By combining the results of Wardowski's cyclic contraction operators and admissible multi-valued mappings, the motif of $ \eta $-cyclic $ \left(\alpha _{\ast }, \beta _{\ast }\right) $-admissible type $ \digamma $-contraction multivalued mappings are presented. Moreover, some novel fixed point theorems for such mappings are proved in the context of $ M_{b} $-metric spaces. Also, two examples are given to clarify and strengthen our theoretical study. Finally, the existence of a solution of a pair of ordinary differential equations is discussed as an application.
Citation: Mustafa Mudhesh, Hasanen A. Hammad, Eskandar Ameer, Muhammad Arshad, Fahd Jarad. Novel results on fixed-point methodologies for hybrid contraction mappings in $ M_{b} $-metric spaces with an application[J]. AIMS Mathematics, 2023, 8(1): 1530-1549. doi: 10.3934/math.2023077
By combining the results of Wardowski's cyclic contraction operators and admissible multi-valued mappings, the motif of $ \eta $-cyclic $ \left(\alpha _{\ast }, \beta _{\ast }\right) $-admissible type $ \digamma $-contraction multivalued mappings are presented. Moreover, some novel fixed point theorems for such mappings are proved in the context of $ M_{b} $-metric spaces. Also, two examples are given to clarify and strengthen our theoretical study. Finally, the existence of a solution of a pair of ordinary differential equations is discussed as an application.
[1] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[2] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[3] | Z. Ma, L. Jiang, H. Sun, $C^*$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory A., 206 (2014), 1–11. https://doi.org/10.1186/s13663-015-0471-6 doi: 10.1186/s13663-015-0471-6 |
[4] | M. Asadi, E. Karapınar, P. Salimi, New extension of $p$-metric spaces with some fixed-point results on $M$-metric spaces, J. Ineq. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[5] | I. Altun, H. Sahin, D. Turkoglu, Fixed point results for multivalued mappings of Feng-Liu type on $M$-metric spaces, J. Nonlin. Funct. Anal., 2018 (2018), 1–8. https://doi.org/10.22436/jnsa.009.06.36 doi: 10.22436/jnsa.009.06.36 |
[6] | H. Sahin, I. Altun, D. Turkoglu, Two fixed point results for multivalued $F$-contractions on $M$-metric spaces, RACSAM, 113 (2019), 1839–1849. https://doi.org/10.1007/s13398-018-0585-x doi: 10.1007/s13398-018-0585-x |
[7] | P. R. Patle, D. K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan type set valued mappings in $M$-metric spaces and an application, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7040373 doi: 10.3390/math7040373 |
[8] | H. Monfared, M. Azhini, M. Asadi, Fixed point results on $M$-metric spaces, J. Math. Anal., 7 (2016), 85–101. |
[9] | H. Monfared, M. Azhini, M. Asadi, $C$-class and $F\left(\psi, \varphi \right) $-contractions on $M$-metric spaces, J. Nonlin. Anal. Appl., 8 (2017), 209–224. |
[10] | N. Mlaiki, $F_{m}$-contractive and $F_{m}$-expanding mappings in $M$-metric spaces, J. Math. Comput. Sci., 18 (2018), 262–271. https://doi.org/10.22436/jmcs.018.03.02 doi: 10.22436/jmcs.018.03.02 |
[11] | N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed point theorem in $M_{b}$-metric spaces, J. Math. Anal., 7 (2016), 1–9. |
[12] | P. Hu, F. Gu, Some fixed point theorems of $\lambda$-contractive mappings in Menger $PSM$-spaces, J. Nonlin. Funct. Anal., 33 (2020), 1–12. https://doi.org/10.23952/jnfa.2020.33 doi: 10.23952/jnfa.2020.33 |
[13] | M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.1090/S0002-9939-1973-0334176-5 doi: 10.1090/S0002-9939-1973-0334176-5 |
[14] | N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. https://doi.org/10.1016/0022-247X(89)90214-X doi: 10.1016/0022-247X(89)90214-X |
[15] | O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory A., 190 (2014), 1–12. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190 |
[16] | M. Arshad, M. Mudhesh, A. Hussain, E. Ameer, Recent thought of $\alpha_{\ast}$-geraghty $F$-contraction with application, J. Math. Ext., 16 (2021), 1–28. |
[17] | S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $\left(\alpha, \beta \right) $-$\left(\psi, \phi \right) $-contractive mappings, Filomat, 28 (2014), 635–647. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190 |
[18] | E. Ameer, H. Huang, M. Nazam, M. Arshad, Fixed point theorems for multivalued $\gamma $-$FG$-contractions with $\left(\alpha_{\ast }, \beta _{\ast }\right) $-admissible mappings in partial $b$-metric spaces and application, U.P.B. Sci. Bull., S. A, 81 (2019), 97–108. |
[19] | S. K. Padhan, GVV. J. Rao, A. Al-Rawashdeh, H. K. Nashine, R. P. Agarwal, Existence of fixed point for $\gamma $-$FG$-contractive condition via cyclic $\left(\alpha, \beta \right) $-admissible mappings in $b$-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 5495–5508. https://doi.org/10.22436/jnsa.010.10.31 doi: 10.22436/jnsa.010.10.31 |
[20] | H. Isik, B. Samet, C. Vetro, Cyclic admissible contraction and applications to functional equations in dynamic programming, Fixed Point Theory A., 2015 (2015), 1–19. https://doi.org/10.1186/s13663-015-0410-6 doi: 10.1186/s13663-015-0410-6 |
[21] | M. S. Sezen, Cyclic $\left(\alpha, \beta \right) $-admissible mappings in modular spaces and applications to integral equations, Universal J. Math. Appl., 2 (2019), 85–93. |
[22] | H. A. Hammad, P. Agarwal, L. G. J. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2021), 2012. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012 |
[23] | H. A. Hammad, H. Aydi, M. D. la Sen, Analytical solution for differential and nonlinear integral equations via $F_{\varpi _{e}}$-Suzuki contractions in modified $\varpi _{e}$-metric-like spaces, J. Func. Space., 2021 (2021), 6128586. |
[24] | H. A. Hammad, H. Aydi, M. D. la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[25] | H. A. Hammad, M. D. la Sen, Tripled fixed point techniques for solving system of tripled-fractional differential equations, AIMS Math., 6 (2021), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141 |
[26] | R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued g-metric spaces, Inform. Sci. Lett., 8 (2019), 111–119. https://doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305 |
[27] | A. Hammad, M. D. la Sen, Fixed-point results for a generalized almost $(s, q)$-Jaggi $F$-contraction-type on $b$-metric-like spaces, Mathematics, 8 (2020), 63. https://doi.org/10.3390/math8010063 doi: 10.3390/math8010063 |
[28] | S. Anwar, M. Nazam, H. H. Al Sulami, A. Hussain, K. Javed, M. Arshad, Existence fixed-point theorems in the partial $b$-metric spaces and an application to the boundary value problem, AIMS Math., 7 (2022), 8188–8205. https://doi.org/10.3934/math.2022456 doi: 10.3934/math.2022456 |
[29] | B. Rodjanadid, J. Tanthanuch, Some fixed point results on $M_{b}$-metric space via simulation functions, Thai J. Math., 18 (2020), 113–125. |
[30] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 1–6. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[31] | A. Felhi, Some fixed point results for multi-valued contractive mappings in partial b-metric spaces, J. Adv. Math. Stud., 9 (2016), 208–225. |
[32] | I. Altun, G. Minak, H. Daǧ, Multivalued $F$-contractions on complete metric spaces, J. Nonlin. Convex A., 16 (2015), 659–666. https://doi.org/10.2298/FIL1602441A doi: 10.2298/FIL1602441A |
[33] | M. Delfani, A. Farajzadeh, C. F. Wen, Some fixed point theorems of generalized $F_{t}$-contraction mappings in $b$-metric spaces, J. Nonlin. Var. Anal., 5 (2021), 615–625. |