \sup\limits_{\mathfrak{t}\in[0, 1]}|\varGamma\eta(\mathfrak{t})-\varGamma\sigma(\mathfrak{t})|& 0 \\ 0 & \Bbbk \sup\limits_{\mathfrak{t}\in[0, 1]}|\varGamma\eta(\mathfrak{t})-\varGamma\sigma(\mathfrak{t})|\\ \end{array} \end{bmatrix}\\ &\leq\begin{bmatrix} &\begin{array}{c c } \sup\limits_{\mathfrak{t}\in[0, 1]}\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \eta(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \sigma(\mathfrak{s}))|\mathit{\text{d}}\mathfrak{s}& 0 \\ 0 & \Bbbk \sup\limits_{\mathfrak{t}\in[0, 1]}\int_{0}^{\mathfrak{t}}\mathcal{G}(\mathfrak{t}, \mathfrak{s})|\mathfrak{f}(\mathfrak{s}, \eta(\mathfrak{s}))-\mathfrak{f}(\mathfrak{s}, \sigma(\mathfrak{s}))|\mathit{\text{d}}\mathfrak{s}\\ \end{array} \end{bmatrix}\\ &\leq\begin{bmatrix} &\begin{array}{c c } \frac{1}{2} \sup\limits_{\mathfrak{t}\in[0, 1]}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|& 0 \\ 0 & \Bbbk\frac{1}{2}\sup\limits_{\mathfrak{t}\in[0, 1]}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|\\ \end{array} \end{bmatrix}\\ & = \frac{1}{2}\begin{bmatrix} &\begin{array}{c c } \sup\limits_{\mathfrak{t}\in[0, 1]}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|& 0 \\ 0 & \Bbbk\sup\limits_{\mathfrak{t}\in[0, 1]}|\eta(\mathfrak{t})-\sigma(\mathfrak{t})|\\ \end{array} \end{bmatrix}\\ & = \aleph^{\star}\varphi(\eta, \sigma) \aleph, \end{align*} |
where
\begin{equation*} \aleph = \begin{bmatrix} \begin{array}{c c } \frac{1}{\sqrt{2}}& 0 \\ 0 & \frac{1}{\sqrt{2}}\\ \end{array} \end{bmatrix} \end{equation*} |
and ||\aleph|| = \frac{1}{\sqrt{2}} < 1 . Therefore,
\begin{align*} \varphi(\varGamma\eta, \varGamma\sigma)\leq\aleph^{\star}\varphi(\eta, \sigma)\aleph. \end{align*} |
Hence, all the conditions of Theorem 3.1 are satisfied. Thus, the differential voltage equation (5.1) has a unique solution.
Firstly, we proved existence and uniqueness fixed point theorems on \mathcal{C}^{\star} -algebra-valued bipolar metric space. Then, to validate our main theorems, we have given two examples and an applications to find the unique solution of the integral equation and electric circuit differential equation via \mathcal{C}^{\star} -algebra-valued bipolar metric space. Readers can explore extending the results in the setting of \mathcal{C}^{\star} -algebra-valued bipolar p-metric space.
The authors declare that they have no competing interests concerning the publication of this article.
[1] | M. M. Fr\acute{e}chet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22 (1906), 1–72. |
[2] |
H. Aydi, W. Shatanawi, C. Vetro, On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4222–4229. https://doi.org/10.1016/j.camwa.2011.10.007 doi: 10.1016/j.camwa.2011.10.007
![]() |
[3] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[4] |
T. Rasham, P. Agarwal, L. S. Abbasi, S. Jain, A study of some new multivalued fixed point results in a modular like metric space with graph, J. Anal., 30 (2022), 833–844. https://doi.org/10.1007/s41478-021-00372-z doi: 10.1007/s41478-021-00372-z
![]() |
[5] |
T. Rasham, M. Nazam, H. Aydi, A. Shoaib, C. Park, J. R. Lee, Hybrid pair of multivalued mappings in modular-like metric spaces and applications, AIMS Math., 7 (2022), 10582–10595. https://doi.org/10.3934/math.2022590 doi: 10.3934/math.2022590
![]() |
[6] |
T. Rasham, A. Shoaib, S. Alshoraify, C. Park, J. R. Lee, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces, AIMS Math., 7 (2022), 1058–1073. https://doi.org/10.3934/math.2022063 doi: 10.3934/math.2022063
![]() |
[7] |
M. Gamal, T. Rasham, W. Cholamjiak, F. G. Shi, C. Park, New iterative scheme for fixed point results of weakly compatible maps in multiplicative G_{M}-metric space via various contractions with application, AIMS Math., 7 (2022), 13681–13703. https://doi.org/10.3934/math.2022754 doi: 10.3934/math.2022754
![]() |
[8] |
T. Rasham, M. De La Sen, A novel study for hybrid pair of multivalued dominated mappings in b-multiplicative metric space with applications, J. Inequal. Appl., 107 (2022). https://doi.org/10.1186/s13660-022-02845-6 doi: 10.1186/s13660-022-02845-6
![]() |
[9] |
T. Rasham, M. Nazam, H. Aydi, R. P. Agarwal, Existence of common fixed points of generalized \Delta-implicit locally contractive mappings on closed ball in multiplicative G-metric spaces with applications, Mathematics, 10 (2022), 3369. https://doi.org/10.3390/math10183369 doi: 10.3390/math10183369
![]() |
[10] |
A. Mutlu, U. G\ddot{u}rdal, An infinite dimensional fixed point theorem on function spaces of ordered metric spaces, Kuwait J. Sci., 42 (2015), 36–49. https://doi.org/10.1016/j.langcom.2015.03.001 doi: 10.1016/j.langcom.2015.03.001
![]() |
[11] |
A. Mutlu, U. G\ddot{u}rdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05
![]() |
[12] | U. G\ddot{u}rdal, A. Mutlu, K. \ddot{O}zkan, Fixed point results for \alpha-\psi-contractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75. |
[13] |
G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory A., 2018 (2018), 21. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z
![]() |
[14] | G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2020), 601–607. |
[15] |
G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412
![]() |
[16] |
B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34. http://dx.doi.org/10.14445/22315373/IJMTT-V63P504 doi: 10.14445/22315373/IJMTT-V63P504
![]() |
[17] |
G. N. V. Kishore, K. P. R. Rao, H. Işık, B. S. Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. http://dx.doi.org/10.22075/IJNAA.2021.4650 doi: 10.22075/IJNAA.2021.4650
![]() |
[18] | A. Mutlu, K. \ddot{O}zkan, U. G\ddot{u}rdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388. |
[19] |
Y. U. Gaba, M. Aphane, H. Aydi, (\alpha, BK)-contractions in bipolar metric spaces, J. Math., 2021 (2021), 5562651. https://doi.org/10.1155/2021/5562651 doi: 10.1155/2021/5562651
![]() |
[20] |
K. Roy, M. Saha, R. George, L. Gurand, Z. D. Mitrović, Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications, Filomat, 36 (2022), 1755–1767. https://doi.org/10.2298/FIL2205755R doi: 10.2298/FIL2205755R
![]() |
[21] |
Z. H. Ma, L. N. Jiang, H. K. Sun, C^*-algebras-valued metric spaces and related fixed point theorems, Fixed Point Theory A., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206
![]() |
[22] |
S. Batul, T. Kamran, C^{\star}-valued contractive type mappings, Fixed Point Theory A., 2015 (2015), 142. https://doi.org/10.1186/s13663-015-0393-3 doi: 10.1186/s13663-015-0393-3
![]() |
[23] |
M. Gunaseelan, G. Arul Joseph, A. Ul Haq, I. A. Baloch, F. Jarad, Coupled fixed point theorems on C^{*}-algebra-valued bipolar metric spaces. AIMS Math., 7 (2022), 7552–7568. http://dx.doi.org/10.3934/math.2022424 doi: 10.3934/math.2022424
![]() |
[24] | K. R. Davidson, C^{\star}-algebras by example, Fields Institute Monographs, American Mathematical Society, 1996. |
[25] | G. J. Murphy, C^* -algebra and operator theory, London, Academic Press, 1990. |
[26] | Q. H. Xu, T. E. D. Bieke, Z. Q. Chen, Introduction to operator algebras and noncommutative Lp spaces, Beijing, Science Press, 2010. |
1. | Mohammad Imam Pasha, Kotha Rama Koteswara Rao, Gunaseelan Mani, Arul Joseph Gnanaprakasam, Santosh Kumar, Chang Phang, Solving a Fractional Differential Equation via the Bipolar Parametric Metric Space, 2024, 2024, 2314-4785, 1, 10.1155/2024/5533347 | |
2. | Utku Gürdal, Reha Yapalı, Ali Mutlu, Generalized Kuratowski Closure Operators in the Bipolar Metric Setting, 2024, 6, 2717-6355, 1, 10.47086/pims.1449513 | |
3. | Gunaseelan Mani, Arul Gnanaprakasam, Poornavel Subbarayan, Subramanian Chinnachamy, Reny George, Zoran Mitrović, Applications to Nonlinear Fractional Differential Equations via Common Fixed Point on ℂ★-Algebra-Valued Bipolar Metric Spaces, 2023, 7, 2504-3110, 534, 10.3390/fractalfract7070534 | |
4. | Gunaseelan Mani, Subramanian Chinnachamy, Sugapriya Palanisamy, Sabri T.M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient techniques on bipolar parametric ν-metric space with application, 2024, 36, 10183647, 103354, 10.1016/j.jksus.2024.103354 |