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1. Introduction

Due to resource constraints, competition between several species is a common phenomenon in the
natural environment, and the random disturbance of the environment has an effect on the growth of
the population. In recent years, more and more scholars have done research on stochastic competitive
populations, and some corresponding conclusions have been drawn (see [1–4]). The permanence and
stationary distribution of the system have become significant topics to some scholars in mathematical
ecology in recent years (see [5–10]). For example, in 2017, Yu and Liu ( [5]) studied stationary
distribution and the ergodicity of a stochastic food-chain model with Lévy jumps. In 2019, Liu ( [6])
analyzed the dynamics of a stochastic regime switching predator-prey model with modified
Leslie-Gower Holling-type II schemes and prey harvesting. In 2020, Wang et al. ( [7]) considered the
stationary distribution of a stochastic ratio-dependent predator-prey system with regime switching. Ji
et al. studied permanence, extinction and periodicity for a stochastic competitive model with infinite
distributed delays ( [8]). In Reference [9], Rihan and Alsakaji studied the dynamics of a stochastic
delay differential model for a prey-predator system with hunting cooperation in predators. For two
species Lotka-Volterra competitive models, many results have been obtained in terms of the
permanence and global stability of the corresponding systems (see [11]). Many scholars believe that

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023076


1510

the results are not always satisfactory for individual species (see [12]). The reason is that linearization
causes many important elements to be ignored; hence, we need to introduce more complex and
practical models (see [13]). In 1974, Schoener [14] proposed and investigated a competitive model, as
follows:  dx(t) = x(t)

(
−µ1ν1 − µ1ω11x(t) − µ1ω12y(t) +

µ1ξ1
x(t)+ε1

)
dt,

dy(t) = y(t)
(
−µ2ν2 − µ2ω21x(t) − µ2ω22y(t) +

µ2ξ2
y(t)+ε2

)
dt,

(1.1)

where x(t) and y(t) are the size of each species at time t, µ1 and µ2 stand for the spatial densities of each
species and µiνi(i = 1, 2) is its death rate. The coefficients µ1ω11 and µ2ω22 stand for the intra-specific
competition rates and µ1ω12 and µ2ω21 stand for the inter-specific competition rates. In this article, the
parameters µi, νi, ωi j, ξi and εi(i, j = 1, 2) are positive constants. Now, simplifying the model (1.1),
we obtain the following model: dx(t) = x(t)

(
−α1 − β1x(t) − γ1y(t) +

ζ1
x(t)+δ1

)
dt,

dy(t) = y(t)
(
−α2 − β2x(t) − γ2y(t) +

ζ2
y(t)+δ2

)
dt,

(1.2)

where x(t) and y(t) are the size of each species at time t, and αi, βi, γi, ζi and δi(i = 1, 2) are also
positive constants with their nature-based biological meanings. There are many scholars who have
studied the Schoener model, and they reached found many important and excellent
conclusions (see [14–18]). From [16], Liu et al. studied the global asymptotic stability of Schoener’s
competitive model with delays. In Reference [18], Zhu et al. investigated the coexistence of two
species in a strongly coupled Schoener’s competitive model.

In fact, population systems are often affected by environmental noise (i.e., parameters are not fixed
constants in the population model). In the context of these factors, a number of authors have devoted
their efforts to random population systems (see [19–25]). Nguyen and Sam ( [19]) investigated the
dynamics of a stochastic Lotka-Volterra model perturbed by white noise. Mao et al. obtained a
significant conclusion: Even a small amount of noise can have an effect on explosions in population
dynamics in Reference [20]. Wang and Liu ( [23]) studied the stationary distribution of a stochastic
hybrid phytoplankton-zooplankton model with toxin-producing phytoplankton. Considering the
influence of the random fluctuating environment, random disturbances should be introduced into
Model (1.2) to explore the effects of random disturbances on the model properties. It is assumed that
random interference is white noise, and that it mainly affects growth rates and death rates, so we
obtained the following stochastic model: dx(t) = x(t)

[
σ1Ḃ1(t) − α1 − β1x(t) − γ1y(t) +

ζ1
x(t)+δ1

]
dt,

dy(t) = y(t)
[
σ1Ḃ2(t) − α2 − β2x(t) − γ2y(t) +

ζ2
y(t)+δ2

]
dt,

(1.3)

i.e.,  dx(t) = x(t)
[
−α1 − β1x(t) − γ1y(t) +

ζ1
x(t)+δ1

]
dt + σ1x(t)dB1(t),

dy(t) = y(t)
[
−α2 − β2x(t) − γ2y(t) +

ζ2
y(t)+δ2

]
dt + σ2y(t)dB2(t),

(1.4)

where σ2
i stands for the intensity of the white noise and {B1(t), B2(t)}t>0 is two-dimensional Brownian

motion. Throughout this paper, the Brownian motion was defined on a complete probability
space (Ω, {Ft}t>0, P) with a filtration {Ft}t∈R+

satisfying the usual condition. To the best of our
knowledge, some scholars believe that parameters sometimes switch from one state to another in
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population models due to environmental changes. For example, the growth rates of a certain species
are different at different temperatures (see [26, 27]). However, white noise does not depict these
random disturbances. Therefore, according to the approach in References [28–30], we can describe
the regime switching by using a continuous-time finite-state Markov chain, so we obtained the
following random model with regime switching

dx(t) =x(t)
[
−α1(λ) − β1(λ)x(t) − γ1(λ)y(t) +

ζ1(λ)
x(t) + δ1(λ)

]
dt

+ σ1(λ)x(t)dB1(t),

dy(t) =y(t)
[
−α2(λ) − β2(λ)x(t) − γ2(λ)y(t) +

ζ2(λ)
y(t) + δ2(λ)

]
dt

+ σ2(λ)y(t)dB2(t),

(1.5)

where λ = λ(t) stands for a continuous-time Markov chain with a state space S = {1, 2, 3, · · · , n∗}.
Regarding studying stochastic population models, we know that more and more attention has been
paid to stationary distribution in recent years. Nevertheless, as far as we know, very little work on the
stationary distribution of a stochastic two-species Schoener’s competitive model with regime switching
has been done. At present, the Lyapunov function method is widely being used to study the existence
of a unique stationary distribution (USD) (see [31–33]).

As a matter of fact, in addition to the Lyapunov function method, we can apply the approach in
Reference [34] to investigate the existence of a USD for a stochastic two-species Schoener’s
competitive model with regime switching.

Motivated by these, in this paper, we consider the model (1.5) and establish the sufficient conditions
for the existence and uniqueness of an ergodic stationary distribution. In addition, we introduce some
numerical simulations and realistic scenarios to illustrate the effects of Markovian switching on the
existence of stationary distribution.

2. Main results

Throughout this article, we have the following assumptions:
{λ(t)}t>0 is independent and irreducible; thus, {λ(t)}t>0 is ergodic and has a USD, which is denoted

as π = (π1, π2, · · · , πn∗)T;
{B1(t), B2(t)}t>0 is independent;
min
k∈S
{αi(k), βi(k), γi(k), ζi(k), δi(k), i, j = 1, 2} > 0.

For the sake of convenience, we define some notations.

R2
+ = {m ∈ R2 | mi > 0, i = 1, 2},R

2
+ = {m ∈ R2 | mi > 0, i = 1, 2},

∂R2
+ = R

2
+\R

2
+,

z1( j) =
ζ1( j)
δ1( j)

− α1( j) −
1
2
σ2

1( j), z2( j) =
ζ2( j)
δ2( j)

− α2( j) −
1
2
σ2

2( j),
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Φ1 =
∑
j∈ S

π jz1( j),Φ2 =
∑
j∈ S

π jz2( j).

|| · ||TV represents the total variation norm (see e.g., Reference [35]).
Remark 2.1. z1 and z2 denote the maximum of the “stochastic” growth rate of one species’ population
and the other species’ population in state j without the competitor, respectively. Φ1 and Φ2 denote
the maximum of the long-term “stochastic” growth rate of a species’ population and the other species’
population in the hybrid system (1.5), respectively.

We state two results before giving our main result of this article. According to Theorem 4.2 in
Reference [31] and (5.17) in Reference [29], we have the following lemma:
Lemma 2.1. For the logistic equation

dϕ1(t) = ϕ1(t)
[ζ1(λ)
δ1(λ)

− α1(λ) − β1(λ)ϕ1(t)
]
dt + σ1(λ)ϕ1(t)dB1(t) (2.1)

with the initial data (ϕ1(0), λ(0)) ∈ R+ × S, if Φ1 > 0, then Eq (2.1) has a unique ergodic stationary
distribution (UESD) ηϕ(· × ·) concentrated on R+ × S, and

lim
t→∞

1
t

∫ t

0
β1(λ(s))ϕ1(s)ds =

∑
j∈ S

∫
R+

β1( j)zηϕ(dz, j) = Φ1. (2.2)

According to a similar proof of Theorem 3.1 in Reference [30], we can show the following.
Lemma 2.2. For any initial data (x(0), y(0), λ(0)) = (m, l) ∈ R2

+ × S, Model (1.5) has a unique global
solution (x(t), y(t), λ(t)) ∈ R2

+ × S almost surely (a.s.).
Theorem 2.1. Consider the model (1.5), according to Φ1 > 0, we have the following: (a) if Φ2 > 0,
then (x(t), y(t), λ(t)) has a UESD η(· × ·) concentrated on R2

+ × S and the transition probability of
(x(t), y(t), λ(t)) converges to η(· × ·) exponentially under the norm of total variation. (b) If Φ2 < 0,
lim

t→ +∞
y(t) = 0 a.s., and the transition probability of (x(t), λ(t)) converges to ηϕ(· × ·). Moreover,

lim
t→∞

1
t

∫ t

0
β1(λ(s))x(s)ds =

∑
j∈ S

∫
R+

β1( j)zηϕ(dz, j) = Φ1. (2.3)

Remark 2.2. From a biological point of view, Case (a) means that Model (1.5) is permanent; Case (b)
means that Model (1.5) is collapsed.

Theorem 2.1 reveals that the permanence and collapse of Model (1.5) depend on the sign of Φ2

under the assumption that Φ1 > 0. We can realize that the sign of Φ2 is related to regime switching.
So, we select S = {1, 2} for a better understanding. Therefore, the hybrid system (1.5) has the following
two subsystems: 

dx(t) =x(t)
[
−α1(1) − β1(1)x(t) − γ1(1)y(t) +

ζ1(1)
x(t) + δ1(1)

]
dt

+ σ1(1)x(t)dB1(t),

dy(t) =y(t)
[
−α2(1) − β2(1)x(t) − γ2(1)y(t) +

ζ2(1)
y(t) + δ2(1)

]
dt

+ σ2(1)y(t)dB2(t),

(2.4)
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and 

dx(t) =x(t)
[
−α1(2) − β1(2)x(t) − γ1(2)y(t) +

ζ1(2)
x(t) + δ1(2)

]
dt

+ σ1(2)x(t)dB1(t),

dy(t) =y(t)
[
−α2(2) − β2(2)x(t) − γ2(2)y(t) +

ζ2(2)
y(t) + δ2(2)

]
dt

+ σ2(2)y(t)dB2(t).

(2.5)

In a biological sense, there are two situations:
(A) The above two subsystems have the same behavior with respect to permanence and collapse. In

this case, Theorem 2.1 reveals that the permanent and collapsing behavior of the hybrid system (1.5)
does not change under the behavior of regime switching. For instance, the hybrid system (1.5) is
collapsing with the regime switching under the condition of that both subsystems (2.4) and (2.5) are
collapsing.

(B) The above two subsystems have different behaviors with respect to permanence and collapse.
In other words, one subsystem is collapsed, and the other is permanent. The result is intriguing under
the behavior of regime switching. This is the significance of this paper, i.e., that the permanence and
collapse of the hybrid system (1.5) depends on the symbol Φ2. Hybrid system (1.5) is permanent under
the condition Φ2 > 0, and collapsed under the condition Φ2 < 0.

3. Proofs

Consider the following equation:

dx(t) = f (x(t), λ(t))dt + g(x(t), λ(t))dB(t),

where f : Rn × S → Rn, g : Rn × S → Rn×m and {B(t)}t>0 is the m-dimensional Brownian motion. For
the function H(x, j), define

LH(x, j) = Hx(x, j) f (x, j) +
1
2

trace
[
g T(x, j)Hxx(x, j)g(x, j)

]
+

∑
k∈S

q jkH(x, k),

where (q jk)n∗×n∗ is the generator of λ(t), and

Hx(x, j) =
∂H(x, j)
∂x

, Hxx(x, j) =
∂Hx(x, j)

∂x
.

Let

F1(x, y, j) = −α1( j) − β1( j)x − γ1( j)y +
ζ1( j)

x(t) + δ1( j)
,

F2(x, y, j) = −α2( j) − β2( j)x − γ2( j)y +
ζ2( j)

y(t) + δ2( j)
,

so we obtained the following system:
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{
dx(t) = x(t)F1(x, y, j)dt + σ1(λ)x(t)dB1(t),
dy(t) = y(t)F2(x, y, j)dt + σ2(λ)y(t)dB2(t).

(3.1)

There are constants M̃ > 0 and L > 0 such that

xF1(x, y, j) + yF2(x, y, j) 6 −M̃(1 + x + y)2

for ∀(x, y, j) ∈ R
2
+ × S with

√
x2 + y2 > L. This is such that there exists a constant a ∈ (0, 1) such that

xF1(x, y, j) + yF2(x, y, j)
1 + x + y

−
σ2

1( j)x2 + σ2
2( j)x2

2(1 + x + y)2

+a
[
3 + (α1( j) + β1( j)x + γ1( j)y +

ζ1( j)
x(t) + δ1( j)

)

+(α2( j) + β2( j)x + γ2( j)y +
ζ2( j)

y(t) + δ2( j)
)
]
< 0

for ∀(x, y, j) ∈ R
2
+ × S with

√
x2 + y2 > L. Therefore, for an arbitrary given

b ∈
(
0, min{

a
2
,

a
ˇ2σ2
}
)
,

if
√

x2 + y2 > L, we have

M(x, y, j) :=
xF1(x, y, j) + yF2(x, y, j)

1 + x + y
−
σ2

1x2 + σ2
2x2

2(1 + x + y)2 + a + 2bσ̌2 + 2b

+ b
[
(α1( j) + β1( j)x + γ1( j)y +

ζ1( j)
x(t) + δ1( j)

)

+(α2( j) + β2( j)x + γ2( j)y +
ζ2( j)

y(t) + δ2( j)
)
]
< 0,∀ j ∈ S,

(3.2)

where σ̌2 = max
i=1, 2
{max

j∈ S
σ2

i ( j)}. Thereby,

M1 := sup
(x,y)∈R

2
+\(0,0), j∈ S

{M(x, y, j)} < +∞. (3.3)

For c = (c1, c2) ∈ R2
+ with ‖c‖ :=

√
c2

1 + c2
2 6 b < 1

2 , let H(·) : R2
+ × S→ R+ be defined by

H(x, y, j) =
1 + x + y

xc1yc2
.

We just do a direct calculation and show that H(x, y, j) > 1 for all (x, y, j) ∈ R2
+ × S.

If Φ1 > 0, Φ2 > 0, there is a value c̃ = (c̃1, c̃2) ∈ R2
+ with ‖c̃‖ 6 b such that c̃1Φ1 − c̃2Φ2 > 0. Define

H̃(x, y, j) =
1 + x + y

xc̃1yc̃2
, (x, y) ∈ R2

+, j ∈ S.

Obviously, H̃(x, y, j) is a special example of H(x, y, j).
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Let
q∗ =

1
2

min{c̃1Φ1 − c̃2Φ2, c̃2Φ2}. (3.4)

There exists a sufficiently large constant M∗ ∈ N such that

M∗a > a + M1 + q∗. (3.5)

Lemma 3.1. For (x(0), y(0), λ(0)) = (m, l) ∈ R2
+ × S, the solution (x(t), y(t), λ(t)) is a Makov-Feller

process, and

Em,l[Hb(x(t), y(t), λ(t))] 6 ebM1tHb(m, l). (3.6)

Proof. Notice the following equation:

lim inf
n→+∞

{H(x, y, j)|x > n or
1
x
> n or y > n or

1
y
> n} = +∞. (3.7)

By direct calculation, we have

LHb(x, y, j) = bHb(x, y, j)
[

xF1(x, y, j) + yF2(x, y, j)
1 + x + y

+
b − 1

2
σ2

1( j)x2 + σ2
2( j)y2

(1 + x + y)2

−c1F1(x, y, j) − c2F2(x, y, j) +
c1σ

2
1( j) + c2σ

2
2( j)

2

+
b
2

(
c2

1σ
2
1( j) + c2

2σ
2
2( j)

)
− b

(
c1σ

2
1( j)x + c2σ

2
2( j)y

1 + x + y

)]
.

Applying ‖c‖ 6 b < 1, we can see that

b
2

(
σ2

1( j)x2 + σ2
2( j)y2

(1 + x + y)2

)
6

bσ̌2

2
,

−c1F1(x, y, j) − c2F2(x, y, j) 6 b
[
(α1( j) + β1( j)x + γ1( j)y +

ζ1( j)
x(t) + δ1( j)

)

+(α2( j) + β2( j)x + γ2( j)y +
ζ2( j)

y(t) + δ2( j)
)
]
,

c1σ
2
1( j) + c2σ

2
2( j)

2
+

b
2

(
c2

1σ
2
1( j) + c2

2σ
2
2( j)

)
− b

(
c1σ

2
1( j)x + c2σ

2
2( j)y

1 + x + y

)
6

3bσ̌2

2
.

Therefore, we have

LHb(x, y, j) 6 bHb(x, y, j)
[

xF1(x, y, j) + yF2(x, y, j)
1 + x + y

−
σ2

1( j)x2 + σ2
2( j)y2

2(1 + x + y)2

+ 2bσ̌2 + b
(
α1( j) + β1( j)x + γ1( j)y +

ζ1( j)
x(t) + δ1( j)

+α2( j) + β2( j)x + γ2( j)y +
ζ2( j)

y(t) + δ2( j)

)
.

(3.8)
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According to (3.2) and (3.3), we can obtain that

LHb(x, y, j) 6 bM(x, y, j)Hb(x, y, j) 6 bM1(x, y, j)Hb(x, y, j). (3.9)

According to Theorem 5.1 in Reference [36], (3.7) and (3.9), we obtain that the
solution (x(t), y(t), λ(t)) is a Makov-Feller process. Moreover, we can obtain (3.6) by applying (3.9)
and Gronwall’s inequality.
Lemma 3.2. If Φ1 > 0, then

lim
t→∞

inf
1
t

∫ t

0
x(s)ds >

Φ1

β̌1
, (3.10)

where β̌1 = max
j∈S
{β1( j)}.

Proof. By definition of β̌1, we get

1
t

∫ t

0
x(s)β̌1ds ≥

1
t

∫ t

0
x(s)β1(λ(s))ds.

We take the infimum for the left-hand side, and then we take the limit of both sides:

lim
t→∞

inf
1
t

∫ t

0
x(s)β̌1ds ≥ lim

t→∞

1
t

∫ t

0
x(s)β1(λ(s))ds = Φ1.

So,

lim
t→∞

inf
1
t

∫ t

0
x(s)ds ≥

Φ1

β̌1
.

According to (3.10), there is a t1 such that x(t1) > Φ1
2β̌1

. That is to say, without loss of generality, we
make an assumption; suppose that

x1 >
Φ1

2β̌1
.

Then, define that

N =
{
m = (m1,m2) ∈ R

2
+ | m1 >

Φ1

2β̌1
, ||m|| 6 L

}
.

Lemma 3.3. If Φ1 > 0 and Φ2 > 0, then there is a T ∗ > 0 such that for all t > T ∗ and (x(0), y(0), λ(0)) =

(m̃, l) ∈ (∂R2
+

⋂
N) × S,

1
t

∫ t

0
Em̃,l

[
F3(x(s), y(s), λ(s))

]
ds 6 −q∗, (3.11)

where q∗ is given in (3.4), and

F3(x, y, j) =
xF1(x, y, j) + yF2(x, y, j)

1 + x + y
−
σ2

1( j)x2 + σ2
2( j)y2

2(1 + x + y)2

− c̃1

[
ζ1( j)

x + δ1( j)
−

1
2
σ2

1 − α1( j) − β1( j)x − γ1( j)y
]

− c̃2

[
ζ2( j)

y + δ2( j)
−

1
2
σ2

2 − α2( j) − β2( j)x − γ2( j)y
]
.
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Proof. We argue by contradiction. Suppose that the conclusion of this lemma is not true. Then, we can
find that (xk, yk, k) ∈ (∂R2

+

⋂
N) × S, and that tk > 0 and limk→∞ tk = ∞ such that

1
tk

∫ tk

0
Em̃k ,kF3(x(s), y(s), λ(s))ds > −q∗.

Note that

Π
m̃k ,k
t (dy) :=

1
t

∫ t

0
Pm̃k ,k{(x(s), y(s), λ(s)) ∈ dy}ds.

By Tonelli’s theorem, we get that∫
(∂R2

+

⋂
N)×S

(1 + cT y)bΠ
m̃k ,k
t (dy) =

∫
(∂R2

+

⋂
N)×S

(1 + cT y)b 1
t

∫ t

0
Pm̃k ,k{(x(s), y(s), λ(s)) ∈ dy}ds

=
1
t

∫ t

0
Em̃k ,k(1 + cT (x(s), y(s), λ(s)))bds.

Applying Lemma 3.2 in Reference [34],

sup
k∈N,t≥0

∫
(∂R2

+

⋂
N)×S

(1 + cT y)bΠ
m̃k ,k
t (dy) = sup

k∈N,t≥0

1
t

∫ t

0
Em̃k ,k(1 + cT (x(s), y(s), λ(s)))bds

≤ sup
‖x‖≤L,t≥0

1
t

∫ t

0
(M̃1 + (1 + cT y)be−bas)ds

< ∞,

whereM̃1 = 1
a M1 sup‖x‖≤L (1 + cT x)b.

This implies that the family (Πm̃k ,k
tk )k∈N is tight in R2

+. As a result, (Πm̃k ,k
tk )k∈N has a convergent

subsequence in the weak* topology. Without loss of generality, we can suppose that {Πm̃k ,k
tk : k ∈ N} is

a convergent sequence in the weak* topology. It can be shown that its limit is an invariant probability
measure µ of (x(t), y(t), λ(t)). As a consequence of Lemma 3.4 in Reference [34],

lim
k→∞

1
tk

∫ tk

0
Em̃k ,kF3(x(t), y(t), λ(t))dt =

∫
(∂R2

+

⋂
N)×S

F3(x)µ(dx).

By the definition of q∗, we get

lim
k→∞

1
tk

∫ tk

0
Em̃k ,kF3(x(t), y(t), λ(t))dt ≤ −q∗,

which is a contradiction of the assumptions.
Lemma 3.4. If Φ1 > 0 and Φ2 > 0, then there are two positive constants τ ∈ (0, b

2 ) and Mτ such that,
for ∀t ∈ (T ∗,M∗T ∗) and (x(0), y(0), λ(0)) = (m, l) ∈ (R2

+

⋂
N) × S,

Em,l
[
Hτ(x(t), y(t), λ(t))

]
6 Hτ(m, l)e−

τq∗t
4 + Mτ, (3.12)

where M∗ is given in (3.5) and T ∗ is given in Lemma 3.3.
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Proof. Applying Itô’s formula, we have

ln H(x, y, λ) = ln H(m, l) + r(t),

where

r(t) =

∫ t

0
F3(x(s), y(s), λ(s))ds +

∫ t

0

σ1(λ(s))x(s)
1 + x(s) + y(s)

dB1(s)

+

∫ t

0

σ2(λ(s))y(s)
1 + x(s) + y(s)

dB2(s) −
2∑

i=1

∫ t

0
ciσi(λ(s))dBi(s).

Thereby, we obtain
b ln H(x, y, λ) = b ln H(m, l) + br(t),

Hb(x, y, λ) = ebr(t)Hb(m, l),

i.e.,
Em,l

[
Hb(x, y, λ)

]
= Hb(m, l)Em,l

[
ebr(t)

]
.

In light of (3.6), one can see that

Em,l(ebr(t)) =
Em,l

[
Hb(x, y, λ)

]
Hb(m, l)

6 ebM1t. (3.13)

Define
H1(x, y, j) = (1 + x + y)xc1yc2 , (x, y, j) ∈ R2

+ × S.

Using Itô’s formula again, we obtain

Em,l

[
Hb

1(x, y, λ)
]

Hb
1(m, l)

6 ebM1t. (3.14)

Notice that
H−b(x, y, j) = (1 + x + y)−2bHb

1(x, y, j) 6 Hb
1(x, y, j).

Thus,

Em,l

[
e−br(t)

]
=

Em,l

[
H−b(x, y, λ)

]
H−b(m, l)

6
Em,l

[
Hb

1(x, y, λ)
]

H−b(m, l)

= Em,l

[
Hb

1(x, y, λ)
] (1 + m1 + m2)2b

Hb
1(m, l)

,

so we get

Em,l

[
e−br(t)

]
6 (1 + m1 + m2)2b

Em,l

[
Hb

1(x, y, λ)
]

Hb
1(m, l)

. (3.15)

Substituting (3.14) into (3.15) results in

Em,l

[
e−br(t)

]
6 (1 + m1 + m2)2bebM1t. (3.16)
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Therefore, we have

Em,l

[
ebr(t)

]
+ Em,l

[
e−br(t)

]
6

[
1 + (1 + m1 + m2)2b

]
ebM1t

6
[
1 + (1 + m1 + m2)2b

]
ebM1 M∗T ∗ =: M2.

(3.17)

Applying Lemma 3.5 in Reference [34], we can see that Hm,l,t(τ) := ln Em,l

[
eτr(t)

]
is twice differentiable

on [0, b
2 ), and that

dHm,l,t(τ)
dτ

= Em,l(r(t)), 0 6
d2Hm,l,t(τ)

dτ2 6 M3,∀τ ∈ [0,
b
2

), t ∈ [T ∗,T ∗M∗], (3.18)

where M3 is a constant that depends on M2.

Obviously, F3(x(s), y(s), λ(s)) is a continuous function, so
∫ t

0
F3(x(s), y(s), λ(s))ds is also a

continuous function. By the Feller property ( [22]) of (x(t), y(t), λ(t)), we get that the mapping

(x(s), y(s), s)→ Em,l

∫ t

0

[
F3(x(s), y(s), λ(s))

]
ds

is continuous.
If 0 < dist(m, ∂R2

+) < M4, we have

Em,l

∫ t

0

[
F3(x(s), y(s), λ(s))

]
ds =

∫ t

0
Em,l

[
F3(x(s), y(s), λ(s))

]
ds 6 −q∗t,

where M4 ∈ (0, Φ1
3β̌1

), m ∈ N.
In fact, take a point (m̃, l) ∈ (∂R2

+ ∩ N) × S; for any ε > 0, when (m, l) ∈ (U(m̃,M4) ∩ N) × S,

|

∫ t

0
Em,l

[
F3(x(s), y(s), λ(s))

]
ds −

∫ t

0
Em̃,l

[
F3(x(s), y(s), λ(s))

]
ds |< ε.

So, ∫ t

0
Em,l

[
F3(x(s), y(s), λ(s))

]
ds <

∫ t

0
Em̃,l

[
F3(x(s), y(s), λ(s))

]
ds + ε < −q∗t + ε;

because ε is arbitrary, we have ∫ t

0
Em,l

[
F3(x(s), y(s), λ(s))

]
ds ≤ −q∗t.

Then, we have

Em,l [r(t)] = Em,l

∫ t

0
F3(x(s), y(s), λ(s))ds + Em,l

∫ t

0

σ1(λ(s))x(s)
1 + x(s) + y(s)

dB1(s)

+ Em,l

∫ t

0

σ2(λ(s))y(s)
1 + x(s) + y(s)

dB2(s) − Em,l

2∑
i=1

∫ t

0
ciσi(λ(s))dBi(s)

=

∫ t

0
Em,l

[
F3(x(s), y(s), λ(s))

]
ds + 0 6 −q∗t 6 −

q∗t
2
, t ∈ [T ∗,T ∗M∗].

(3.19)
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For

t ∈ [T ∗,T ∗M∗], 0 < dist(m, ∂R2
+) < M4,m ∈ N, τ ∈ [0,

b
2

),

expanding Hm,l,t(τ) around 0, and according to (3.18) and (3.19), we can know that, for a sufficiently
small τ,

Hm,l,t(τ) 6 −
q∗tτ

2
+ M3τ

2 6 −
q∗tτ

4
.

By (3.13), for such a τ and

0 < dist(m, ∂R2
+) < M4,m ∈ N, t ∈ [T ∗,T ∗M∗],

we have
Em,l

[
Hτ(x(t), y(t), λ(t))

]
Hτ(m, l)

= Em,l

[
eτr(t)

]
= eHm,l,t(τ) 6 e−

q∗τt
4 . (3.20)

If dist(m, ∂R2
+) > M4, for m ∈ N and t ∈ [T ∗,T ∗M∗], applying (3.6), we have

Em,l
[
Hτ(x(t), y(t), λ(t))

]
6 eτM1tHτ(m, l) 6 eτM1T∗M∗ max

m∈N,l∈S
[Hτ(m, l)] := Mτ. (3.21)

Thus (3.20) and (3.21) give the desired conclusion (3.12).
Lemma 3.5. For ∀T > 0, {x(nT ), y(nT ), λ(nT )}n∈N is irreducible and aperiodic. In addition, E × {l} is
petite, where E ∈ R2

+ is an arbitrary compact set and l ∈ S is arbitrary.
Proof. Let W ⊂ R2

+ be an open set with a smooth boundary ∂W such that E ⊂ W and (x(0), y(0), λ(0)) =

(m, l) ∈ E × {l}. For ∀A ∈ E, j ∈ S and t > 0, define

PW
m,l(t, A × { j}) = P

[(
(x(t), y(t), λ(t)) ∈ A × { j}

)⋂(
(x(0), y(0), λ(0)) ∈ E × {l}

)⋂(
(x(s), y(s), λ(s)) ∈ W × S, 0 < s < t

)]
.

We can see that the density function pW
m,l(t,m

′

, j) of PW
m,l is positive by using Lemma 3.8 in

Reference [37], and that it is jointly continuous in t,m and m
′

.
For ∀ m

′

∈ W, we define that

pE(t,m
′

, j) = min
l∈ S

(
inf
m∈E
{pW

m,l(t,m
′

, j)}
)
.

For m
′

< W, define pE(t,m
′

, j) = 0. Let πE is the corresponding measure of pE(T,m
′

, j). Then, we
have

Pm,l(T, A × { j}) > PW
m,l(T, A × { j}) > π

E(A × { j}).

That is to say, E × {l} is petite for {x(nT ), y(nT ), λ(nT )}n∈N . Moreover, if πE(A × { j}) > 0, then

Pm,l(T, A × { j}) > πE(A × { j}) > 0. (3.22)

So, {x(nT ), y(nT ), λ(nT )}n∈N is irreducible.
The above have proved that {x(nT ), y(nT ), λ(nT )}n∈N is irreducible; next, we prove

that {x(nT ), y(nT ), λ(nT )}n∈N is aperiodic. If the argument is not true, Theorem 2.2 in
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Reference [38] (page 21) means that there exist disjoint A0 × {l0}, · · · , An−1 × {ln−1} ⊂ R2
+ × S with

n > 2 such that, for ∀(m, l) ∈ Ai × {li},

Pm,l(T, Ai+1 × {li+1}) = 1, i = 0, · · · , n − 1 (mod n).

Therefore, Pm,l(T, Ai × {li}) = 0. By (3.22), it is a contradiction.
Remark 3.1. For the definitions of aperiodicity, petiteness and irreducibility, one can refer to
References [35, 38].
Proof of Theorem 2.1

(a). Define
µ = inf

{
t > 0|x2(t) + y2(t) 6 L2

}
.

According to (3.8), we can see that

LHτ(x, y, j) 6 τHτ(x, y, j)
[
M(x, y, j) − a − 2b

]
6 τHτ(x, y, j)

[
M(x, y, j) − a

]
= τM(x, y, j)Hτ(x, y, j)
− τaHτ(x, y, j).

Applying (3.2), we have
LHτ(x, y, j) 6 −τaHτ(x, y, j), x2 + y2 > L2.

Then, following form Dynkin’s formula (e.g., [22]), we obtain that

Em,l

[
eτa(µ∧M∗T ∗)Hτ(x(µ ∧ M∗T ∗), y(µ ∧ M∗T ∗), λ(µ ∧ M∗T ∗)

)]
6Hτ(m, l) + Em,l

∫ µ∧M∗T ∗

0
eτas

[
LHτ(x(s), y(s), λ(s)) + τaHτ(x(s), y(s), λ(s))

]
ds

6Hτ(m, l).

Thus,

Hτ(m, l)

>Em,l

[
eτa(µ∧M∗T ∗)Hτ(x(µ ∧ M∗T ∗), y(µ ∧ M∗T ∗), λ(µ ∧ M∗T ∗)

)]
=Em,l

[
1{µ6(M∗−1)T ∗}eτa(µ∧M∗T ∗)Hτ(x(µ ∧ M∗T ∗), y(µ ∧ M∗T ∗), λ(µ ∧ M∗T ∗)

)]
+ Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}eτa(µ∧M∗T ∗)Hτ(x(µ ∧ M∗T ∗), y(µ ∧ M∗T ∗), λ(µ ∧ M∗T ∗)

)]
+ Em,l

[
1{µ>M∗T ∗}eτa(µ∧M∗T ∗)Hτ(x(µ ∧ M∗T ∗), y(µ ∧ M∗T ∗), λ(µ ∧ M∗T ∗)

)]
=Em,l

[
1{µ6(M∗−1)T ∗}eτaµHτ(x(µ), y(µ), λ(µ)

)]
+ Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}eτaµHτ(x(µ), y(µ), λ(µ)

)]
+ Em,l

[
1{µ>M∗T ∗}eτaM∗T ∗Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
>Em,l

[
1{µ6(M∗−1)T ∗}Hτ(x(µ), y(µ), λ(µ)

)]
+ eτa(M∗−1)T ∗Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}Hτ(x(µ), y(µ), λ(µ)

)]
+ eτaM∗T ∗Em,l

[
1{µ>M∗T ∗}Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
.

(3.23)
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According to (3.12) and the Markov property of
(
x(t), y(t), λ(t)

)
, we have

Em,l

[
1{µ6(M∗−1)T ∗}Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
6Em,l

[
1{µ6(M∗−1)T ∗}

(
Mτ + e−

τq∗(M∗T∗−µ)
4 Hτ(x(µ), y(µ), λ(µ)

)) ]
6Mτ + e−

τq∗T∗
4 Em,l

[
1{µ6(M∗−1)T ∗}Hτ(x(µ), y(µ), λ(µ)

)]
.

(3.24)

According to (3.6) and the Markov property of
(
x(t), y(t), λ(t)

)
, we have

Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
6Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}eτM1(M∗T ∗−µ)Hτ(x(µ), y(µ), λ(µ)

)]
6eτM1T ∗Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}Hτ(x(µ), y(µ), λ(µ)

)]
.

(3.25)

Substituting (3.24) and (3.25) into (3.23) results in

Hτ(m, l)

>e
τq∗T∗

4 Em,l

[
1{µ6(M∗−1)T ∗}Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
− Mτe

τq∗T∗
4

+ eτa(M∗−1)T ∗e−τM1T ∗Em,l

[
1{(M∗−1)T ∗<µ<M∗T ∗}Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
+ eτaM∗T ∗Em,l

[
1{µ>M∗T ∗}Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
>eτM5T ∗Em,l

[
Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
− Mτe

τq∗T∗
4 ,

(3.26)

where
M5 = min

{q∗

4
, aM∗, a(M∗ − 1)

}
=

q∗

4
.

Therefore,
Em,l

[
Hτ(x(M∗T ∗), y(M∗T ∗), λ(M∗T ∗)

)]
6 e−

τq∗T∗
4 Hτ(m, l) + Mτ. (3.27)

According to Lemma 3.5, (3.27) and Geometric Ergodic Theorem of Reference [35],
{x(nM∗T ∗), y(nM∗T ∗), λ(nM∗T ∗)}n∈N has positive Harris recurrence, and there exists an invariant
measure η(· × ·) on R2

+ × S such that, for some ε ∈ (0, 1) and Mτ > 0,

‖Pm,l(nM∗T ∗, · × ·) − η(· × ·)‖TV 6 Mτε
n. (3.28)

Since {(x(nM∗T ∗), y(nM∗T ∗), λ(nM∗T ∗))}n∈N is positive Harris recurrent, {x(t), y(t), λ(t)} is positive
recurrent. According to Theorems 4.3 and 4.4 of Reference [39], there is a UESD to {(x(t), y(t), λ(t))}.
According to (3.28), we can see that the UESD is η.

According to the virtue of Theorem 5 of Reference [40], ‖Pm,l(t, · × ·)−η(· × ·)‖TV is decreasing with
respect to t. Therefore, the last conclusion of Theorem 2.1(a) follows from (3.28).

(b). The proof is routine, so we just give the outline. Applying Itô’s formula to the second equation
in Model (1.5), we have

d ln y(t) =
[
− α2(λ) +

ζ2(λ)
y(t) + δ2(λ)

−
1
2
σ2

2(λ) − β2(λ)x(t) − γ2(λ)y(t)
]
dt

+ σ2(λ)dB2(t)

6

[
−α2(λ) +

ζ2(λ)
y(t) + δ2(λ)

−
1
2
σ2

2(λ)
]

dt + σ2(λ)dB2(t).
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That is to say,

ln y(t) 6 ln y(0) +

∫ t

0

[
−α2(λ(s)) +

ζ2(λ(s))
y(s) + δ2(λ(s))

−
1
2
σ2

2(λ(s))
]

ds

+

∫ t

0
σ2(λ(s))dB2(s)

6 ln y(0) +

∫ t

0

[
−α2(λ(s)) +

ζ2(λ(s))
δ2(λ(s))

−
1
2
σ2

2(λ(s))
]

ds

+

∫ t

0
σ2(λ(s))dB2(s).

Therefore, we have

1
t

ln y(t) 6
1
t

ln y(0) +
1
t

∫ t

0
[−z2] ds +

1
t

∫ t

0
σ2(λ(s))dB2(s).

Note that

lim
t→+∞

[
1
t

ln y(0) +
1
t

∫ t

0

(
− z2

)
ds +

1
t

∫ t

0
σ2

(
λ(s)

)
dB2(s)

]
= Φ2 < 0;

hence, lim
t→+∞

y(t) = 0. Therefore the transition probability of (x(t), λ(t)) converges weakly to η(· × ·).
Furthermore, Lemma 2.1 means that (2.3) holds.

4. Example

To see two situations in Section 2 more clearly, let us use several simulations to illustrate the
impacts. Here, we just present the situation (B) by letting the stationary distribution of the Markov
chain change (i.e., let π change). In the following example, the values of the parameters are
hypothesized.

Choose α1( j) = 0.4, β1( j) = 0.3, γ1( j) = 0.4, ζ1 = 0.8, δ1 = 0.65, α2( j) = 0.2, β2( j) =

0.6, γ2( j) = 0.2, ζ2 = 0.3, δ2 = 0.55 and σ1( j) = 0.1, j = 1, 2, so we have z1 = 0.825 and
Φ1 = Φ1(1) = Φ1(2) = 0.825 > 0.

In Regime 1, choose σ2(1) = 0.2; thus, z2(1) = 0.32 and Φ2(1) = 0.32 > 0. According to (a) in
Theorem 2.1, there is a UESD η1(·) concentrated on R+

2 to Subsystem (2.4). Namely, Subsystem (2.4)
is permanent; see Figure 1.

In Regime 2, choose σ2(2) = 0.9; therefore, z2(1) = −0.11 and Φ2(2) = −0.11 < 0. According to
(b) in Theorem 2.1, Subsystem (2.5) is collapsed: one species is permanent, and the other is collapsing;
see Figure 2.
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Figure 1. (a) Sample trajectory; (b) probability density function of the solution at t=3000.
They all show that Subsystem (2.4) is permanent.
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Figure 2. illustration showing that Subsystem (2.5) is collapsed.

Then, we are going to choose different values of π.
Case 1. π = (0.5, 0.5)T. Thus, Φ2 = 0.5 × 0.32 − 0.5 × 0.11 = 0.105 > 0. By applying (a) of
Theorem 2.1, (x(t), y(t), λ(t)) has a UESD η1(· × ·) concentrated on R2

+ × S in the hybrid model (1.5).
Therefore, the hybrid system (1.5) is permanent under the behavior of regime switching, See Figure 3a
and 3b.
Case 2. π = (0.1, 0.9)T. Then, Φ2 = 0.1×0.32−0.9×0.11 = −0.067 < 0. Applying (b) of Theorem 2.1,
the y(t) population dies out, (x(t), λ(t)) has a UESD η2(· × ·) and η2(· × ·) is weakly concentrated on
R2

+ × S; in addition,

lim
t→∞

1
t

∫ t

0
ϕ1(s)ds =

∑
j∈ S

∫
R+

zηϕ(dz, j) = 0.9167.

Therefore, the hybrid system (1.5) is collapsed under the behavior of regime switching. See Figure 3c.
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Figure 3. (a) and (b): π = (0.5, 0.5)T, where (a) is a sample trajectory and (b) is
the probability density function of the solution at t=3000; they all show that the hybrid
system (1.5) is permanent; results with π = (0.1, 0.9)T, showing that the hybrid system (1.5)
is collapsed.

After the above numerical simulation, there are similar examples in reality. In 2008, Banks et
al. [41] studied Neanderthal extinction by competitive exclusion. Despite a long history of
investigation, considerable debate revolves around whether Neanderthals became extinct because of
climate change or competition with anatomically modern humans (AMHs). The southerly contraction
of Neanderthal range in southwestern Europe during Greenland Interstadial 8 was not due to climate
change or a change in adaptation; rather, concurrent AMHs geographic expansion appears to have
produced competition that led to Neanderthal extinction. In 2012, Sarwardi et al. [42] analyzed a
competitive prey-predator system with prey refuge. Further, in a field survey of the Sundarban
mangrove ecosystem, two very commercially viable detritivorus fishes, viz., Liza parsia and Liza
tade, as well as another commercially important predator fish, viz., Lates calcarifer, are usually found
in this ecosystem. Lates calcarifer depends on the predation of these two, and these fish are in
competition by grazing upon detritus as food source from the supralittoral zone of the estuary during
high tide ( [43]). From the field surveys and studies in the Sundarban mangrove ecosystem, it has
been observed that two detritivorous fish (prey population), by using refuges, coexist in nature in the
presence of the predator fish population Lates calcarifer ( [44]).
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5. Conclusions

More and more people have begun to pay attention to the stationary distribution of random
population models (see [31–33]). At present, the most common method to study stationary
distribution is to construct a Lyapunov function, but, in the paper, we applied the approach in
Reference [34] to investigate the existence of a unique stationary distribution. The difference between
our model and the model in Reference [34] is that our model has switching.

In this article, the stationary distribution of a stochastic two-species Schoener’s competitive model
with regime switching was explored. We have the following conclusion: under the condition of Φ1 > 0,
if Φ2 > 0, we proved that the UESD of the model is concentrated on R2

+×S. In other words, the model is
permanent and the convergence rate of the transition probability is exponentially fast about the UESD;
if Φ2 < 0, the model does not have stationary distribution. That is to say, when one species becomes
extinct while another continues to exist, it would be a biological collapse.

As far as we know, this paper is the first on the UESD of a stochastic two-species Schoener’s
competitive model with regime switching. Our model, i.e., Model (1.5), is more reasonable. It takes
the effect of a randomly fluctuating environment into account. The results in this paper show several
key effects of regime switching on the collapse and permanence.

There are several questions that deserve further consideration. This work involved Markov
switching, so it is significant to consider semi-Markov switching. Other random disturbances can also
be considered, such as Lévy jumps (see [45–47]). These questions need to be further explored.
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