Research article

Stationary distribution of a stochastic two-species Schoener's competitive system with regime switching

  • Received: 10 August 2022 Revised: 28 September 2022 Accepted: 09 October 2022 Published: 21 October 2022
  • MSC : 60H10, 60H30, 92D25

  • This paper studies a stochastic two-species Schoener's competitive model with regime switching. We first investigate the sufficient conditions for the existence of a unique stationary distribution of the model. Then we prove that the convergence of transition probability to the stationary distribution is exponentially under some mild assumptions. Moreover, we also introduce several numerical simulations to validate the model against the biological significance.

    Citation: Hong Qiu, Yunzhe Liu, Yanzhang Huo, Rumei Hou, Wenhua Zheng. Stationary distribution of a stochastic two-species Schoener's competitive system with regime switching[J]. AIMS Mathematics, 2023, 8(1): 1509-1529. doi: 10.3934/math.2023076

    Related Papers:

  • This paper studies a stochastic two-species Schoener's competitive model with regime switching. We first investigate the sufficient conditions for the existence of a unique stationary distribution of the model. Then we prove that the convergence of transition probability to the stationary distribution is exponentially under some mild assumptions. Moreover, we also introduce several numerical simulations to validate the model against the biological significance.



    加载中


    [1] W. Ning, Z. Liu, L. Wang, R. Tan, Analysis of a stochastic competitive model with saturation effect and distributed delay, Methodol. Comput. Appl., 23 (2021), 1435–1459. https://doi.org/10.1007/s11009-020-09824-8 doi: 10.1007/s11009-020-09824-8
    [2] Y. Gao, S. Tian, Dynamics of a stochastic three-species competitive model with Lévy jumps, Int. J. Biomath., 11 (2018), 1850062. https://doi.org/10.1142/S1793524518500626 doi: 10.1142/S1793524518500626
    [3] H. Qiu, W. Deng, Optimal harvesting of a stochastic delay competitive Lotka-Volterra model with Lévy jumps, Appl. Math. Comput., 317 (2018), 210–222. https://doi.org/10.1016/j.amc.2017.08.044 doi: 10.1016/j.amc.2017.08.044
    [4] D. Jiang, Q. Zhang, T. Hayat, A. Alsaedi, Periodic solution for a stochastic non-autonomous competitive Lotka-Volterra model in a polluted environment, Physica A, 471 (2017), 276–287. https://doi.org/10.1016/j.physa.2016.12.008 doi: 10.1016/j.physa.2016.12.008
    [5] J. Yu, M. Liu, Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps, Physica A, 482 (2017), 14–28. https://doi.org/10.1016/j.physa.2017.04.067 doi: 10.1016/j.physa.2017.04.067
    [6] M. Liu, Dynamics of a stochastic regime-switching predator-prey model with modified Leslie-Gower Holling-type II schemes and prey harvesting, Nonlinear Dyn., 96 (2019), 417–442. https://doi.org/10.1007/s11071-019-04797-x doi: 10.1007/s11071-019-04797-x
    [7] Z. Wang, M. Deng, M. Liu, Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching, Chao Soliton. Fract., 142 (2021), 110462. https://doi.org/10.1016/j.chaos.2020.110462 doi: 10.1016/j.chaos.2020.110462
    [8] C. Ji, X. Yang, Y. Li, Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays, J. Dyn. Diff. Equat., 33 (2021), 135–176. https://doi.org/10.1007/s10884-020-09850-7 doi: 10.1007/s10884-020-09850-7
    [9] F. A. Rihan, H. J. Alsakaji, Persistence and extinction for stochastic delay differential model of prey predator system with hunting cooperation in predators, Adv. Differ. Equ., 2020 (2020), 124. https://doi.org/10.1186/s13662-020-02579-z doi: 10.1186/s13662-020-02579-z
    [10] H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800. https://doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
    [11] W. Gan, Z. Lin, The asympotic periodicity in a Schoener's competitive model, Appl. Math. Model., 36 (2012), 989–996. https://doi.org/10.1016/j.apm.2011.07.064 doi: 10.1016/j.apm.2011.07.064
    [12] D. O. Logofet, Matrices an groups stability problems in mathematical ecology, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9781351074322
    [13] J. Lu, K. Wang, M. Liu, dynamical properties of a stochastic two-species echoener's competitive model, Int. J. Biomath., 5 (2012), 1250035. https://doi.org/10.1142/S1793524511001751 doi: 10.1142/S1793524511001751
    [14] C. Li, Z. Guo, Z. Zhang, Dynamics of almost periodic Schoener's competition model with time delays and impulses, SpringerPlus, 5 (2016), 447. https://doi.org/10.1186/s40064-016-2068-x doi: 10.1186/s40064-016-2068-x
    [15] W. Gan, Z. Lin, The asymptotic periodicity in a Schoener's competitive model, Appl. Math. Model., 36 (2012), 989–996. https://doi.org/10.1016/j.apm.2011.07.064 doi: 10.1016/j.apm.2011.07.064
    [16] Q. Liu, R. Xu, W. Wang, Global asymptotic stability of Schoener's competitive model with delays, J. Biomath., 21 (2006), 147–152.
    [17] L. Wu, F. Chen, Z. Li, Permanence and global attractivity of a discrete Schoener's competition model with delays, Math. Comput. Model., 49 (2009), 1607–1617. https://doi.org/10.1016/j.mcm.2008.06.004 doi: 10.1016/j.mcm.2008.06.004
    [18] P. Zhu, W. Gan, Z. Lin, Coexistence of two species in a strongly coupled Schoener's competitive model, Acta Appl. Math., 110 (2010), 469–476. https://doi.org/10.1007/s10440-009-9433-5 doi: 10.1007/s10440-009-9433-5
    [19] H. Nguyen, V. Sam, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise, J. Math. Anal. Appl., 324 (2006), 82–97. https://doi.org/10.1016/j.jmaa.2005.11.064 doi: 10.1016/j.jmaa.2005.11.064
    [20] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [21] X. Mao, S. Sabanis, E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141–156. https://doi.org/10.1016/S0022-247X(03)00539-0 doi: 10.1016/S0022-247X(03)00539-0
    [22] X. Mao, C. Yuan, Stochastic differential equations with Markovian switching, London: Imperial College Press, 2006.
    [23] H. Wang, M. Liu, Stationary distribution of a stochastic hybrid phytoplankton-zooplankton model with toxin-producing phytoplankton, Appl. Math. Lett., 101 (2020), 106077. https://doi.org/10.1016/j.aml.2019.106077 doi: 10.1016/j.aml.2019.106077
    [24] M. Liu, C. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comput., 373 (2020), 125040. https://doi.org/10.1016/j.amc.2020.125040 doi: 10.1016/j.amc.2020.125040
    [25] D. Li, M. Liu, Invariant measure of a stochastic food-limited population model with regime switching, Math. Comput. Simulat., 178 (2020), 16–26. https://doi.org/10.1016/j.matcom.2020.06.003 doi: 10.1016/j.matcom.2020.06.003
    [26] W. U. Blanckenhorn, Different growth responses to temperature and resource limitation in three fly species with similar life histories, Evol. Ecol., 13 (1999), 395–409. https://doi.org/10.1023/a:1006741222586 doi: 10.1023/a:1006741222586
    [27] A. Breeuwer, M. Heijmans, B. Robroek, F. Berendse, The effect of temperature on growth and competition between Sphagnum species, Oecologia, 156 (2008), 155–167. https://doi.org/10.1007/s00442-008-0963-8 doi: 10.1007/s00442-008-0963-8
    [28] Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
    [29] X. Li, A. Gray, D. Jiang, X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11–28. https://doi.org/10.1016/j.jmaa.2010.10.053 doi: 10.1016/j.jmaa.2010.10.053
    [30] J. Lv, K. Wang, A stochastic ratio-dependent predator-prey model under regime switching, J. Inequal. Appl., 2011 (2011), 14. https://doi.org/10.1186/1029-242X-2011-14 doi: 10.1186/1029-242X-2011-14
    [31] A. Settati, A. Lahrouz, On stochastic Gilpin-Ayala population model with Markovian switching, Biosystems, 130 (2015), 17–27. https://doi.org/10.1016/j.biosystems.2015.01.004 doi: 10.1016/j.biosystems.2015.01.004
    [32] C. Xu, S. Yuan, T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci., 59 (2018), 359–374. https://doi.org/10.1016/j.cnsns.2017.11.028 doi: 10.1016/j.cnsns.2017.11.028
    [33] R. Wang, X. Li, D. S. Mukama, On stochastic multi-group Lotka-Volterra ecosystems with regime switching, Discrete Cont. Dyn. B, 22 (2017), 3499–3528. https://doi.org/10.3934/dcdsb.2017177 doi: 10.3934/dcdsb.2017177
    [34] A. Hening, D. H. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28 (2018), 1893–1942. https://doi.org/10.1214/17-aap1347 doi: 10.1214/17-aap1347
    [35] S. Meyn, R. Tweedie, Markov chains and stochastic stability, London: Springer-Verlag, 1993. https://doi.org/10.1017/cbo9780511626630
    [36] D. H. Nguyen, G. Yin, C. Zhu, Certain properties related to well posedness of switching diffusions, Stoch. Proc. Appl., 127 (2017), 3135–3158. https://doi.org/10.1016/j.spa.2017.02.004 doi: 10.1016/j.spa.2017.02.004
    [37] C. Zhu, G. Yin, On strong Feller, recurrence, and weak stabilization of regime-switching diffusions, Siam J. Control Optim., 48 (2009), 2003–2031. https://doi.org/10.1137/080712532 doi: 10.1137/080712532
    [38] E. Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge University Press, 1984. https://doi.org/10.1017/cbo9780511526237
    [39] G. Yin, C. Zhu, Hybrid switching diffusions: Properties and applications, Springer Science & Business Media, 2010.
    [40] P. Tuominen, R. L. Tweedie, Exponential decay and ergodicity of general Markov processes and their discrete skeletons, Adv. Appl. Probab., 11 (1979), 784–803. https://doi.org/10.1017/s0001867800033036 doi: 10.1017/s0001867800033036
    [41] W. E. Banks, F. d'Errico, A. T. Peterson, M. Kageyama, A. Sima, M. Sánchez-Goñi, Neanderthal extinction by competitive exclusion, Plos One, 3 (2008), e3972. https://doi.org/10.1371/journal.pone.0003972 doi: 10.1371/journal.pone.0003972
    [42] S. Sarwardi, P. Mandal, S. Ray, Analysis of a competitive prey-predator system with a prey refuge, Biosystems, 110 (2012), 133–148. https://doi.org/10.1016/j.biosystems.2012.08.002 doi: 10.1016/j.biosystems.2012.08.002
    [43] M. Roy, S. Mandal, S. Ray, Detrital ontogenic model including decomposer diversity, Ecol. Model., 215 (2008), 200–206. https://doi.org/10.1016/j.ecolmodel.2008.02.020 doi: 10.1016/j.ecolmodel.2008.02.020
    [44] S. Ray, M. Straškraba, The impact of detritivorous fishes on the mangrove estuarine system, Ecol. Model., 140 (2001), 207–218. https://doi.org/10.1016/s0304-3800(01)00321-0 doi: 10.1016/s0304-3800(01)00321-0
    [45] X. Zou, K. Wang, Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybri., 13 (2014), 32–44. https://doi.org/10.1016/j.nahs.2014.01.001 doi: 10.1016/j.nahs.2014.01.001
    [46] L. Bai, J. Li, K. Zhang, W. Zhao, Analysis of a stochastic ratio-dependent predator-prey model driven by Lévy noise, Appl. Math. Comput., 233 (2014), 480–493. https://doi.org/10.1016/j.amc.2013.12.187 doi: 10.1016/j.amc.2013.12.187
    [47] J. Bao, X. Mao, G. Yin, C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal. Theor., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1315) PDF downloads(84) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog