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1. Introduction

It is very well known that scalar and vector variational-type inequalities are very important in the
study of scalar and vector optimization problems. In this regard, in [15], the authors established some
connections between generalized variational inequalities and multi-objective optimization problems.
In [18], Polyak introduced the concept of a unique sharp minimizer. Starting with the research
papers [3, 17] and following [13], the variational-type inequalities have been analyzed by using the
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notion of a weak sharp solution. Analogous results have been formulated in Hilbert spaces by Wu
and Wu [24]. In [4], Chen et al. constructed the gap functions associated with vector variational
inequalities as set-valued maps. In [8], the authors introduced the weak sharp solution set associated
with a variational-type inequality problem in a smooth, strictly convex and reflexive Banach space.
Alshahrani et al. [1], by considering gap functions, formulated the maximum and minimum principle
sufficiency properties for a class of nonsmooth variational inequalities. Also, in terms of its primal
gap function, Liu and Wu [11] studied weakly sharp solutions for a class of variational inequalities.
An effective algorithm for solving the Poisson-Gaussian total variation model was presented by Pham
et al. [16]. Recently, Khazayel and Farajzadeh [9] stated some new vector versions of Takahashi’s
nonconvex minimization theorem, which involve algebraic notions instead of topological notions.
Also, Tavakoli et al. [19] formulated a sufficient condition in order to have the C-pseudomonotone
property for multi-functions.

Treantd [23] and Treantd and Singh [21] investigated the weak sharp solutions for a class of
non-controlled extended variational-type inequalities involving (p, b, d)-convex curvilinear/multiple
integral functionals. Compared with the above-mentioned research works, the main novelty of this
paper is the presence of a control variable in variational inequalities driven by multiple integral
functionals. Since the controlled variational inequalities can be converted into variational control
problems and, as is well known, the latter often occurs in many applications, all of which have
motivated the present study. Concretely, in this paper, by considering several variational techniques
presented in Clarke [5], Treantd [20,22,23] and Mititelu and Treantd [14], we generalize some of the
aforementioned results to controlled multidimensional variational-type inequalities involving convex
multiple integral functionals and, by using a dual gap functional, several characterization results are
formulated. The main results of the paper followed and generalized the ideas for weak sharpness of
solutions proposed and exploited in [3, 6, 13] and the references therein. For different but connected
ideas on variational inequalities with applications to optimal control problems, the reader is directed to
Liu et al. [10] and Antczak [2].

The paper is divided as follows. In Section 2, we give the preliminaries and the problem under
study. In order to establish the main results of this work, several auxiliary results are formulated
in Section 3. In Section 4, we study weak sharp solutions associated with the considered class
of controlled variational-type inequalities involving convex multiple integral functionals. Moreover,
a relation between the minimum principle sufficiency property and weak sharpness of solutions is
established for the considered controlled variational-type inequality. Section 5 concludes the study.

2. Preliminaries

We start the study with the following working hypotheses and notations:

» the Euclidean space R, £ > 1;

» K c R" denotes a compact set in R”, and K > t = (1), @ = 1,m, is a multi-parameter of
evolution;

» for U C R¥ and P := K x R" x U, we consider the continuously differentiable functions

X:(Xfl):PaR”m, i=1,n a=1m,

-

Y=(Y): PoRL B=1g
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>dv= dt' - - - dt" represents the element of volume on R™ > K;
» let S denote the space of all piecewise smooth state functions b : K ¢ R™ — R", having the norm

1B I=l bl + D N ballen VBES,

a=1

where b, denotes %;
ot

» also, consider U as the space of all piecewise continuous control functions u : K ¢ R" — U,
with the uniform norm || - ||c;

» assume the space S x U is endowed with the inner product

(b, u); (e, w)) = f [b(t) - e(t) + u(®) - wD)ldv, Y(b,u),(e,w) € SXU
K

and the norm induced by it; o
» consider S X U as a nonempty, convex and closed subset of S X U, given by

- — b ,
SX‘LI:{(b,u)ESX(L[: %:Xg(t,b,u), Y(,b,u) <0, blgx = ¢ = given};

» in this paper, we use the simplified notations b, u, b, for b(t), u(t), b,(t), respectively;
» we assume that the continuously differentiable functions

Q
[
J—‘
3

X,=(X}):P >R, i=Tn

fulfill the complete integrability conditions, that is,

D{X(lz = DQXQ, a’,é/: l,m, o * {, 1= l,n’

where D, denotes the total derivative operator;
» for any two p-tuples a = (al, v ap) and ¢ = (cl, ey c,,) in R?, the following convention will be
used throughout the paper:
a=coa,=¢, alcsa <c,

a<coa<c, a<coa<c,a*c, i=1,p.

Next,_we _consider the continuously smooth functions f,g,h : K X R" Xx R™ x U — R and, for
(b,u) € S x U, define the following functionals:

F:SxU >R, ?(b,u):ff(t,b,ba,u)dv,
K

G:SxU-R, G(b,u):fg(t,b,ba,u)dv,
K

H:SXxU >R, W(b,u):fh(t,b,ba,u)dv.
K
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Definition 2.1. (Treanta [20]) The functional ¥ : SxU— R, F(b,u) = f f(t,b,b,,u)dv,is called
K
convex on § X U if the inequality

?d(b5 l/l) - ?(bo’ MO)
> f |75 (5%, 0. 1) (b = B°) + fi, (£, 6°. 15, u°) Db = b)) v
K
+ 2 (6,0°, 02, u°) (u—u®)|dv
[ 1A (e 8) =)
is satisfied for any (b, u), (b°, u’) € S x U.

Definition 2.2. (Treanti [20]) The variational derivative 6% (b,u) of F : Sx U — R, F(b,u) =
f f(t,b, by, u)dv, is introduced as
K

oF O0F
oF (b,u) = — + —,
Fb.u ob * ou
with (see Einstein summation)
0 = 0 —
5_f = fb (t’ b, baf’ I/l) - Da/fh(y (t9 b» ba, l/l) € S’ z = fu (t’ b’ ba/’ l/l) € (L{
u

and the relation

oF oF

. - (1% v+ L.
((E,E),(w,‘l’»—ﬁ[éb (0) - (@) + —=— (1) - () | dv

. Fb+ey,u+e¥)—F(b,u)
= lim

-0 E

is satisfied for (¢, ¥) € S X U, Ylyx = 0.

Note. In this paper, by taking into account the above-mentioned definition, we consider the condition
Ylok = 0.

At this point, we introduce the controlled multidimensional variational-type inequality problem:
Find (b°, u’) € S x U such that

(CMVIP) f | (8.6° B2, 1) (b = B°) + i, (1.0°, 55, u°) Db — b | dv
K

020 .0\, .0
+j1;[fu(t,b,ba,u)(u u’)|dv = 0

for any (b,u) € S X U. The dual controlled multidimensional variational-type inequality problem for
(CMVIP) is given as follows: Find (»°,u°) € S x U such that

(DCMVIP) f | (& b, bos 1) (b = B°) + fi, (2, D, b 1) Db = B°)| dv
K

+f[fu(t,b,ba,u)(u—u°)]dv >0
K

AIMS Mathematics Volume 8, Issue 1, 1488—1508.



1492

for any (b,u) € S X U.

Further, let us denote by (S X U)* and (S X U). the set of solutions for (CMVIP) and (DCMVIP),
respectively. Also, we assume these sets are nonempty.

Remark 2.1. The aforementioned controlled multidimensional variational-type inequality problems
can be rewritten as follows: Find (b°,u°) € S x U such that

0F oF

CMVIP —,—
( ) 50050

Y, (b=b"u—u)) >0, VbueSxU,

respectively; Find (b°, u°) € S x U such that

(DCMVIP) <(%:, %:); Bb-u—u’))y >0, VbueSxU.

In the following, we introduce the gap multiple integral functionals.

Definition 2.3. (Treanta [20]) The primal gap functional for (CMVIP) is given by

G = max ([ [fi(tb.bost) 6= 6) 4 fi, .05yt Dyt = 1) o
BOueSxU Jk

’ f [f” (.0, bo, u) (u— uo)] dv}
K

for (b, u) € S X U. The dual gap functional for (CMVIP) is given by

H(b,u)= max { f |5 (£.6°.55,u°) (b = b%)] v
K

B0,u")eSxU

+ f | o, (1.5, B0, 1) Db = B°) + £, (£, 6°, 53, ) (u — u®) | v},

K

Next, consider the following notations:

Ab,u) ={(s,v) e SXU : G(b,u) = f [fy (¢, b,Do,u) (b — )] dv

K

+ f [fbu/ (ta ba baa I/l) Da(b - S) + fu (t7 b’ bcw I/t) (l/t - V)] dV},
K

Ob,u) ={(s,v) e SXU : H(b,u) :f[fb(t,s, Sa, V) (b — s)] dv

K
+ f [foo (2,5, 50 V) Do(b = 5) + fu (2,8, 50, V) (u — V)] dv}
K

for (b,u) € SxU.

Remark 2.2. By using the aforementioned notations, we notice the following:

AIMS Mathematics Volume 8, Issue 1, 1488—-1508.
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i)
5F OF 0
by = max (o o); (b= b u=u)),
OF 6F o o
HEw = max o gy &= &=
(ii)

oF oF
A, u) = —
b0 =g 0 b S

oF oF
— bO 0
arg(bo,g})gxw{ b 6b’ Su o )>}
oF OF
h - bu -
where arg . rl?)aelsxﬂ(( 55 o0 —); (b — b, u
oF OF
b—b"u ;
®°, uo)eSxfu« ob’ Su ot )
(ii1)
3 oF oF 0
Q(b,u) = arg (bo’i{)l)gxw (@, w), (b-b",u
(iv) if A(b,u) = 0, then G(b,u) =  sup ((67: (Wj) b-0u
BO,u%)eSxU 6b ou
oF oF
th b’ b - bo, - .
en H(b,u) = " uii‘?gxu«abo s ¢ u—u’))

In accordance with [13], we formulate the following definitions.

Definition 2.4. The polar set (S X U)° of S X U is given by

(SxUy

—=); (b= ", u—u"))

u®)) denotes the (possibly empty) solution set of

u%));

— u°)); similarly, if Q(b,u) = 0,

= {(e.w) € SX U : (e w): (b,w)) <0, V(b,u) € Sx U}

Definition 2.5. The projection of a point (b, u) € S x U onto the set S x U is given by

Projgyq (b, u) = arg m1n

CRORICALNE

Definition 2.6. The normal cone to S x U at (b,u) € S X U is given by

Nssai(b,u) = {(e,w) € SX U : {(e,w), (5,V) —
V(s,v) € SX U, (b,u)e SXU,
Nswy(b,u) =0, (b,u) g SxU

(b,u)) <0,

and the tangent cone to S X U at (b,u) € S X U is Tsxqi(b, 1) = [Ny (b, w)]°.

Remark 2.3. By considering the previous definitions, we notice that (b*,u") € (S X U)" —

oF _(577
5b*’ ou

(

AIMS Mathematics
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3. Some basic results

In this section, some basic results are established.

Proposition 3.1. Assume F (b, u) = f f(t,b,by,u)dvis convex on S X U. Then,
K
(i) for any (b*, u"), (b*, u*) € (S x U)*, it follows that

f £ (1.7, 52.07) (b = B7) + fi, (1.7, B2, u?) Do(b" = b dv
K

f[fu (.07, 52.0%) (' = )| dv = 0;

(ii) the inclusion (S X U)* C (S X U), is satisfied.
Proof. (i) By (b',u") € (8 x U)*, we get

fK[fb(f bl by, u') (b= b + fi, (1,b",b},u") Da(b = bY| dv

f[fu(tbl, L) = uh)dv= 0, V(b,u) e SxU.

Since (b%, u*) € (S x U)* € S x U, the previous inequality is rewritten as follows:

f[fb(t b by u') (B* = b") + fi, (t.b", bl ') Du(b® = b)| dv
K

Ll 2 ]
+fl([fu(t,b,ba,u)(u u)]deO. 3.1

By hypothesis, the scalar functional ¥ (b, u) = f f(t,b,b,,u)dvis convex on SXU. Consequently,
K

it yields
Fb',u') = F (b, u?)

2 72 2\ pl 22 272 2 1 32
sz[f,,(r,b,ba,u)(b ) + fi, (1,67, b2 17) Do (b — b?)] dv
2 12
j;[fu(tb, 2.2) (' = ud)] v, (32)

F > u?) - F ', u')
f[f,, (0", by u') &7 = B + fi, (15", b}, u") Du(B® = )| dv

f[fu(t b'.bh.u') (W - u')]dv. (3.3)
K

AIMS Mathematics Volume 8, Issue 1, 1488—-1508.
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Combining (3.2) and (3.3) and by considering (3.1), we get

f £ (87,52, u?) (b = b7) + fi, (8,17, 52, u?) Do(b" = b*)| dv
K

f[fu(t 02 u?) (u' - uh)|dv < 0.
Similarly as above, by (b%,u?) € (S x U)*, we can write
f £ (87,52, u7) (b = b7) + fi, (8,17, 52, u?) Do(b" = b*)| dv
K

f £ (1.7, 02, 0%) (u' = )] dv 2 0.

Now, by considering (3.4) and (3.5), the proof is now completed.
(i) By (", u") € (8 x U)", it yields

[ U7 b 0= 6 ¢ fo, (b ) Do = )
K

+f[fu(f,b*, b u)(u—u)]dv=>=0, VYb,ueSxU.
K

The convexity property on S X U of F (b, u) (see (3.2) and (3.3)) involves

[ [5leb el

+

SN—

(b" = %) + fy, (t.b', b u") Do(b" = b*)| dv

[f,, (t, b, bé, ul) (u' - uz)] dv

S

f | (8,67, D2 12) (b = D) + fi, (1.5, B2 u?) Do(b' = bP)| dv
K

f[f“(t b, by i) ('~ )]dV V(b uh), (B u*) e SxU.

Next, by considering (3.6) and (3.7), we obtain

f [f» (¢,b,Do,u) (b — D) + fp,, (t,b,by, 1) Do(b — b*)] dv
K

+ f [f. (t,b,bo, ) (u—u*)]dv>0, Vb,u)yeSxU
K

and this completes the proof. O

Remark 3.1. By using the continuity of 6% (b, u), we obtain (S X U), C (S X U)".

(3.4)

(3.5)

(3.6)

(3.7)

Also, by

Proposition 3.1, we obtain (S X U)* = (S X U).. Since the solution set (S X U). for (DCMVIP)

is convex, in consequence, the solution set (S X U)* for (CMVIP) is convex.

AIMS Mathematics Volume 8, Issue 1, 1488—-1508.
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Proposition 3.2. Let H(b, u) be differentiable on S X U. Then, for any (b,u), (v,u) € S x U and
(e,w) € Q(b,u), the inequality

OH oH

5 ob’ Su

—) () 2 (( ); v, 1))
ow

is satisfied.

Proof. By considering Definition 2.3, it follows that

H(b,u) = max f [fy (t,e,e0, W) (D —€) + [, (t,e,eq,W) Do(b —€)| dv

(ew)eSxU Jk

+f [fu (t7 €,€q, W) (u - W)] dV
K

for (b,u) € S x U, and (see Remark 2.2) we get

H(b,u) = max (= o7 ‘W) (b-e,u—w), Yb,u)eSxU,
(e,w)eSxXU (58 ow
or, T 7:
OF O
H(b,u) = (( ) (b - —-w)), VY(e,w)e€ Q(b,u). (3.8)
Also, the inequality
F OF
H(s,v) > <(6 " —)(s—e,v—w)) (3.9)
is true for any (e,w) € S X U and (s,v) € S x U, and, by using (3.8) and (3.9), it yields
H(s,v) = H(b,u) > <(57: 63:) (s=b,v—u)), V(ew)e Qb,u)

for any (b, u), (s,v) € SxU. For (s,v) = (b,u) + A(v, ) € Sx U, with A > 0, the above inequality can
be rewritten as

o )
Hb+ v+ aw) - Hbow) > (2, D . ),
oe  ow
V(e,w) € Q(b,u), V(b,u),(v,u) € SxU,
or, by dividing with 1 > 0, we obtain

Hb + Av, Au) — H(b, )
G+ ”‘;“) L <(i i) 2 1),

Ve, w) € Q(b,u), V(b u),(v,p1) € SXU.
Next, by taking the limit for 4 — 0 and by Definition 2.2, the proof is now completed. O
Proposition 3.3. Let H (b, u) be differentiable on (SXU)* and F (b, u) be convex on SXU. In addition,

suppose the implication

OH oH oF oF OH oH oF oF

(G 5 ) 2 (5 =) (v ) = (o0 =) = (5o =)

AIMS Mathematics Volume 8, Issue 1, 1488—1508.
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is satisfied for any (b*,u") € (SXU)", (v,u) € SxU and (s,v) € Q(b*, u*). Then, we have the equality
Ob ,u")y=(SxXU, Yb",u") e (SXU)".

Proof. “C” Let us consider (s, v) € Q(b*, u”). It yields

HD",u") = f [fy (2, 5, Sas V) (D" = 8) + [, (1, S, Sq, V) Do(D™ — 5)] dv
K

+ f [fu (8,8, 80, V) (W = V)] dv, (b",u") € (SXU). (3.10)
K

The functional 7 (b, u) is convex on S X U (by hypothesis) and (b*,u") € (S X U)*. By using
Remark 3.1 and Proposition 3.1, we obtain (b*, u*) € (S X U)., that is

f [fo (¢,b,Do,u) (b — D) + fp, (t,b, by, 1) Do(b — b*)] dv
K

+ f [fu @D, bo,u) (u—u")]dv >0 (3.11)
K

for any (b,u) € S x U. By (3.10) and (3.11), it yields H(p",u*) = 0, Y(b",u") € (8§ X U)", or
equivalently,

f [f (2,5, 50, V) (D" = 8) + f, (£, S, 54, V) Do(b" = 5)] dv

K

+ f [fu (8,5, 80, V) (W = V)]dv=0, (b,u")e(SXU). (3.12)
K

By (3.12), for any (b, u) € S X U, we obtain

f [fb (ta S, Sas V) (b - S) + .fb(, (t’ S, Sas V) D(l(b - S)] dV
K

+ f [fu (ta S, Sa» V) (u - V)] dV
K

= f [fo (2, 8, Sas V) (D = D) + [, (t, 8, S0, V) Do(b — D")] dv

K
+ f [fi (2,8, 80, V) (u—u)]dv. (3.13)

K
In the following, by using the definition of the dual gap functional H (b, u) of (CMVIP), we can write

HO* + Ab - b*),u* + Au—u*)) — HOb*, u*)
A

= f Lfy (1,67, D% ") (b = b7) + fi, (1,67, b}, u") Do(b — b*)] dv
K
+ f [fu (l‘, b, b;, M*) (u— I/t*)] dv
K

AIMS Mathematics Volume 8, Issue 1, 1488—-1508.
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for any A € [0, 1] and (b, u) € S X U. Taking the limit for A — 0 and using Definition 2.2, we obtain

oH 6H . .
%,%),(l)—b,u—u))

> f [fo (6,07, b, u™) (D —b") + fp, (1,0, b}, u") Do(b — b*)]| dv

K

(

+ f [fu (2,07, 0%, u™) (u — u")] dv.
K

. . . OH oH 0F o
By Proposition 3.2 and the hypothesis, we obtain (%, S F 7
u

oF oF . .
(555, - bhu—u))

> f [fo (6,67, b, u™) (D —b") + fp, (1,0, b, u") Do(b — b*)] dv

K
+ f [fu 0,0, b, u™) (u—u")]dv,
K
or, equivalently,
f U (1252 5007) (b — B + fo (.5 502v) Dalb — b°)] dv

K

f [fu (, 5, 8¢, V) (u— u*)] dv

K

2 f [f, (66", b5, u") (b= b*) + fp, (t,b", b, u”) Do(b — b*)] dv
K

+ f [f. (6, b", b, u”) (u—u")]dv.
K
By considering (3.13) and (3.15), it yields

f [fo (2,5, Sas V) (D — 8) + fi, (1, S, Sas V) Do(b — 5)| dv
K

+ f [fu (2,5, S, V) (u = V)] dv
K

> f [fo (6,67, b, u™) (D —b") + fp, (1,07, D, u") Do(b — b*)] dv

K
+f[fu(t’b*,bz,u*)(u—M*)]dv.
K

Since (b*,u") € (8 X U)", the previous inequality implies

f [fo (2,5, Sas V) (D — 8) + fi, (1, S, Sas V) Do(b — 5)| dv
K

+f[fu(t,s,sa,v)(u—v)]dv20, Y(b,u) e SXxU,
K

involving (s,v) € (S X U)".

(3.14)

) = (—, —). Therefore, (3.14) becomes
os oV

(3.15)

AIMS Mathematics Volume 8, Issue 1, 1488—1508.
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“>” Let us consider (s, v), (b, u") € (S8 X U)*. By using Proposition 3.1, we obtain

f [fo (2, 8, Sas V) (D" = 8) + [, (1, S, Sq» V) Do(D" — 5)] dv
K

+ f [fu (2,8, Sq,v) (" = V)] dv = 0.

K

Since H(b*,u") =0, Y(b*,u") € (S X U)*, it yields

HD ,u") = f [fo (2, S, Sas V) (D" = 8) + [, (1, S, Sq, V) Do(D™ — )] dv
K

+ f [fu (t’ S, Sas V) (u* - V)] dV,
K
implying (s,v) € Q(b", u"). This completes the proof. O

4. Main results

In this section, we study weak sharp solutions for the considered controlled multidimensional
variational-type inequality involving a convex multiple integral functional.

Definition 4.1. The set of solutions (S X U)* for (CMVIP) is weakly sharp if

( oF T )eint[ () [Tsxu® ) 0 Nesxan (0. )|

obe Sur _
(Bie(SxU)*

for all (b*,u") € (S X U)", or, in an equivalent form, there exists a positive number y > 0 such that

oF o 10 - x
’yB - (6_5, 5%;) + [TSX'L((b*’ M*) N N(SXW)*(b*a I/t*)] 5 V(b , U ) € (S X 7/{) 5

where int(M) represents the interior of the set M and B stands for the open unit ball in SxU.

Lemma 4.1. There exists y > 0 satisfying

YB C (E, ﬁ) + [Tsxu(e, w) N Nisxany (e, w)]”,  Y(e,w) € (SXU)” 4.1)
oe  oOw
if and only if
oF OF
((5—6, W); s zyll v, Y(s,v) € Tsxule,w) N Nisxay(e, w). 4.2)

Proof. The equivalent form of (4.1) is

oF oF o
¥, K) - (5, %) € [Tsxule, w) N Nisxuy(e, w)]”,

Y(e,w) € (SxU)", Y(b,v) € B,
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or
oF OF
(y(b,v) — (5—, —);(s,v) <0,
e ow
V(ea W) € (S X (L{)*a V(b, U) € B7 V(S, V) € TSX'L((e’ W) N N(SX(H)* (e’ W)
Considering B > (b,v) = T Es ; I (s,v) # (0,0), the above inequality is (4.2).

Conversely, let us consider that the relation (4.2) is fulfilled. Then, there exists y > 0 satisfying
oF oF oF oF
(Y(b,v) = (., ——=);(5,v)) = {y(b,v); (5,v)) = (> —=); (5,V))
oe  ow e  ow

<yl I=y I I=0
Y(e,w) € (SXU)", Y(b,v) € B, V(s,v) € Tsxqi(e,w) N Nisxary (e, w),

that is,
oF OF

(b v) = (= =) (5, V) < 0,
V(e9 W) € (S X 7/{)*’ V(b, U) € B, V(S’ V) € TSXT{(e’ W) N N(SX’L[)* (e’ W)’
or, equivalently,

6F 6F 0
y(b,v) - (— E) [Tsxu(e, w) N Nisxay(e, w)]

for Y(e,w) € (S X U)*, Y(b,v) € B. The above relation implies (4.1) and this completes the proof. O

Theorem 4.1. Let H (b, u) be differentiable on (S X U)* and F (b, u) be convex on S X U. In addition,
suppose the implication

OH 5?{

(G 57 (1) 2 <(— —v);(v,,u)> :>(

OH oH 0F oF
ob*’

ob*’ Su* 55’ oy

is satisfied for any (b, u") € (SXU)*, (v,u) € SXU and (s,v) € Q(b*, u*), and(glgj §¢

on (S X U)*. Then, (S X U)" is weakly sharp if and only if there exists y > 0 so that

) 1S constant

H(b,u) = vd((b,u), SXU)), VYb,ueSxU,
where d (b,u), SXU)*)= min || (b,u) —(e,w) ||
(e,w)e(SXU)*

Proof. “=" Let (S X U)" be weakly sharp. Consequently, by Definition 4.1, we get

(W o7 )emt[ M [TSX(L,(E,E)mN(SX(u)*(E,ﬁ)]O]

oe ow
(b, w)e(SXU)*

for any (e,w) € (S X U)*. Equivalently, by using Lemma 4.1, there exists y > 0 satisfying (4.1)
(or (4.2)).
Next, by considering the convexity property of (S X U)", it follows that

Projisqry (b, 1) = (@, W) € (S X UY', V(b,u) € SXxU
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and, in accordance with [7], we get (b,u) — (&,W) € Tsxu(e, W) N Nisxuy-(e,W). By considering the
hypothesis and by using Lemma 4.1, we obtain

0F o
<(5—§i i); (b—2e,u—w) >yl (b,u)—(@w) = yd(b,u),(SxU)),
e ow
or,
f Lfy (t,8,84,W) (b — &) + f;, (t,2,84, W) Dyo(b — &)] dv
K
+f [fu (ta é’ éa,W) (M_W)] dV
K
> yd((b,u), (S X U)), VYb,u)e SxU. 4.3)

Since

H(b,u) > f [fy (t,8,84, W) (b — &) + fp, (t,8,84, W) Do(b —&)] dv
K

+f[fu (t’é,émw) (M—W)] dv, V(b, u) GSX%[,
K

by (4.3), we get
Hb,u) > yd(b,u),( S X U)"), Y(b,u)eSxXU.

“«=" Let us consider that there exists a positive number y > 0 such that
H(b,u) > vd(b,u),( SxU)"), Yb,u)eSxU.
For any (e, w) € (S X U)", the situation Ts.qs(e, w) N Nsxary (e, w) = {(0,0)} implies
[Tsxa(e, w) N Nisxary (e, w)]° = SX U,
and

Se 5W) + [TSX'U(e, W) N N(Sx(u)*(e, W)]O , V(e, W) c (S % (L[)*

is obviously. Let (0,0) # (E, u) € Tswule,w) N Nisxuy-(e,w). This fact means that there exists a
sequence (Ek, i) converging to (b, ) with (e, w) + tk(Ek, ) € S X U, so that

d((e,w) + 1B 1), (S X UY) > d(e,w) + 1B, ), H; )

RGNS
(37—

Here, 7{5’3 = {(b, u) € SxU: ((5, u); (b,u) — (e,w)) = 0} is a hyperplane orthogonal to (l_), u) and
passing through (e, w). By the hypothesis and (4.4), it follows that

4.4)

1B, (B, 7))

H((e,w) + 15,7 > y ks
(b, w|
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or (H(e,w) =0, Y(e,w) € (SXU)"),

Hi(ew) + 1B 7 = Hiew) _(B.; G ,i)

vy — 4.5
I b, wl
By taking the limit for k — oo in (4.5) (using a classical result of functional analysis), we obtain
. H((e,w) + A(b,w)) — H(e,w) = _
lim Z Y, wll, (4.6)
A-0 /l
where A > 0. The inequality (4.6) can be formulated as
OH OH_  — _ - _
(= =) (b,w)) = Vb, w|. 4.7)
oe  ow

Next, by the hypothesis and (4.7), it yields

0F oOF

<)/(b’ U) - (g’ E

— _ OH 6H -
) (0. 1) = (Y (b v): (B.D) ~ (- =) (b. )
e ow
<HB, W - ylIB, ) =0

for any (b,v) € B, and

YBC (% %) + [Tsxu(e,w) N Nesxaay (e, w)]°, Y(e,w) € (SXU)".

This completes the proof. O

Remark 4.1. (i) The weak sharpness property of the solution set for the variational problem

min  H(b, u)
(b,u)eSxU

is described by the inequality (recall that H(e,w) = 0, Y(e,w) € (S X U)")
Hb,u) — HOb ,u*) > yd(b,u), S XU)"), Yb,u)e SXU, (b*,u") e (SxU)
formulated in Theorem 4.1.
(i) If
H(b,u) > vd(b,u),(SxU)), Yb,u)eSxXU

is fulfilled, the function H provides an error bound for the distance from a feasible point and the
solution set (S X U)*. The supremum of the positive constant vy is called the modulus of sharpness for
the solution set (S x U)".

The second characterization result of weak sharpness for (S x U)" implies the notion of a minimum
principle sufficiency property, introduced by Ferris and Mangasarian [6].

Definition 4.2. The controlled variational-type inequality (CMVIP) satisfies the minimum principle
sufficiency property if A(b*,u”) = (S x U)" for any (b*,u") € (S X U)".
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Lemma 4.2. The following inclusion arg( 11)1%)(1{((17, u); (e,w)) C (S X U)" is fulfilled for any (b,u) €
e,W)ESX

m{ M P&w@ﬁﬁWM&uﬂﬁmr]iﬂ
(b.)e(SxUY*

Proof. Consider (e,w) € (S X U) \ (S x U)*. By using the convexity property of (S x U)*, it follows
that
Proj syqry (6, W) = (8, W) € (S X U)",

and (see [7]) we get (e, w) — (&, W) € Tsxqu(e, W) N Nisxar-(e, w). There exists @ > 0 such that

(D, u) + (v, )3 (e,w) — (,W)) <0, VY(v,u) € aB,

and any (b, u) € int[ ﬂ [TSXW(Z_), u) N Nsxan (E, ﬁ)]o], or, equivalently,
(b,m)e(SxU)*

(b, u); (e, w)) < (b, u); (&, W)) = (v, p); (e,w) = (&,W)), V(v,u) € aB,

and any (b, u) € int[ () [Tsxu® i) 0 N @, ﬁ)]°]. For
(b,)e(SxU)*
(ea W) - (éa W)

0= =@ m <

the previous inequality becomes

(b, u); (e, w)) < (D, w); (&, w)) —a || (e,w) — (&, W) || (4.8)

for (b,u) € int[ ﬂ [T SX«H(E, unN N(Sxfu)*(l_), ﬁ)]o]. By (4.8), we conclude that
(b,m)e(SxU)*

(e,w) ¢ arg max ((b,u);(e,w)),
(e,w)eSXU

that is,
arg maxw((b, u); (e,w)) C(SXU)

(e,w)eSX

for (b, u) € int[ ﬂ [TSXy(E, u) N Nisxa: (E, ﬁ)]o]. The proof is complete. O
(bm)e(SxU)*

Theorem 4.2. Consider that the set of solutions (S X U)* for (CMVIP) is weakly sharp and ¥ (b, u) is
convex on S X U. Then, (CMVIP) satisfies the minimum principle sufficiency property.

Proof. By using Definition 4.2, if A(b*,u") = (8 X U)" for any (b*,u”") € (S X U)*, then (CMVIP)
satisfies the minimum principle sufficiency property. Since (S X U)* is weakly sharp, we obtain

€ int[ m [TSX'L{(Ea u) N Nisxuy (b, ﬁ)]o]

(b, )e(SxU)*
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for any (b*,u”) € (S X U)" and, by Lemma 4.2, it follows that

arg max ((— 7-; 6—7:); (e,w)) C(SEXU) = A", u") c(SxU)". 4.9)
(eweSxU — Ob*  ou

Further, let (s,v) € (S X U)*. For (b*,u”) € (S x U)*, by Proposition 3.1, we get
f [fo (6,67, b, u™) (s = D)+ fp,, (t,0", b, u”) Dy (s — b™)] dv
K
+f [f. (0", b, u")(v—u")]dv=0. (4.10)
K

By (4.10), for any (e, w) € S X U, it yields

f[fb(t,b*, bru")(s—e)+ fp, (t,0",b,,u") Dy(s —e)| dv
K

+f [f, (6,0, b, u™) (v —w)|dv

K

- f [fo (6,0, b,,u”) (D" — ) + fp, (1,0, b}, u”) Do (D" — €)] dv
K

+f [f. (&b, b, u”) (" —w)]dv. 4.11)
K

Since (b*, u") € (S X U)*, the relation (4.11) provides

f [fo (6, 0°, b, u") (s —e) + fp, (1,07, b}, u") Do(s — €)] dv
K

"‘f [f (6,67, b5, u) (v =w)]dv <0, VY(e,w)eSxXU,
K
that is, (s,v) € A(b", u") and, consequently,
(SxU c A", u"). (4.12)

The proof is completed by considering (4.9) and (4.12). O

Theorem 4.3. Let H (b, u) be differentiable on (SXU)" and F (b, u) be convex on SXU. Also, suppose
the implication

OH 6H OH 6H oF oF
<(6b* — ) (v ) = <(— ) v,p) = (619*’?) (§s 5V)
) . F oF
is true for any (b*,u*) € (SXU)", (v,u) € SX(L[and(s v) € Q(b*,u*), an d(éb* 5 *) is constant on

(S XU)". Then, (CMVIP) satisfies the minimum principle sufficiency property if and only if (S X U)*
is weakly sharp.
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Proof. Let (CMVIP) satisfy the minimum principle sufficiency property. Therefore, for any (b*, u") €
(S X U)*, we have A(b*, u*) = (S X U)*. For (b*,u*) € (Sx U)* and (b, u) € S X U, we obtain

wmmzfuwwi;mw—m+m@wamﬂMbbn
K

+ f L (0B ) (= )] v, 4.13)
K

gb?: 5?7) (b,w)), (b,u) € SxU, we have A(b*, u*) as the

solution set for o I?{sn(u P(b,u). For other related 1nvest1gat10ns we refer the readers to Mangasarian
U)eESX

and Meyer [12]. In accordance with Remark 4.1, we have

In the following, considering P(b, u) = {(

P(b,u) — P(b, it) > yd((b, u), A(b*,u")), Y(b,u) € SxU, (b,it) € Ab*,u"),

or,

<(§ZZ W) (b,u) — (b*,u*)) > yd((b,u), (S X U)"), Y(bu)e SxU,

or, equivalently,

f Ui (65" t) (b = B) + fo, (65 ") Dol — b)) v
K

+ f [fu 0,0, b, u") (u—u)|dv > yd(b,u),( S X U)"), VYb,u)eSxU. (4.14)
K

By considering Theorem 4.1 and (4.13) and (4.14), we obtain that (S X U)" is weakly sharp.
=" This implication is an immediate consequence of Theorem 4.2. O

Now, let us illustrate the effectiveness of the main results established in this section with the
following application.

Application 4.1. Denote by K a square fixed by the diagonally opposite points ¢; = (0,0) and #, = (2,2)
in R2. Also, let

SXU={(b,u)|b: K — [-1,4],b = piecewise smooth function;

u: K — R, u = piecewise continuous function},

and let it be equipped with the standard Euclidean inner product and the induced norm

S — b
Sx(L[:{(b,u)eSx(Lllg—— 0

P = o =, 0<b() <1,

b(0,0) = b(2,2) = 0},

and the real-valued continuously differentiable function
f:J'RELR)XR = R, f(t,b,by,u) = b*> + 4b.
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Now, let us consider the following bi-dimensional controlled variational inequality problem:

(y,w) € S x U such that

0 0
(BCVIP) L{£ (t,y’yﬁaw) (b —)7) + a_lj; (l’y’yﬁ,W)Dﬁ(b —)’)

0
+a—f (t,y, 9, w) (u—w)ldt'dr* > 0
u

for any (b,u) e S X U.
By direct computation, the dual gap-type multiple integral functional

H:SxU - R, W(b,u):fh(t,b,bﬁ,u)dtldtz

K

is as follows

0 0
H(b,u) = (ngg(xﬂ j}; {£ &y, y9,w)(b—-y)+ a—;; (t,y,y9,w) Dy(b —y)

0
+a—f (t,y, yg, w) (u — w)}dr'dr*
u

4bdt' dr?, -1<b<?2

= max f Qy +4)(b — y)dt'dr* = K 2
K f b+2y +22) di'd*, 2<b<4.
K

(y,w)eSXU
As well, the mutiple integral functional

F:SXU >R, T(b,u):ff(t,b,bﬂ,u)dtldtz
K

— 2 1 4.2
_fK(b +4b)dtdl,

is convex on S X U.
As it can easily be seen, we obtain

SxU ={y,w)|y:K—-[0,1],y(t) =0; w: K > R,w() =0, YVt € K},

AD u") = (XU, Yb",u") e (SXU)'; 65T (b,u) =2b+4.

Find

Obviously, the dual gap-type multiple integral functional H (b, u) is differentiable on (S X U)" and,

for any (b, u) € S X U, there exists y > 0 such that

H(b,u) = f 4bdt' dr* > yd((b, u), (S X U)").
K

Following the same steps as in Theorem 4.1, it results that (S X U)" is weakly sharp with the positive
modulus y. Also, by applying Theorems 4.2 and 4.3, it follows that (BCVIP) satisfies the minimum

principle sufficiency property.
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5. Conclusions

In this paper, we have extended the well-known weak sharp solutions for variational inequalities
to a controlled variational-type inequality governed by convex multiple integral functionals.
Simultaneously, by using the minimum principle sufficiency property, some equivalent conditions on
weak sharpness associated with solutions of the considered inequality have been obtained.
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