We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville and Caputo fractional derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle and the Brouwer fixed point criterion. Moreover, we prove stability, including Hyers-Ulam and Hyers-Ulam-Rassias type results. Finally, some numerical models are provided to illustrate and validate the theoretical results.
Citation: Omar Choucha, Abdelkader Amara, Sina Etemad, Shahram Rezapour, Delfim F. M. Torres, Thongchai Botmart. On the Ulam-Hyers-Rassias stability of two structures of discrete fractional three-point boundary value problems: Existence theory[J]. AIMS Mathematics, 2023, 8(1): 1455-1474. doi: 10.3934/math.2023073
We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville and Caputo fractional derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle and the Brouwer fixed point criterion. Moreover, we prove stability, including Hyers-Ulam and Hyers-Ulam-Rassias type results. Finally, some numerical models are provided to illustrate and validate the theoretical results.
[1] | T. Abdeljawad, R. Mert, D. F. M. Torres, Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations, In: Fractional derivatives with Mittag-Leffler kernel, Springer, 2019, 35–47. https://doi.org/10.1007/978-3-030-11662-0_3 |
[2] | A. Chidouh, D. F. M. Torres, Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities, Opuscula Math., 38 (2018), 31–40. https://doi.org/10.7494/OpMath.2018.38.1.31 doi: 10.7494/OpMath.2018.38.1.31 |
[3] | R. A. C. Ferreira, D. F. M. Torres, Fractional $h$-difference equations arising from the calculus of variations, Appl. Anal. Discr. Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F |
[4] | D. F. M. Torres, Cauchy's formula on nonempty closed sets and a new notion of Riemann-Liouville fractional integral on time scales, Appl. Math. Lett., 121 (2021) 107407. https://doi.org/10.1016/j.aml.2021.107407 doi: 10.1016/j.aml.2021.107407 |
[5] | M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the $p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9 |
[6] | M. Ahmad, J. Jiang, A. Zada, S. O. Shah, J. Xu, Analysis of implicit coupled system of fractional differential equations involving Katugampola-Caputo fractional derivative, Complexity, 2020 (2020), 9285686. https://doi.org/10.1155/2020/9285686 doi: 10.1155/2020/9285686 |
[7] | D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. https://doi.org/10.1016/j.aej.2020.04.053 doi: 10.1016/j.aej.2020.04.053 |
[8] | M. Ahmad, A. Zada, J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with $p$-Laplacian, Adv. Differ. Equ., 2019 (2019), 436. https://doi.org/10.1186/s13662-019-2367-y doi: 10.1186/s13662-019-2367-y |
[9] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[10] | S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Soliton. Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511 |
[11] | R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Differ. Equ., 2019 (2019), 85. https://doi.org/10.1186/s13662-019-1955-1 doi: 10.1186/s13662-019-1955-1 |
[12] | A. Amara, Existence results for hybrid fractional differential equations with three-point boundary conditions, AIMS Math., 5 (2020), 1074–1088. https://doi.org/10.3934/math.2020075 doi: 10.3934/math.2020075 |
[13] | S. Etemad, S. Rezapour, On the existence of solutions for fractional boundary value problems on the ethane graph, Adv. Differ. Equ., 2020 (2020), 276. https://doi.org/10.1186/s13662-020-02736-4 doi: 10.1186/s13662-020-02736-4 |
[14] | F. S. Bachir, S. Abbas, M. Benbachir, M. Benchohra, Hilfer-Hadamard fractional differential equations: Existence and attractivity, Adv. Theor. Nonlinear Anal. Appl., 5 (2021), 49–57. https://doi.org/10.31197/atnaa.848928 doi: 10.31197/atnaa.848928 |
[15] | Z. Baitiche, C. Derbazi, M. Benchohra, $\psi$-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory, Res. Nonlinear Anal., 3 (2020), 167–178. |
[16] | S. Ben Chikh, A. Amara, S. Etemad, S. Rezapour, On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals, Adv. Differ. Equ., 2020 (2020), 547. https://doi.org/10.1186/s13662-020-03012-1 doi: 10.1186/s13662-020-03012-1 |
[17] | S. Ben Chikh, A. Amara, S. Etemad, S. Rezapour, On Ulam-Hyers-Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions, Adv. Differ. Equ., 2020 (2020), 680. https://doi.org/10.1186/s13662-020-03139-1 doi: 10.1186/s13662-020-03139-1 |
[18] | M. Ismail, U. Saeed, J. Alzabut, M. Rehman, Approximate solutions for fractional boundary value problems via Green-CAS wavelet method, Mathematics, 7 (2019), 1164. https://doi.org/10.3390/math7121164 doi: 10.3390/math7121164 |
[19] | M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed bam neural networks based on coincidence degree theory and graph theoretic method, Mathematics, 7 (2019), 1055. https://doi.org/10.3390/math7111055 doi: 10.3390/math7111055 |
[20] | Y. Guo, X. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$, Bound. Value Probl., 2019 (2019), 59. https://doi.org/10.1186/s13661-019-1172-6 doi: 10.1186/s13661-019-1172-6 |
[21] | A. Salem, F. Alzahrani, L. Almaghamsi, Fractional Langevin equations with nonlocal integral boundary conditions, Mathematics, 7 (2019), 402. https://doi.org/10.3390/math7050402 doi: 10.3390/math7050402 |
[22] | R. A. Yan, S. R. Sun, Z. L. Han, Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales, B. Iran. Math. Soc., 42 (2016), 247–262. |
[23] | A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. https://doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1 |
[24] | T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036 |
[25] | J. Alzabut, T. Abdeljawad, D. Baleanu, Nonlinear delay fractional difference equations with applications on discrete fractional Lotka-Volterra competition model, J. Comput. Anal. Appl., 25 (2018), 889–898. |
[26] | F. M. Atici, P. M. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Differ. Equ. Appl., 17 (2011), 445–456. https://doi.org/10.1080/10236190903029241 doi: 10.1080/10236190903029241 |
[27] | F. Chen, Y. Zhou, Existence and Ulam stability of solutions for discrete fractional boundary value problem, Discrete Dyn. Nat. Soc., 2013 (2013), 459161. https://doi.org/10.1155/2013/459161 doi: 10.1155/2013/459161 |
[28] | C. Chen, M. Bohner, B. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Method. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869 |
[29] | Y. Pan, Z. Han, S. Sun, C. Hou, The existence of solutions to a class of boundary value problems with fractional difference equations, Adv. Differ. Equ., 2013 (2013), 275. https://doi.org/10.1186/1687-1847-2013-275 doi: 10.1186/1687-1847-2013-275 |
[30] | A. G. M. Selvam, R. Dhineshbabu, Existence and uniqueness of solutions for a discrete fractional boundary value problem, Int. J. Appl. Math., 33 (2020), 283–295. https://doi.org/10.12732/ijam.v33i2.7 doi: 10.12732/ijam.v33i2.7 |
[31] | A. G. M. Selvam, R. Dhineshbabu, Hyers-Ulam stability results for discrete antiperiodic boundary value problem with fractional order $2 < \delta \leq 3$, IJEAT, 9 (2019), 4997–5003. https://doi.org/10.35940/ijeat.a2123.109119 doi: 10.35940/ijeat.a2123.109119 |
[32] | A. G. M. Selvam, R. Dhineshbabu, Ulam stability results for boundary value problem of fractional difference equations, Adv. Math., 9 (2020), 219–230. https://doi.org/10.37418/amsj.9.1.18 doi: 10.37418/amsj.9.1.18 |
[33] | A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, S. Rashid, M. Rehman, Discrete fractional order two-point boundary value problem with some relevant physical applications, J. Inequal. Appl., 2020 (2020), 221. https://doi.org/10.1186/s13660-020-02485-8 doi: 10.1186/s13660-020-02485-8 |