Research article

On the Ulam-Hyers-Rassias stability of two structures of discrete fractional three-point boundary value problems: Existence theory

  • Received: 24 August 2022 Revised: 27 September 2022 Accepted: 10 October 2022 Published: 21 October 2022
  • MSC : 26A33, 34A08, 34A12

  • We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville and Caputo fractional derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle and the Brouwer fixed point criterion. Moreover, we prove stability, including Hyers-Ulam and Hyers-Ulam-Rassias type results. Finally, some numerical models are provided to illustrate and validate the theoretical results.

    Citation: Omar Choucha, Abdelkader Amara, Sina Etemad, Shahram Rezapour, Delfim F. M. Torres, Thongchai Botmart. On the Ulam-Hyers-Rassias stability of two structures of discrete fractional three-point boundary value problems: Existence theory[J]. AIMS Mathematics, 2023, 8(1): 1455-1474. doi: 10.3934/math.2023073

    Related Papers:

  • We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville and Caputo fractional derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle and the Brouwer fixed point criterion. Moreover, we prove stability, including Hyers-Ulam and Hyers-Ulam-Rassias type results. Finally, some numerical models are provided to illustrate and validate the theoretical results.



    加载中


    [1] T. Abdeljawad, R. Mert, D. F. M. Torres, Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations, In: Fractional derivatives with Mittag-Leffler kernel, Springer, 2019, 35–47. https://doi.org/10.1007/978-3-030-11662-0_3
    [2] A. Chidouh, D. F. M. Torres, Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities, Opuscula Math., 38 (2018), 31–40. https://doi.org/10.7494/OpMath.2018.38.1.31 doi: 10.7494/OpMath.2018.38.1.31
    [3] R. A. C. Ferreira, D. F. M. Torres, Fractional $h$-difference equations arising from the calculus of variations, Appl. Anal. Discr. Math., 5 (2011), 110–121. https://doi.org/10.2298/AADM110131002F doi: 10.2298/AADM110131002F
    [4] D. F. M. Torres, Cauchy's formula on nonempty closed sets and a new notion of Riemann-Liouville fractional integral on time scales, Appl. Math. Lett., 121 (2021) 107407. https://doi.org/10.1016/j.aml.2021.107407 doi: 10.1016/j.aml.2021.107407
    [5] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the $p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9
    [6] M. Ahmad, J. Jiang, A. Zada, S. O. Shah, J. Xu, Analysis of implicit coupled system of fractional differential equations involving Katugampola-Caputo fractional derivative, Complexity, 2020 (2020), 9285686. https://doi.org/10.1155/2020/9285686 doi: 10.1155/2020/9285686
    [7] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. https://doi.org/10.1016/j.aej.2020.04.053 doi: 10.1016/j.aej.2020.04.053
    [8] M. Ahmad, A. Zada, J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with $p$-Laplacian, Adv. Differ. Equ., 2019 (2019), 436. https://doi.org/10.1186/s13662-019-2367-y doi: 10.1186/s13662-019-2367-y
    [9] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [10] S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Soliton. Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
    [11] R. Rizwan, A. Zada, X. Wang, Stability analysis of non linear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Differ. Equ., 2019 (2019), 85. https://doi.org/10.1186/s13662-019-1955-1 doi: 10.1186/s13662-019-1955-1
    [12] A. Amara, Existence results for hybrid fractional differential equations with three-point boundary conditions, AIMS Math., 5 (2020), 1074–1088. https://doi.org/10.3934/math.2020075 doi: 10.3934/math.2020075
    [13] S. Etemad, S. Rezapour, On the existence of solutions for fractional boundary value problems on the ethane graph, Adv. Differ. Equ., 2020 (2020), 276. https://doi.org/10.1186/s13662-020-02736-4 doi: 10.1186/s13662-020-02736-4
    [14] F. S. Bachir, S. Abbas, M. Benbachir, M. Benchohra, Hilfer-Hadamard fractional differential equations: Existence and attractivity, Adv. Theor. Nonlinear Anal. Appl., 5 (2021), 49–57. https://doi.org/10.31197/atnaa.848928 doi: 10.31197/atnaa.848928
    [15] Z. Baitiche, C. Derbazi, M. Benchohra, $\psi$-Caputo fractional differential equations with multi-point boundary conditions by topological degree theory, Res. Nonlinear Anal., 3 (2020), 167–178.
    [16] S. Ben Chikh, A. Amara, S. Etemad, S. Rezapour, On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville derivatives and integrals, Adv. Differ. Equ., 2020 (2020), 547. https://doi.org/10.1186/s13662-020-03012-1 doi: 10.1186/s13662-020-03012-1
    [17] S. Ben Chikh, A. Amara, S. Etemad, S. Rezapour, On Ulam-Hyers-Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions, Adv. Differ. Equ., 2020 (2020), 680. https://doi.org/10.1186/s13662-020-03139-1 doi: 10.1186/s13662-020-03139-1
    [18] M. Ismail, U. Saeed, J. Alzabut, M. Rehman, Approximate solutions for fractional boundary value problems via Green-CAS wavelet method, Mathematics, 7 (2019), 1164. https://doi.org/10.3390/math7121164 doi: 10.3390/math7121164
    [19] M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed bam neural networks based on coincidence degree theory and graph theoretic method, Mathematics, 7 (2019), 1055. https://doi.org/10.3390/math7111055 doi: 10.3390/math7111055
    [20] Y. Guo, X. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order $1 < \beta < 2$, Bound. Value Probl., 2019 (2019), 59. https://doi.org/10.1186/s13661-019-1172-6 doi: 10.1186/s13661-019-1172-6
    [21] A. Salem, F. Alzahrani, L. Almaghamsi, Fractional Langevin equations with nonlocal integral boundary conditions, Mathematics, 7 (2019), 402. https://doi.org/10.3390/math7050402 doi: 10.3390/math7050402
    [22] R. A. Yan, S. R. Sun, Z. L. Han, Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales, B. Iran. Math. Soc., 42 (2016), 247–262.
    [23] A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. https://doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1
    [24] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
    [25] J. Alzabut, T. Abdeljawad, D. Baleanu, Nonlinear delay fractional difference equations with applications on discrete fractional Lotka-Volterra competition model, J. Comput. Anal. Appl., 25 (2018), 889–898.
    [26] F. M. Atici, P. M. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Differ. Equ. Appl., 17 (2011), 445–456. https://doi.org/10.1080/10236190903029241 doi: 10.1080/10236190903029241
    [27] F. Chen, Y. Zhou, Existence and Ulam stability of solutions for discrete fractional boundary value problem, Discrete Dyn. Nat. Soc., 2013 (2013), 459161. https://doi.org/10.1155/2013/459161 doi: 10.1155/2013/459161
    [28] C. Chen, M. Bohner, B. Jia, Ulam-Hyers stability of Caputo fractional difference equations, Math. Method. Appl. Sci., 42 (2019), 7461–7470. https://doi.org/10.1002/mma.5869 doi: 10.1002/mma.5869
    [29] Y. Pan, Z. Han, S. Sun, C. Hou, The existence of solutions to a class of boundary value problems with fractional difference equations, Adv. Differ. Equ., 2013 (2013), 275. https://doi.org/10.1186/1687-1847-2013-275 doi: 10.1186/1687-1847-2013-275
    [30] A. G. M. Selvam, R. Dhineshbabu, Existence and uniqueness of solutions for a discrete fractional boundary value problem, Int. J. Appl. Math., 33 (2020), 283–295. https://doi.org/10.12732/ijam.v33i2.7 doi: 10.12732/ijam.v33i2.7
    [31] A. G. M. Selvam, R. Dhineshbabu, Hyers-Ulam stability results for discrete antiperiodic boundary value problem with fractional order $2 < \delta \leq 3$, IJEAT, 9 (2019), 4997–5003. https://doi.org/10.35940/ijeat.a2123.109119 doi: 10.35940/ijeat.a2123.109119
    [32] A. G. M. Selvam, R. Dhineshbabu, Ulam stability results for boundary value problem of fractional difference equations, Adv. Math., 9 (2020), 219–230. https://doi.org/10.37418/amsj.9.1.18 doi: 10.37418/amsj.9.1.18
    [33] A. G. M. Selvam, J. Alzabut, R. Dhineshbabu, S. Rashid, M. Rehman, Discrete fractional order two-point boundary value problem with some relevant physical applications, J. Inequal. Appl., 2020 (2020), 221. https://doi.org/10.1186/s13660-020-02485-8 doi: 10.1186/s13660-020-02485-8
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1028) PDF downloads(78) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog