Research article

Two self-adaptive inertial projection algorithms for solving split variational inclusion problems

  • Received: 17 June 2021 Revised: 22 December 2021 Accepted: 23 December 2021 Published: 29 December 2021
  • MSC : 47H05, 49J40, 65K10, 65Y10

  • This paper is to analyze the approximation solution of a split variational inclusion problem in the framework of Hilbert spaces. For this purpose, inertial hybrid and shrinking projection algorithms are proposed under the effect of a self-adaptive stepsize which does not require information of the norms of the given operators. The strong convergence properties of the proposed algorithms are obtained under mild constraints. Finally, a numerical experiment is given to illustrate the performance of proposed methods and to compare our algorithms with an existing algorithm.

    Citation: Zheng Zhou, Bing Tan, Songxiao Li. Two self-adaptive inertial projection algorithms for solving split variational inclusion problems[J]. AIMS Mathematics, 2022, 7(4): 4960-4973. doi: 10.3934/math.2022276

    Related Papers:

  • This paper is to analyze the approximation solution of a split variational inclusion problem in the framework of Hilbert spaces. For this purpose, inertial hybrid and shrinking projection algorithms are proposed under the effect of a self-adaptive stepsize which does not require information of the norms of the given operators. The strong convergence properties of the proposed algorithms are obtained under mild constraints. Finally, a numerical experiment is given to illustrate the performance of proposed methods and to compare our algorithms with an existing algorithm.



    加载中


    [1] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301–323. https://doi.org/10.1007/s11075-011-9490-5 doi: 10.1007/s11075-011-9490-5
    [2] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275–283. https://doi.org/10.1007/s10957-011-9814-6 doi: 10.1007/s10957-011-9814-6
    [3] P. K. Anh, D. V. Thong, V. T. Dung, A strongly convergent Mann-type inertial algorithm for solving split variational inclusion problems, Optim. Eng., 22 (2021), 159–185. https://doi.org/10.1007/s11081-020-09501-2 doi: 10.1007/s11081-020-09501-2
    [4] C. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13 (2011), 759–775.
    [5] M. Gabeleh, N. Shahzad, Existence and uniqueness of a solution for some nonlinear programming problems, Mediterr. J. Math., 12 (2015), 133–C146. https://doi.org/10.1007/s00009-013-0380-z doi: 10.1007/s00009-013-0380-z
    [6] L. V. Long, D. V. Thong, V. T. Dung, New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimization, 68 (2019), 2339–2367. https://doi.org/10.1080/02331934.2019.1631821 doi: 10.1080/02331934.2019.1631821
    [7] X. Qin, J. C. Yao, A viscosity iterative method for a split feasibility problem, J. Nonlinear Convex Anal., 20 (2019), 1497–1506.
    [8] A. Chambolle, P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167–188. https://doi.org/10.1007/s002110050258 doi: 10.1007/s002110050258
    [9] M. Nikolova, A variational approach to remove outliers and impulse noise, J. Math. Imaging Vision, 20 (2004), 99–120. https://doi.org/10.1023/B:JMIV.0000011920.58935.9c doi: 10.1023/B:JMIV.0000011920.58935.9c
    [10] Z. Zhou, B. Tan, S. Li, An accelerated hybrid projection method with a self-adaptive step-size sequence for solving split common fixed point problems, Math. Methods Appl. Sci., 44 (2021), 7294–7303. https://doi.org/10.1002/mma.7261 doi: 10.1002/mma.7261
    [11] S. S. Chang, C. F. Wen, J. C. Yao, Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces, Optimization, 67 (2018), 1183–1196. https://doi.org/10.1080/02331934.2018.1470176 doi: 10.1080/02331934.2018.1470176
    [12] S. Y. Cho, X. Qin, L. Wang, Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., 2014 (2014), Article ID 94.
    [13] K. R. Kazmi, S. H. Rizvi, An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping, Optim. Lett., 8 (2014), 1113–1124. https://doi.org/10.1007/s11590-013-0629-2 doi: 10.1007/s11590-013-0629-2
    [14] X. Qin, S. Y. Cho, L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., 2014 (2014), Article ID 75.
    [15] K. Sitthithakerngkiet, J. Deepho, J. Martnez-Moreno, P. Kumam, Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems, Numer. Algorithms, 79 (2018), 801–824. https://doi.org/10.1007/s11075-017-0462-2 doi: 10.1007/s11075-017-0462-2
    [16] B. Tan, X. Qin, J. C. Yao, Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications, J. Sci. Comput., 87 (2021), Article ID 20. https://doi.org/10.1007/s10915-021-01428-9 doi: 10.1007/s10915-021-01428-9
    [17] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11.
    [18] Z. Zhou, B. Tan, S. Li, Adaptive hybrid steepest descent algorithms involving an inertial extrapolation term for split monotone variational inclusion problems. Math. Methods Appl. Sci., 2021. In press. Available from: https://doi.org/10.1002/mma.7931.
    [19] Z. Zhou, B. Tan, S. Li, An inertial shrinking projection algorithm for split common fixed point problems, J. Appl. Anal. Comput., 10 (2020), 2104–2120.
    [20] Y. Shehu, G. Cai, Strong convergence result of forwardCbackward splitting methods for accretive operators in banach spaces with applications, RACSAM, 112 (2018), 71–87. https://doi.org/10.1007/s13398-016-0366-3 doi: 10.1007/s13398-016-0366-3
    [21] X. Qin, S. Y. Cho, L. Wang, Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point Theory Appl., 2013 (2013), Article ID 148.
    [22] Y. Shehu, O. S. Iyiola, F. U. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings: Applications to compressed sensing, Numer. Algorithms, 83 (2020), 1321–1347. https://doi.org/10.1007/s11075-019-00727-5 doi: 10.1007/s11075-019-00727-5
    [23] Q. L. Dong, H. B. Yuan, Y. J. Cho, T. M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., 12 (2018), 87–102. https://doi.org/10.1007/s11590-016-1102-9 doi: 10.1007/s11590-016-1102-9
    [24] B. Tan, S. Li, Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems, J. Nonlinear Var. Anal., 4 (2020), 337–355. https://doi.org/10.23952/jnva.4.2020.3.02 doi: 10.23952/jnva.4.2020.3.02
    [25] Y. Shehu, O. S. Iyiola, Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence, Appl. Numer. Math., 157 (2020), 315–337. https://doi.org/10.1016/j.apnum.2020.06.009 doi: 10.1016/j.apnum.2020.06.009
    [26] Y. Shehu, P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo, 56 (2019), Article ID 4. https://doi.org/10.1007/s10092-018-0300-5
    [27] B. Tan, X. Qin, J. C. Yao, Two modified inertial projection algorithms for bilevel pseudomonotone variational inequalities with applications to optimal control problems, Numer. Algorithms, 88 (2021), 1757–1786. https://doi.org/10.1007/s11075-021-01093-x doi: 10.1007/s11075-021-01093-x
    [28] B. Tan, X. Qin, Self adaptive viscosity-type inertial extragradient algorithms for solving variational inequalities with applications, Math. Model. Anal., (2022), Available from: https://doi.org/ 10.3846/mma.2022.13846.
    [29] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379. https://doi.org/10.1016/S0022-247X(02)00458-4 doi: 10.1016/S0022-247X(02)00458-4
    [30] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008), 276–286. https://doi.org/10.1016/j.jmaa.2007.09.062 doi: 10.1016/j.jmaa.2007.09.062
    [31] G. Marino, H. K. Xu, Convergence of generalized proximal point algorithm, Commun. Pure Appl. Anal., 3 (2004), 791–808. https://doi.org/10.3934/cpaa.2004.3.791 doi: 10.3934/cpaa.2004.3.791
    [32] H. Zhou, X. Qin, Fixed Points of Nonlinear Operators: Iterative Methods, Berlin, Boston: De Gruyter 2020.
    [33] H. Cui, M. Su, On sufficient conditions ensuring the norm convergence of an iterative sequence to zeros of accretive operators, Appl. Math. Comput., 258 (2015), 67–71. https://doi.org/10.1016/j.amc.2015.01.108 doi: 10.1016/j.amc.2015.01.108
    [34] C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400–2411. https://doi.org/10.1016/j.na.2005.08.018 doi: 10.1016/j.na.2005.08.018
    [35] R. T. Rockafellar, Monotone operators associated with saddle functions and minimax problems, In: Browder F.E. (ed.) Nonlinear Functional Analysis, Part 1, Amer. Math. Soc., 18 (1970), 397–C407.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1695) PDF downloads(99) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog