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Abstract: For a simple graph G = (V, E) with the vertex set V(G) and the edge set E(G), a vertex
labeling ϕ : V(G) → {1, 2, . . . , k} is called a k-labeling. The weight of an edge under the vertex
labeling ϕ is the sum of the labels of its end vertices and the modular edge-weight is the remainder of
the division of this sum by |E(G)|. A vertex k-labeling is called a modular edge irregular if for every
two different edges their modular edge-weights are different. The maximal integer k minimized over
all modular edge irregular k-labelings is called the modular edge irregularity strength of G. In the paper
we estimate the bounds on the modular edge irregularity strength and for caterpillar, cycle, friendship
graph and n-sun we determine the precise values of this parameter that prove the sharpness of the lower
bound.
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1. Introduction

Throughout this paper, G = (V, E) is a simple graph with the vertex set V(G) and the edge set E(G).
Chartrand et al. in [1] introduced an edge k-labeling ψ : E(G) → {1, 2, . . . , k} of a graph G such
that the sum of the labels of edges incident with a vertex is different for all the vertices of G. Such
labelings were called irregular assignments and the irregularity strength s(G) of a graph G is known
as the maximal integer k, minimized over all irregular assignments. If no such assignment exists then
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s(G) = ∞. Obviously, s(G) < ∞ if and only if G contains no isolated edge and has at most one isolated
vertex. The irregularity strength has attracted much attention [2–8].

Motivated by these papers, Ahmad et al. in [9] defined an edge irregular k-labeling of a graph G
to be a vertex labeling ϕ : V(G) → {1, 2, . . . , k} such that the edge-weights wtϕ(uv) = ϕ(u) + ϕ(v) are
different for all edges, that is wtϕ(uv) , wtϕ(u′v′) for all different edges uv, u′v′ ∈ E(G). Furthermore,
they defined the edge irregularity strength, es(G), of G as the minimum k for which the graph G has an
edge irregular k-labeling.

For a simple graph with maximum degree ∆(G) in [9] is estimated a lower bound of the edge
irregularity strength in the form

es(G) ≥ max
{⌈
|E(G)|+1

2

⌉
,∆(G)

}
. (1.1)

For several families of graphs, the exact value of the edge irregularity strength has been determined,
namely for paths, stars, double stars and cartesian product of two paths in [9], for Toeplitz graphs
in [10] and for complete m-ary trees in [11]. Other results on the edge irregularity strength and its
variations can be found in [12–15].

The modular irregular labeling as a modification of the irregular assignment was introduced in [16].
A function ψ : E(G) → {1, 2, . . . , k} of a graph G of order n is called a modular irregular labeling if
the weight function λ : V(G) → Zn defined by λ(u) = wtψ(u) =

∑
ψ(uv) is bijective and is called as

the modular weight of the vertex u, where Zn is the group of integers modulo n and the sum is over
all vertices v adjacent to u. The modular irregularity strength, ms(G), is defined as the minimum k for
which G has a modular irregular labeling using labels at most k. If there is no such labeling for the
graph G then the value of ms(G) is defined as∞.

Clearly, every modular irregular labeling of a graph with no component of order at most two is also
its irregular labeling. This gives a lower bound of the modular irregularity strength, i.e., if G is a graph
with no component of order at most two then

s(G) ≤ ms(G). (1.2)

The exact values of the modular irregularity strength have been determined for certain families
of graphs, namely for paths, cycles and stars [16], for fan graphs [17], wheels [18] and friendship
graphs [19].

Motivated by the modular irregular labeling and the edge irregular labeling, in this paper we study
modular edge irregular k-labelings.

For a graph G = (V, E) of size m we define a vertex labeling ϕ : V(G) → {1, 2, . . . , k} to be a
modular edge irregular k-labeling if the edge-weight function ρ : E(G) → Zm defined by ρ(uv) =

wtϕ(uv) = ϕ(u) + ϕ(v) is bijective and is called as the modular edge-weight of the edge uv, where Zm

is the group of integers modulo m. The modular edge irregularity strength, mes(G), is defined as the
minimum k for which G has a modular edge irregular k-labeling. If there is no such labeling for the
graph G, then the value of mes(G) is defined as∞.

Note that Muthugurupackiam and Ramya in [20,21] introduced a definition on even (odd) modular
edge irregular labeling, where the set of modular edge-weights contains only even or odd integers.

The main aim of the paper is to show some estimations on the modular edge irregularity strength,
investigate the existence of modular edge irregular k-labelings for several families of graphs and
determine the precise values of the modular edge irregularity strength that prove the sharpness of
the presented lower bound.
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2. Results

Directly from the definition it follows that every modular edge irregular k-labeling of a graph is also
its edge irregular k-labeling. Thus, for any simple graph G holds

es(G) ≤ mes(G). (2.1)

In general, the converse of (2.1) does not hold. However, the validity of the following claim is obvious.

Theorem 2.1. Let G be a simple graph with es(G) = k. If edge-weights under the corresponding edge
irregular k-labeling constitute a set of consecutive integers, then

es(G) = mes(G) = k. (2.2)

In [9], the precise value of the edge irregularity strength for paths and stars are determined as
follows:

Theorem 2.2. [9] Let Pn be a path on n vertices, n ≥ 2. Then es(Pn) =
⌈

n
2

⌉
.

Theorem 2.3. [9] Let K1,n be a star on n + 1 vertices, n ≥ 1. Then es(K1,n) = n.

The previous two theorems prove that the lower bound of the edge irregularity strength in (1.1) is
tight. There is described the existence of the edge irregular

⌈
n
2

⌉
-labeling (for paths) and the existence of

the edge irregular n-labeling (for stars), where the corresponding edge-weights in both cases constitute
the set of consecutive integers. According to Theorem 2.1 we have:

Corollary 2.1. Let Pn be a path on n ≥ 2 vertices. Then mes(Pn) =
⌈

n
2

⌉
.

Corollary 2.2. Let K1,n be a star on n + 1 vertices, n ≥ 1. Then mes(K1,n) = n.

These corollaries prove the tightness of the lower bound of the modular edge irregularity strength
given in (2.1).

In the next theorem we characterize the modular edge irregularity strength of cycles.

Theorem 2.4. Let Cn be a cycle on n vertices, n ≥ 3. Then

mes(Cn) =


⌈

n
2

⌉
, if n ≡ 1 (mod 4),⌈

n
2

⌉
+ 1, if n ≡ 0, 3 (mod 4),

∞, if n ≡ 2 (mod 4).

Proof. Let V(Cn) = {vi : 1 ≤ i ≤ n} and E(Cn) = {vivi+1 : 1 ≤ i ≤ n}, where vn+1 = v1. Faudree et al.
in [22] described irregular assignments f for cycles and proved that

s(Cn) =


⌈

n
2

⌉
, if n ≡ 1 (mod 4),⌈

n
2

⌉
+ 1, otherwise.

We define a vertex labeling ψ of Cn such that for 1 ≤ i ≤ n

ψ(vi) = f (vivi+1).

AIMS Mathematics Volume 8, Issue 1, 1475–1487.



1478

Thus each edge label becomes the vertex label and we get an edge irregular labeling of the cycle. Since
for every n . 2 (mod 4) in Faudree’s irregular assignments of Cn the vertex-weights constitute a set of
consecutive integers then according to Theorem 2.1 it implies that

mes(Cn) =


⌈

n
2

⌉
, if n ≡ 1 (mod 4),⌈

n
2

⌉
+ 1, if n ≡ 0, 3 (mod 4).

For the remaining case when n ≡ 2 (mod 4), i.e., n = 4h + 2 for some positive integer h ≥ 1,
let us suppose that the cycle C4h+2 admits a modular edge irregular labeling ϕ. It means that the sum
of all vertex labels used to calculate the edge-weights of C4h+2 is congruent to the sum of modular
edge-weights. Hence

2
4h+2∑
i=1

ϕ(vi) ≡ 0 + 1 + · · · + (4h + 1) =
(4h+2)(4h+1)

2 = (2h + 1)(4h + 2 − 1) ≡ (2h + 1)(−1)

≡ 2h + 1 (mod (4h + 2)).

A contradiction as 2h + 1 is odd. �

A caterpillar is a graph derived from a path by hanging any number of leaves from the vertices of
the path. The caterpillar can be seen as a sequence of stars K1,n1 ∪ K1,n2 ∪ · · · ∪ K1,nr , where each K1,ni

is a star with central vertex ci and ni leaves for i = 1, 2, . . . , r, and the leaves of K1,ni include ci−1 and
ci+1, for i = 2, 3, . . . , r−1. In [23] the authors denote the caterpillar as S n1,n2,...,nr , where the vertex set is

V(S n1,n2,...,nr ) = {ci : 1 ≤ i ≤ r}∪
r−1⋃
i=2
{v j

i : 2 ≤ j ≤ ni−1}∪ {v j
1 : 1 ≤ j ≤ n1−1}∪ {v j

r : 2 ≤ j ≤ nr}, and the

edge set is E(S n1,n2,...nr ) = {cici+1 : 1 ≤ i ≤ r − 1} ∪
r−1⋃
i=2
{civ

j
i : 2 ≤ j ≤ ni − 1} ∪ {c1v j

1 : 1 ≤ j ≤ n1 − 1} ∪

{crv
j
r : 2 ≤ j ≤ nr}, see Figure 1. Thus |V(S n1,n2,...,nr )| =

r∑
i=1

ni − r + 2 and |E(S n1,n2,...,nr )| =
r∑

i=1
ni − r + 1.

c1 cr−1

c2 cr

v11 v21 vn1−1
1 v2r−1 v3r−1 v

nr−1−1
r−1

v22 v32 vn2−1
2 v2r v3r vnr

r

Figure 1. Caterpillar S n1,n2,...,nr .

Let S n1,n2,...,nr be a caterpillar and No =

⌈ r
2
⌉∑

i=1
n2i−1 and Ne =

⌊ r
2
⌋∑

i=1
n2i.

Theorem 2.5. Let k = max
{
No −

⌈
r
2

⌉
+ 1,Ne −

⌊
r
2

⌋
+ 1

}
. The caterpillar S n1,n2,...,nr admits a modular

edge irregular k-labeling.
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Proof. We are using an idea of Kotzig and Rosa [24] that any caterpillar can be realized in the
plane so that its vertices are displaced in two rows, the edges joining these vertices from different
rows and no two edges cross. Let {A, B} be a bipartition of the vertex set of the caterpillar
S n1,n2,...,nr . Let a1, a2, . . . , aNo−d r

2e+1 be the vertices in the partition A, ordered from left to right, and
let b1, b2, . . . , bNe−b r

2c+1 be the vertices in the partition B, ordered from left to right.
Define a vertex labeling ϕ of S n1,n2,...,nr in the following way.

ϕ(ai) =i, if 1 ≤ i ≤ No −
⌈

r
2

⌉
+ 1,

ϕ(b j) = j, if 1 ≤ j ≤ Ne −
⌊

r
2

⌋
+ 1.

It is not complicated to see that the maximal vertex label is k = max
{
No −

⌈
r
2

⌉
+ 1,Ne −

⌊
r
2

⌋
+ 1

}
and

the edge-weights create the integer interval from 2 to |E(S n1,n2,...,nr )| + 1 = No + Ne − r + 2. Thus, the
vertex labeling ϕ is a modular edge irregular k-labeling. �

Immediately from (1.1) and Theorem 2.5 we obtain the next theorem.

Theorem 2.6. Let S n1,n2,...,nr be a caterpillar. Then

max
{⌈

No+Ne−r+2
2

⌉
, ni : 1 ≤ i ≤ r

}
≤ es(S n1,n2,...,nr ) ≤ mes(S n1,n2,...,nr ) ≤ max

{
No −

⌈
r
2

⌉
+ 1,Ne −

⌊
r
2

⌋
+ 1

}
.

Note that if r is even and No = Ne + α, where α ∈ {−1, 0, 1}, or if r is odd and No = Ne + β, where
β ∈ {0, 1, 2} then

max
{⌈

No+Ne−r+2
2

⌉
, ni : 1 ≤ i ≤ r

}
= max

{
No −

⌈
r
2

⌉
+ 1,Ne −

⌊
r
2

⌋
+ 1

}
.

Thus we get the following result.

Corollary 2.3. Let S n1,n2,...,nr be a caterpillar. If r is even and No = Ne + α, where α ∈ {−1, 0, 1}, or if r
is odd and No = Ne + β, where β ∈ {0, 1, 2} then

es(S n1,n2,...,nr ) = mes(S n1,n2,...,nr ) =
⌈

No+Ne−r+2
2

⌉
.

In compliance with (2.1) the previous corollary proves the sharpness of the lower bound of the
modular edge irregularity strength of caterpillars.

Marr and Wallis in their book [25] define an n-sun S n as a cycle Cn with an edge terminating in
a vertex of degree 1 attached to each vertex.

Theorem 2.7. Let S n be an n-sun on 2n vertices, n ≥ 3. Then

es(S n) = mes(S n) = n + 1.

Proof. Let V(S n) = {vi, ui : 1 ≤ i ≤ n} and E(S n) = {vivi+1, viui : 1 ≤ i ≤ n}, where vn+1 = v1.
According to (1.1) and (2.1) we have the following lower bound n + 1 ≤ es(S n) ≤ mes(S n). To prove
that n + 1 is also the upper bound we distinguish two cases according to the parity of n.
Case 1. For n ≥ 3 odd, we construct a vertex labeling ϕ as follows

ϕ(vi) =

 i+1
2 , if i is odd,

n+1+i
2 , if i is even,

AIMS Mathematics Volume 8, Issue 1, 1475–1487.
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ϕ(ui) =

1, if i is odd, i , n,
n + 1, if i is even and i = n.

The labels of vertices receive the integers from 1 to n + 1 and for the weights of edges we get

wtϕ(vivi+1) =

 n+3
2 + i, if 1 ≤ i ≤ n − 1,

n+3
2 , if i = n,

wtϕ(viui) =


i+3
2 , if i odd, i , n,

3n+3
2 , if i = n,

3n+3+i
2 , if i even.

One can easily check that under the vertex labeling ϕ the edges of the n-sun admit the consecutive
weights from 2 to 2n + 1. Thus, the vertex labeling ϕ is a modular edge irregular (n + 1)-labeling of S n

for n odd.
Case 2. For n ≥ 4 even, we consider a vertex labeling ψ defined such that

ψ(vi) =

i, if 1 ≤ i ≤ n − 1,
n + 1, if i = n,

ψ(ui) =


i, if 1 ≤ i ≤ n

2 ,
i + 2, if n

2 + 1 ≤ i ≤ n − 3,
n, if i = n − 2, n − 1, n.

The maximal vertex labels is n + 1 and the edge-weights are the following

wtψ(vivi+1) =


2i + 1, if 1 ≤ i ≤ n − 2,
2n, if i = n − 1,
n + 2, if i = n,

wtψ(viui) =


2i, if 1 ≤ i ≤ n

2 ,
2i + 2, if n

2 + 1 ≤ i ≤ n − 3,
i + n, if i = n − 2, n − 1,
2n + 1, if i = n.

Thus the weights of edges are consecutive numbers from 2 to 2n+1. This means that the vertex labeling
ψ is a modular edge irregular (n + 1)-labeling of S n for n even.

Thus
mes(S n) = n + 1

for every n ≥ 3. �

A friendship graph fn, n ≥ 1, is a set of n triangles having a common central vertex, and otherwise
disjoint. Let w denote the central vertex. For the ith triangle, 1 ≤ i ≤ n, let ui and vi denote the other
two vertices. Thus fn contains 2n + 1 vertices w, ui, vi, 1 ≤ i ≤ n and 3n edges wui, wvi, uivi, 1 ≤ i ≤ n.

AIMS Mathematics Volume 8, Issue 1, 1475–1487.
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As |E( fn)| = 3n and the maximum degree ∆( fn) = 2n then (1.1) implies that es( fn) ≥ 2n. However,
if under a vertex labeling ϕ of fn there exist two vertices u, v ∈ V( fn) such that ϕ(u) = ϕ(v) then using
the fact that u and v have just one common neighbor, say z ∈ V( fn), we obtain wtϕ(uz) = ϕ(u) + ϕ(z) =

ϕ(v) + ϕ(z) = wtϕ(vz). It means that under any edge irregular labeling of the friendship graph fn all the
vertex values must be different. That way

es( fn) ≥ 2n + 1 (2.3)

and according to (2.1) we also have a lower bound of the modular edge irregularity strength for fn.
The following theorem shows that the lower bound of the edge irregularity strength of fn in (2.3)

is acquired just for a few values of n. A similar idea of the proving was used in [26] for showing the
edge-antimagicness of friendship graphs with difference d = 1.

Theorem 2.8. The friendship graph fn of order 2n + 1 admits an edge irregular (2n + 1)-labeling with
consecutive edge-weights if and only if n ∈ {1, 3, 4, 5, 7}.

Proof. Suppose that there exists a vertex labeling ϕ : V(G) → {1, 2, . . . , 2n + 1} such that the edge-
weights of fn successively attain consecutive values x, x + 1, . . . , x + 3n−1. If ϕ(w) = t, 1 ≤ t ≤ 2n + 1,
then the set of vertex labels under the vertex labeling ϕ can be partitioned into three subsets A =

{1, 2, . . . , t − 1}, B = {t} and C = {t + 1, t + 2, . . . , 2n + 1}. Thus ϕ(V( fn)) = A ∪ B ∪C.
We are able to see that weights of edges wui and wvi, 1 ≤ i ≤ n, constitute the set W = {t + 1,

t + 2, . . . , 2t − 1, 2t + 1, 2t + 2, . . . , 2n + t + 1}. It is not difficult to see that the set of edge-weights
WA={ x, x + 1, . . . , t} can only be created as sums of two distinct values in the set A and the set of
edge-weights WB = {2n + t + 2, 2n + t + 3, . . . , x + 3n − 1} can only be created as sums of two distinct
values in the set B. The sets WA and WB contain consecutive integers each while the set W has a gap.
The missing edge-weight 2t can be obtained only as sum of a value from the set A, say a, and a value
from the set B, say b. Thus in the set A− {a} we have t − 2 numbers and the corresponding set of edge-
weights WA = {x, x + 1, . . . , t} has the cardinality |WA| =

t−2
2 , i.e., t must be even. This also implies that

x = t
2 + 2.

Since the sum of all the values in the set A − {a} is equal to the sum of all the edge-weights in the
set WA = { t

2 + 2, t
2 + 3, . . . , t}, then

t(t − 1)
2

− a =
(3t + 4)(t − 2)

8
. (2.4)

As a ∈ A then 1 ≤ a ≤ t − 1 and from (2.4) we get

8 ≤ t2 − 2t + 8 ≤ 8t − 8,

which is equivalent to
t2 − 2t ≥ 0 and t2 − 10t + 16 ≤ 0.

As t must be even the previous inequalities give

t ∈ {2, 4, 6, 8}. (2.5)

In the computation of the edge-weights of fn, the label t of the vertex w is used 2n times and the
labels of the vertices ui and vi, 1 ≤ i ≤ n, are used twice each and the sum of the all edge-weights
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of fn is equal to the sum of all the vertex labels, used to calculate the edge-weights. Then we get the
following equation

2
n∑

i=1

(ϕ(ui) + ϕ(vi)) + 2nϕ(w) =

n∑
i=1

(
wtϕ(wui) + wtϕ(wvi)

)
+

n∑
i=1

wtϕ(uivi),

which gives

(2n + 2)(2n + 1) + 2t(n − 1) =
3n(3n + t + 3)

2
,

and it immediately follows that

0 = n2 − n(3 + t) + 4(t − 1). (2.6)

According to (2.5) from the Eq (2.6) we receive all the possible integer values of the parameters n,
x and t as follows:

(n, x, t) ∈ {(1, 3, 2), (3, 4, 4), (4, 3, 2), (4, 4, 4), (4, 5, 6), (4, 6, 8), (5, 5, 6), (7, 6, 8)}. (2.7)

For the converse, it is not difficult to find the corresponding edge irregular (2n + 1)-labelings of fn for
parameters (n, x, t) from (2.7). Figures 2–4 illustrate searched (2n + 1)-labelings of fn, where integers
in italic font represent the edge-weights. This concludes the proof. �
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Figure 2. An edge irregular 3-labeling of f1 for (n, x, t) = (1, 3, 2), an edge irregular 7-
labeling of f3 for (n, x, t) = (3, 4, 4) and an edge irregular 9-labeling of f4 for (n, x, t) =

(4, 3, 2).
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Figure 3. The edge irregular 9-labelings of f4 for (n, x, t) = (4, 4, 4), (n, x, t) = (4, 6, 8) and
(n, x, t) = (4, 5, 6).
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Figure 4. An edge irregular 11-labeling of f5 for (n, x, t) = (5, 5, 6) and an edge irregular 15-
labeling of f7 for (n, x, t) = (7, 6, 8).

Applying Theorem 2.1 to Theorem 2.8 we achieve the following corollary.

Corollary 2.4. Let fn be a friendship graph on 2n+1 vertices. If n ∈ {1, 3, 4, 5, 7} then mes( fn) = 2n+1.

The next theorem gives a condition when no modular edge irregular labeling of fn exists.

Theorem 2.9. If fn is a friendship graph on 2n+1 vertices and n ≡ 2 (mod 4), then fn has no modular
edge irregular labeling and mes( fn) = ∞.

Proof. Assume that the friendship graph fn on 2n + 1 vertices admits a modular edge irregular labeling
ϕ. Then the sum of all vertex labels used to calculate the edge-weights of fn is congruent to the sum of

modular edge-weights. It means if D = 2
n∑

i=1
(ϕ(ui) + ϕ(vi)) + 2nϕ(w) then

D ≡
3n−1∑
s=0

s (mod 3n),

where
3n−1∑
s=0

s =
3n(3n−1)

2 .

If n ≡ 2 (mod 4), i.e., n = 4h + 2 for some positive integer h ≥ 1, then using properties of
congruence we get

D ≡
(12h + 6)(12h + 5)

2
= (6h + 3)(12h + 6 − 1) ≡ (6h + 3)(−1) ≡ 6h + 3 (mod (12h + 6)).

This contradicts the fact that D is even. �

The next theorem provides lower and upper bounds on the parameter mes( fn) for n odd.

Theorem 2.10. For the friendship graph fn of order 2n + 1, n ≥ 9 odd, we have

2n + 1 ≤ mes( fn) ≤ 5n+1
2 .

Proof. The lower bound follows from (2.1) and (2.3). To see the upper bound let us define a vertex
labeling ϕ of fn, for n ≥ 9 odd, in the following way

ϕ(ui) = i, if 1 ≤ i ≤ n,

AIMS Mathematics Volume 8, Issue 1, 1475–1487.
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ϕ(vi) =

3n+2−i
2 , if i is odd,

4n+2−i
2 , if i is even,

ϕ(w) = 5n+1
2 .

Thus the labels of vertices ui, vi, 1 ≤ i ≤ n are the consecutive integers from 1 to 2n and the vertex w
receives the maximum label 5n+1

2 . Then for the weights of the edges uivi, 1 ≤ i ≤ n, we have

wtϕ(uivi) =

 3n+2+i
2 , if i is odd,

4n+2+i
2 , if i is even,

and for the weights of the edges wui and wvi, 1 ≤ i ≤ n, we get

wtϕ(wui) = 5n+1
2 + i,

wtϕ(wvi) =

 8n+3−i
2 , if i is odd,

9n+3−i
2 , if i is even.

We can observe that the edge-weights of fn, under the vertex labeling ϕ, form the sequence of
consecutive integers 3n+3

2 , 3n+5
2 , . . . , 9n+1

2 .
In the light of Theorem 2.1, it follows that the vertex labeling ϕ is a modular edge irregular 5n+1

2 -
labeling of fn and it proves that mes( fn) ≤ 5n+1

2 for n ≥ 9 odd. Thus, we arrive at the desired result.
�

3. Conclusions

In this paper is introduced a new graph invariant, namely the modular edge irregularity strength
and estimated its lower bound. For several families of graphs (paths, stars, cycles and n-suns) are
determined the precise values of the modular edge irregularity strength that prove the sharpness of
this lower bound. For caterpillars S n1,n2,...,nr realized in the plane as a balanced (respectively almost
balanced) bipartite graph we proved that if r is even and No = Ne + α, where α ∈ {−1, 0, 1}, or if r
is odd and No = Ne + β, where β ∈ {0, 1, 2} then mes(S n1,n2,...,nr ) =

⌈
No+Ne−r+2

2

⌉
. For the other cases

we proved only an upper bound for the modular edge irregularity strength. Therefore we propose the
following open problem.

Open Problem 3.1. For the caterpillar S n1,n2,...,nr determine the exact value of the modular edge
irregularity strength for No = Ne + γ for every integer γ.

For the friendship graph fn of order 2n + 1 was proved that

mes( fn)


= 2n + 1, if n ∈ {1, 3, 4, 5, 7},
= ∞, if n ≡ 2 (mod 4),
≤ 5n+1

2 , if n ≥ 9 odd.

For further research, we suggest the following open problems.
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Open Problem 3.2. For the friendship graph fn of order 2n + 1 and n ≥ 9 odd, determine the exact
value of the modular edge irregularity strength.

It is a matter of algebraic argumentation to show that there does not exist a modular edge
irregular 17-labeling of f8. Thus according to Figure 5 we get that mes( f8) = 18. The remaining
open case for the existence of a modular edge irregular labeling of fn is n ≡ 0 (mod 4) for n ≥ 12.
Therefore we propose

Open Problem 3.3. For the friendship graph fn of order 2n + 1, n ≥ 12 and n ≡ 0 (mod 4), determine
the exact value of the modular edge irregularity strength.
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Figure 5. An edge irregular 18-labeling of f8.
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23. K. Sugeng, M. Miller, Slamin, M. Bača, (a, d)-edge-antimagic total labelings of caterpillars,
Lecture notes in computer science, Berlin: Springer, 2005, 169–180. https://doi.org/10.1007/978-
3-540-30540-8 19

24. A. Kotzig, A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–461.
https://doi.org/10.4153/CMB-1970-084-1

25. A. Marr, W. Wallis, Magic graphs, 2 Eds., Boston: Birkhäuser, 2013.
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