Citation: Jia Tang, Yajun Xie. The generalized conjugate direction method for solving quadratic inverse eigenvalue problems over generalized skew Hamiltonian matrices with a submatrix constraint[J]. AIMS Mathematics, 2020, 5(4): 3664-3681. doi: 10.3934/math.2020237
[1] | Y. Yang, J. Han, H. Bi, et al. Mixed methods for the elastic transmission eigenvalue problem, Appl. Math. Comput., 374 (2020), 125081. doi: 10.1016/j.cam.2020.112769 |
[2] | J. Han, Nonconforming elements of class L2 for Helmholtz transmission eigenvalue problems, Discrete Cont. Dyn-B., 23 (2018), 3195-3212. |
[3] | H. Dai, Z. Z. Bai, Y. Wei, On the solvability condition and numerical algorithm for the parameterized generalized inverse eigenvalue problem, Siam J. Matrix Anal. A., 36 (2015), 707-726. doi: 10.1137/140972494 |
[4] | K. Ghanbari, A survey on inverse and generalized inverse eigenvalue problems of jacobi matrices, Appl. Math. Comput., 195 (2008), 355-363. |
[5] | Y. X. Yuan, H. Dai, A generalized inverse eigenvalue problem in structural dynamic model updating, J. Comput. Appl. Math., 226 (2009), 42-49. doi: 10.1016/j.cam.2008.05.015 |
[6] | K. W. E. Chu, M. Li, Designing the Hopfield neural network via pole assignment, Int. J. Syst. Sci., 25 (1994), 669-681. doi: 10.1080/00207729408928988 |
[7] | Z. J. Bai, The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation, Siam J. Matrix Anal. A., 26 (2005), 1100-1114. doi: 10.1137/S0895479803434185 |
[8] | Z. J. Bai, The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonian matrices and its approximation, Inverse Probl., 19 (2003), 1185-1194. doi: 10.1088/0266-5611/19/5/310 |
[9] | L. F. Dai, M. L. Liang, Generalized inverse eigenvalue problem for (P, Q)-conjugate matrices and the associated approximation problem, Wuhan Univ. J. Nat. Sci., 21 (2016), 93-98. doi: 10.1007/s11859-016-1143-z |
[10] | Y. Q. Gao, P. Wei, Z. Z. Zhang, et al. Generalized inverse eigenvalue problem for reflexive and antireflexive matrices, Numer. Math. J. Chin. Univ., 34 (2012), 214-222. |
[11] | P. Wei, Z. Z. Zhang, D. X. Xie, Generalized inverse eigenvalue problem for Hermitian generalized Hamiltonian matrices, Chin. J. Eng. Math., 27 (2010), 820-826. |
[12] | R. H. Mo, W. Li, The inverse eigenvalue problem of hermitian and generalized skew-Hamiltonian matrices with a submatrix constraint and its approximation, Acta Math. Sci., 31 (2011), 691-701. |
[13] | J. Cai, J. Chen, Iterative solutions of generalized inverse eigenvalue problem for partially bisymmetric matrices, Linear Multilinear A., 65 (2017), 1643-1654. doi: 10.1080/03081087.2016.1250864 |
[14] | J. Cai, J. Chen, Least-squares solutions of generalized inverse eigenvalue problem over HermitianHamiltonian matrices with a submatrix constraint, Comput. Appl. Math., 37 (2018), 593-603. doi: 10.1007/s40314-016-0363-3 |
[15] | H. C. Chen, Generalized reflexive matrices: Special properties and applications, Siam J. Matrix Anal. A., 19 (1997), 140-153. doi: 10.1137/S0895479895288759 |
[16] | J. Qian, R. C. E. Tan, On some inverse eigenvalue problems for Hermitian and generalized Hamiltonian/skew-Hamiltonian matrices, J. Comput. Appl. Math., 10 (2013), 28-38. doi: 10.1016/j.cam.2013.02.023 |
[17] | D. Xie, N. Huang, Q. Zhang, An inverse eigenvalue problem and a matrix approximation problem for symmetric skew-hamiltonian matrices, Numer. Algorithms, 46 (2007), 23-34. doi: 10.1007/s11075-007-9124-0 |
[18] | R. H. Mo, W. Li, An inverse eigenvalue problem for Hermitian and generalized skew-Hamiltonian matrices with a submatrix constraint and its approximation, Acta Math. Sci., 31 (2011), 691-701. |
[19] | W. R. Xu, G. L. Chen, X. P. Sheng, Analytical best approximate Hermitian and generalized skewHamiltonian solution of matrix equation AXAH + CYCH = F, Comput. Math. Appl., 75 (2018), 3702-3718. doi: 10.1016/j.camwa.2018.02.026 |
[20] | Y. Liu, Y. Tian, Y. Takane, Ranks of Hermitian and skew-Hermitian solutions to the matrix equation AXA=B, Linear Algebra Appl., 431 (2009), 2359-2372. doi: 10.1016/j.laa.2009.03.011 |
[21] | M. Wei, Q. Wang, On rank-constrained Hermitian nonnegative-definite least squares solutions to the matrix equation AXAH = B, Int. J. Comput. Math., 84 (2007), 945-952. doi: 10.1080/00207160701458344 |