In this paper, we introduce the notion of $ C^* $-algebra-valued $ b $-asymmetric metric spaces and show several fixed point theorems that improve on a range of recent works in the literature. The $ C^* $-algebra-valued $ b $-asymmetric metric space is illustrated with examples, as well as an application for determining the existence and uniqueness of a solution for a type of matrix equations and integral equation.
Citation: Ouafaa Bouftouh, Samir Kabbaj, Thabet Abdeljawad, Aiman Mukheimer. On fixed point theorems in $ C^{*} $-algebra valued $ b $-asymmetric metric spaces[J]. AIMS Mathematics, 2022, 7(7): 11851-11861. doi: 10.3934/math.2022661
In this paper, we introduce the notion of $ C^* $-algebra-valued $ b $-asymmetric metric spaces and show several fixed point theorems that improve on a range of recent works in the literature. The $ C^* $-algebra-valued $ b $-asymmetric metric space is illustrated with examples, as well as an application for determining the existence and uniqueness of a solution for a type of matrix equations and integral equation.
[1] | I. Altun, M. Aslantas, H. Sahin, KW-type nonlinear contractions and their best proximity points, Numer. Func. Anal. Opt., 42 (2021), 935–954. https://doi.org/10.1080/01630563.2021.1933526 doi: 10.1080/01630563.2021.1933526 |
[2] | M. Aslantas, H. Sahin, I. Altun, Best proximity point theorems for cyclic p-contractions with some consequences and applications, Nonlinear Anal.-Model., 26 (2021), 113–129. https://doi.org/10.15388/namc.2021.26.21415 doi: 10.15388/namc.2021.26.21415 |
[3] | I. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[4] | O. Bouftouh, K. Samir, Fixed point theorems in $C^*$-algebra valued asymmetric spaces, arXiv: 2106.11126. https://doi.org/10.48550/arXiv.2106.11126 |
[5] | A. Mainik, A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var., 22 (2005), 73–99. https://doi.org/10.1007/s00526-004-0267-8 doi: 10.1007/s00526-004-0267-8 |
[6] | Z. Ma, L. Jiang, H. Sun, $C^*$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206 |
[7] | A. Mennucci, On asymmetric distances, Anal. Geom. Metr. Space., 1 (2013), 200–231. |
[8] | A. Mielke, T. Roubícek, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Sim., 1 (2003), 571–597. https://doi.org/10.1137/S1540345903422860 doi: 10.1137/S1540345903422860 |
[9] | N. Mlaiki, M. Asim, M. Imdad, $C^*$-algebra valued partial $b$-metric spaces and fixed point results with an application, Mathematics, 8 (2020), 1381. https://doi.org/10.3390/math8081381 doi: 10.3390/math8081381 |
[10] | G. Murphy, $C^*$-algebras and operator theory, New York: Academic Press, 2004. https://doi.org/10.1016/C2009-0-22289-6 |
[11] | M. Rieger, J. Zimmer, Young measure flow as a model for damage, Z. angew. Math. Phys., 60 (2009), 1–32. https://doi.org/10.1007/s00033-008-7016-3 doi: 10.1007/s00033-008-7016-3 |
[12] | W. Wilson, On quasi-metric spaces, Am. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174 doi: 10.2307/2371174 |