Citation: Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu. A sharp double inequality involving generalized complete elliptic integral of the first kind[J]. AIMS Mathematics, 2020, 5(5): 4512-4528. doi: 10.3934/math.2020290
[1] | Li Xu, Lu Chen, Ti-Ren Huang . Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692 |
[2] | Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang . Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications. AIMS Mathematics, 2022, 7(4): 4974-4991. doi: 10.3934/math.2022277 |
[3] | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu . Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453 |
[4] | Fei Wang, Bai-Ni Guo, Feng Qi . Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176 |
[5] | A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086 |
[6] | Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized $ (p, q) $-elliptic integrals and generalized $ (p, q) $-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597 |
[7] | Hassen Aydi, Bessem Samet, Manuel De la Sen . On $ \psi $-convex functions and related inequalities. AIMS Mathematics, 2024, 9(5): 11139-11155. doi: 10.3934/math.2024546 |
[8] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[9] | Ling Zhu . Concise high precision approximation for the complete elliptic integral of the first kind. AIMS Mathematics, 2021, 6(10): 10881-10889. doi: 10.3934/math.2021632 |
[10] | Abdelhamid Zaidi, Saleh Almuthaybiri . Explicit evaluations of subfamilies of the hypergeometric function $ _3F_2(1) $ along with specific fractional integrals. AIMS Mathematics, 2025, 10(3): 5731-5761. doi: 10.3934/math.2025264 |
Let r∈(0,1). Then the Legendre complete elliptic integral K(r) [1,2,3,4] of the first kind is given by
K=K(r)=∫π/20dθ√1−r2sin2θ=∫10dt√(1−t2)(1−r2t2). |
It is well-known that the complete elliptic integral K(r) is the particular case of the Gaussian hypergeometric function [5,6,7,8,9,10]
F(a,b;c;x)=∞∑n=0(a,n)(b,n)(c,n)xnn!,|x|<1 | (1.1) |
where (a,0)=1 for a≠0, and (a,n)=a(a+1)(a+2)⋯(a+n−1) for n∈N is the shifted factorial function. Indeed
K(r)=π2F(12,12;1;r2). |
It is well-known that the Legendre complete elliptic integrals play very important roles in many branches of pure and applied mathematics [11,12,13,14,15,16,17,18,19,20,21,22]. Recently, the complete elliptic integrals have attracted the attention of many researchers [23,24,25,26,27,28,29,30,31,32,33,34,35] due to their extreme importance. In particular, and many remarkable properties, inequalities and applications for the complete elliptic integrals and their related special functions can be found in the literature [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61].
For r∈(0,1) and a∈(0,1), the generalized elliptic integral Ka(r) of the first kind [62] is defined by
Ka=Ka(r)=π2F(a,1−a;1,r2). | (1.2) |
Clearly, Ka(0)=π/2 and Ka(1−)=∞. In what follows, we assume that a∈(0,1/2] by the symmetry of (1.2).
For p∈(1,∞) and r∈(0,1), the complete p-elliptic integral Kp(r) of the first kind [63] is defined by
Kp(r)=∫πp/20dθ(1−rpsinppθ)1−1/p=∫10dt√(1−tp)1p(1−rptp)1−1/p, | (1.3) |
where sinpθ is the generalized trigonometric function [64] and
πp=2∫10dt(1−tp)1/p |
is the generalized circumference ratio.
From (1.2) and (1.3) we clearly see that Ka(r) and Kp(r) reduce to the complete elliptic integral K(r) of the first kind if a=1/2 and p=2. Takeuchi [65] proved that
Kp(r)=πp2F(1p,1−1p;1;rp). |
Therefore, it follows from (1.2) that
K1/p(r)=ππpKp(r2/p). | (1.4) |
Recently, the generalized elliptic integrals and complete p-elliptic integrals have attracted the attention of many mathematicians. For their recent research progress, we recommend the literature [65,66,67,68,69,70,71,72,73,74,75,76,77,78] to readers.
Anderson et al. [79] proved that the inequality
K(r)K(√r)>11+r | (1.5) |
holds for all r∈(0,1).
In [80], Alzer and Richards proved that
K(r)K(√r)>11+r/4 | (1.6) |
for r∈(0,1), which is an improvement of inequality (1.5).
Motivated by the inequality (1.6), Yin et al. [81] generalized (1.6) to Kp(r) and proved that the double inequality
11+1p(1−1p)r<Kp(r)Kp(p√r)<1 | (1.7) |
holds for r∈(0,1) and p∈(1,2].
The main purpose of this paper is to generalized the inequality (1.6) to Ka and provide an improvement for inequality (1.7). Our main result is the following Theorem 1.1.
We denote by σ=σ(a)=a(1−a) and τ=τ(a)=[a(1−a)(a2−a+2)]/4 for short, which will be often used later. For a∈(0,1/2], it is easy to know 0<σ(a)≤1/4 and keep this in mind.
Theorem 1.1. Let a∈(0,1/2] and r∈(0,1). Then the double inequality
ˆλ(a)<[1+σ(a)r]Ka(r)−[1+τ(a)r2]Ka(√r)r3Ka(√r)<ˆμ(a) | (1.8) |
holds for all r∈(0,1) if and only if ˆλ(a)≤λ(a) and ˆμ(a)≥μ(a), where
λ(a)=−a(1−a2)(2−a)(4a2−4a+3)18andμ(a)=a(1−a2)(2−a)4. |
In particular, the double inequality
1+τ(a)r2+λ(a)r31+σ(a)r<Ka(r)Ka(√r)<1+τ(a)r2+μ(a)r31+σ(a)r. | (1.9) |
holds for all r∈(0,1).
As is known, Ka(r) reduces to the complete elliptic integral of the first kind K(r) if a=1/2. The following corollary can be derived from (1.9) of Theorem 1.1.
Corollary 1.2. The double inequality
1+[r2(7−4r)]/641+r/4<K(r)K(√r)<1+[r2(7+9r)]/641+r/4 |
holds for r∈(0,1).
It is easy to see that
1+[r2(7−4r)]/641+r/4>11+r/4 |
for r∈(0,1) and no upper bound for K(r)/K(√r) was given in (1.6), in other words, the bounds given in Corollary 1.2 are better than that given in (1.6).
From (1.4) and the monotonicity of Kp(r), we clearly see that
K1/p(r)K1/p(√r)=Kp(r2/p)Kp(p√r)≤(≥)Kp(r)Kp(p√r) |
for all r∈(0,1) and 1<p≤2(p≥2), which in conjunction with Theorem 1.1 gives the Corollary 1.3.
Corollary 1.3. Let p∈(1,2]. Then the double inequality
1+τ(1/p)r2+λ(1/p)r31+σ(1/p)r<Kp(r)Kp(p√r)<1 | (1.10) |
hold for r∈(0,1). If p∈[2,∞), then the inequality
Kp(r)Kp(p√r)<1+τ(1/p)r2+μ(1/p)r31+σ(1/p)r | (1.11) |
holds for r∈(0,1).
Note that if p∈(1,2] and r∈(0,1), then it follows from λ(1/p)<0 that
τ(1/p)+λ(1/p)r>τ(1/p)+λ(1/p)=(p−1)[8(p−1)2+p2(p−1)+6p4]36p6>0, |
which enables us to know that the lower bound of (1.10) is better than that of (1.7) and it also gives an improvement of [81, Theorem 1.1]. Moreover, it follows easily from σ(1/p)=τ(1/p)+μ(1/p) that
1+τ(1/p)r2+μ(1/p)r31+σ(1/p)r<1 |
for r∈(0,1), which leads to the conclusion that inequality (1.11) has a better upper bound than that of (1.7) for p∈[2,∞).
In this section, we introduce some more notations and present some technical lemmas, which will be used to prove the main theorem.
For x∈(0,∞), the classical gamma function Γ(x) [82,83] and psi (digamma) function Ψ(x) [84] are defined by
Γ(x)=∫∞0tx−1e−tdt,Ψ(x)=ddxlogΓ(x)=Γ′(x)Γ(x), |
respectively.
The following well-known formulas for Γ(x) and Ψ(n)(x)(n≥0) are presented in [85]
Γ(x+1)=xΓ(x),Γ(1−z)Γ(z)=πsin(πz),z≠Z, | (2.1) |
Ψ(n)(x)={−γ−1x+∞∑k=1xk(k+x),n=0(−1)n+1n!∞∑k=01(x+k)n+1,n≥1, | (2.2) |
where γ=limn→∞(∑nk=11/k−logn)=0.577215⋯ is the Euler-Mascheroni constant [86,87].
For a∈(0,1/2], we clearly see from (1.2) and (2.1) that Ka(r) can be expressed in terms of power series as
Ka(r)=π2∞∑n=0(a,n)(1−a,n)(n!)2r2n=sin(πa)2∞∑n=0Wn(a)r2n, | (2.3) |
where
Wn=Wn(a)=Γ(a+n)Γ(1−a+n)Γ(n+1)2 | (2.4) |
is the generalized Wallis type ratio due to √Wn(1/2)/π is the classical Wallis ratio.
It is easy to verify that Wn satisfies the recurrence relation
Wn+1Wn=(n+a)(n+1−a)(n+1)2 | (2.5) |
and also Wn is strictly decreasing with respect to n≥0.
Lemma 2.1. (1) The function Wn(a) is strictly decreasing on (0,1/2] for each n∈N;
(2) The function Wn(a)/Wm(a) is strictly decreasing on (0,1/2] for fixed m>n≥1. In particular,
Wn(a)Wm(a)<mn. | (2.6) |
Proof. Taking the logarithm, we dente by fn(a)=logWn(a) and gn,m(a)=log[Wn(a)/Wm(a)].
Differentiation yields
f′n(a)=Ψ(a+n)−Ψ(1−a+n), | (2.7) |
g′n,m(a)=Ψ(a+n)−Ψ(1−a+n)−Ψ(a+m)+Ψ(1−a+m). | (2.8) |
From (2.7) and (2.8), we clearly see that
f′n(1/2)=g′n,m(1/2)=0. | (2.9) |
Moreover, it follows from (2.2), (2.7) and (2.8) that
f″n(a)=Ψ′(a+n)+Ψ′(1−a+n)=∞∑k=0[1(a+n+k)2+1(1−a+n+k)2]>0, | (2.10) |
g″n,m(a)=Ψ′(a+n)+Ψ′(1−a+n)−Ψ′(a+m)−Ψ′(1−a+m) |
=∞∑k=0[1(a+n+k)2−1(a+m+k)2+1(1−a+n+k)2−1(1−a+m+k)2]>0 | (2.11) |
for a∈(0,1/2] and m>n≥1.
Therefore, the monotonicity of fn(a) and gn,m(a) follows easily from (2.9)–(2.11).
Lemma 2.2. For a∈(0,1/2], define
hn(a)=[1+σ(a)]Wn+2−2τ(a)W2n+2. |
Then hn(a)>1/(n+2) for n≥2.
Proof. We first prove
πasin(πa)>1+π2a26+7π4a4360>1+41a225+37a420 | (2.12) |
for a∈(0,1/2]. Indeed, in terms of power series, one has
πa−(1+π2a26+7π4a4360)sin(πa)=(πa)790∞∑n=0(−1)nαn(πa)2n |
=(πa)790∞∑k=0[α2k−α2k+1(πa)2](πa)4k>(πa)790∞∑k=0(α2k−3α2k+1)(πa)4k | (2.13) |
for a∈(0,1/2], where
αn=(n+1)(n+2)(465+224n+28n2)(2n+7)!. |
Moreover,
α2k−3α2k+1=2(k+1)(4k+7)(3861+15150k+15536k2+6272k3+896k4)(4k+9)!>0 |
for k≥0. This in conjunction with (2.13) yields the inequality (2.12) is valid.
Let ξ(a)=1800+600a−100a2−952a3+357a4+140a5−42a6−4a7+a8. Combing this with (2.1) and (2.12), we rewrite h2(a) as
h2(a)=(4−a)(9−a2)(4−a2)(1−a2)ξ(a)1036800⋅πasin(πa)−14 |
>(4−a)(9−a2)(4−a2)(1−a2)ξ(a)1036800(1+41a225+37a420)−14 |
>a103680000[4007308a7+16451833a8+20105580a7(1−a2)+10501395a8(1−a2) |
+6832264a11+999840a12+1242460a11(1−a2)+32390a14+67672a15 |
+7236a15(1−a)+1480a15(1−a2)+185a18+ˆξ(a)]>aˆξ(a)103680000, | (2.14) |
where
ˆξ(a)=2160000+3628800a−12746400a2+7736800a3−2977632a4−48200080a5−3912980a6. |
Differentiation of ˆξ(a) yields
ˆξ″(a)=−[2282400+46420800(12−a)+8a2(4466448+120500200a+14673675a2)]<0 |
for a∈(0,1/2], which implies that ˆξ(a) is strictly concave on (0,1/2].
From the concavity property of ˆξ(a), we clearly see that
ˆξ(a)≥min{ˆξ(0),ˆξ(1/2)}=2248316>0 | (2.15) |
for a∈(0,1/2].
Therefore, h2(a)>0 for a∈(0,1/2] follows from (2.14) and (2.15).
Next, we prove Lemma 2.2 by mathematical induction on n. Assume the induction hypothesis that hn(a)>1/(n+2), in other words,
[1+σ(a)]Wn+2>2τ(a)W2n+2+1n+2. | (2.16) |
The recurrence relation (2.5) and (2.16) yield
hn+1(a)−1n+3=[1+σ(a)]Wn+3−2τ(a)W2n+4−1n+3 |
>2τ(a)W2n+2(Wn+3Wn+2−W2n+4W2n+2)+Wn+3(n+2)Wn+2−1n+3 |
=τ(a)W2n+2⋅ζn(a)2(2+n)2(3+n)2(3+2n)2+a(1−a)(n+2)(n+3)2>0 |
for a∈(0,1/2], where
ζn(a)=9(6+σ)(4−σ)+6[78+σ(2−σ)]n+[372+σ(58−σ)]n2+8(5σ+16)n3+8(σ+2)n4. |
This completes the proof.
Lemma 2.3. For a∈(0,1/2], we define
An=Wn+2−λ(a)W2n+1−τ(a)W2n+2−W2n+4,Bn=σ(a)Wn+2−λ(a)W2n+2−τ(a)W2n+3−W2n+5. |
Then (i) An>0; (ii) An+Bn>0 for n≥0.
Proof. (ⅰ) It is easy to know that (1+x)n>1+nx for n>0 and x>0. Combining this with the definition of Wn and its recurrence relation, we clearly see that
Wn+2W2n+1=Γ(a+n+2)Γ(1−a+n+2)Γ(n+3)2⋅Γ(2n+2)2Γ(a+2n+1)Γ(1−a+2n+1)=(1+2n)2(a+2n)(1−a+2n)⋅(1+2n−1)2(a+2n−1)(1−a+2n−1)⋯(1+n+2)2(a+n+2)(1−a+n+2)≥[(1+2n)2(a+2n)(1−a+2n)]n−1≥1+(n−1)(1−a+a2+2n)(a+2n)(1−a+2n) |
and
W2n+2W2n+1=(2n+1+a)(2n+2−a)(2n+2)2, |
W2n+4W2n+1=(2n+1+a)[(2n+2)2−a2][(2n+3)2−a2](2n+4−a)[(2n+2)(2n+3)(2n+4)]2. |
This yields
AnW2n+1=Wn+2W2n+1−λ(a)−τ(a)W2n+2W2n+1−W2n+4W2n+1≥1+(n−1)(1−a+a2+2n)(a+2n)(1−a+2n)−λ(a)−τ(a)(2n+1+a)(2n+2−a)(2n+2)2−(2n+1+a)[(2n+2)2−a2][(2n+3)2−a2](2n+4−a)[(2n+2)(2n+3)(2n+4)]2=1144(a+2n)(1−a+2n)(1+n)2(2+n)2(3+2n)28∑k=0εknk, | (2.17) |
where the coefficients are given by
ε0=−5184+9072σ−540σ2−1620σ3−837σ4, ε1=−19872+31104σ−5904σ2−6240σ3−4236σ4, |
ε2=−6624+32400σ−20604σ2−17176σ3−8207σ4, ε3=72432−6744σ−33692σ2−36712σ3−8004σ4, |
ε4=146592−41352σ−30604σ2−50016σ3−4220σ4, ε5=128592−36912σ−16496σ2−40672σ3−1152σ4, |
ε6=58464−15936σ−5248σ2−19200σ3−128σ4, ε7=13248−3648σ−896σ2−4864σ3, |
ε8=1152−384σ−64σ2−512σ3. |
For a∈(0,1/2], we clearly see that 0<σ≤1/4. This enables us to know easily that εj>0 for 3≤j≤8. Moreover, we can verify
ε0+ε3=67248+2328σ−34232σ2−38332σ3−8841σ4>16505607256, |
ε1+ε4=4(31680−2562σ−9127σ2−14064σ3−2114σ4)>387085532, |
ε2+ε5=121968−4512σ−37100σ2−57848σ3−9359σ4>30100689256, |
which yields
8∑k=0εknk=(ε0+ε3n3)+(ε1n+ε4n4)+(ε2n2+ε5n5)+ε6n6+ε7n7+ε8n8≥(ε0+ε3)+(ε1+ε4)n+(ε2+ε5)n2+ε6n6+ε7n7+ε8n8>0 | (2.18) |
for n≥1.
Combining with (2.17) and (2.18), we clearly see that An>0 for n≥1. On the other hand,
A0=πa(1−a2)(2−a)192sin(aπ)[22+2σ+σ2+32(116−σ2)]>0 |
for a∈(0,1/2]. This completes the first assertion.
(ⅱ) We first compute A0+B0 and A1+B1. Simple calculations together with (2.1) and (2.4) lead to
A0+B0=πa(1−a2)(2−a)14400sin(πa)[360+40535σ16+2963σ(14−σ)+701σ(116−σ2)]>0, |
A1+B1=πa(1−a2)(4−a2)(3−a)705600sin(πa)[3293932+14570σ+4091(116−σ2)+7293(164−σ3)+260(1256−σ4)]>0 |
for a∈(0,1/2].
For n≥2, it follows from Lemma 2.1(i) and Lemma 2.2 together with λ(a)<0 and the monotonicity of Wn with respect to n that
An+Bn=[1+σ(a)]Wn+2−λ(a)(W2n+1+W2n+2)−τ(a)(W2n+2+W2n+3)−(W2n+4+W2n+5)≥[1+σ(a)]Wn+2−2τ(a)W2n+2−2W2n+4=hn(a)−2W2n+4(a)>1n+2−2⋅12n+4=0 |
for a∈(0,1/2].
Lemma 2.4. For a∈(0,1/2], we define
Cn=σ(a)Wn+1−μ(a)W2n−τ(a)W2n+1−W2n+3,Dn=Wn+2−μ(a)W2n+1−τ(a)W2n+2−W2n+4. |
Then (i) Dn>0; (ii) Cn+Dn<0 for n≥0.
Proof. (ⅰ) From the similar argument as in the proof of Lemma 2.3(i), we clearly see that
DnW2n+1=Wn+2W2n+1−μ(a)−τ(a)W2n+2W2n+1−W2n+4W2n+1≥1+(n−1)(1−a+a2+2n)(a+2n)(1−a+2n)−μ(a)−τ(a)(2n+1+a)(2n+2−a)(2n+2)2−(2n+1+a)[(2n+2)2−a2][(2n+3)2−a2](2n+4−a)[(2n+2)(2n+3)(2n+4)]2=116(a+2n)(1−a+2n)(1+n)2(2+n)2(3+2n)28∑k=0ϵknk, | (2.19) |
where the coefficients are given by
ϵ0=−576+1008σ−540σ2−164σ3+35σ4,ϵ1=−2208+2496σ−2704σ2−368σ3+84σ4, |
ϵ2=−736−2480σ−5780σ2−164σ3+73σ4,ϵ3=8048−16456σ−6660σ2+224σ3+28σ4, |
ϵ4=16288−26248σ−4452σ2+276σ3+4σ4,ϵ5=14288−21408σ−1736σ2+112σ3, |
ϵ6=6496−9824σ−368σ2+16σ3,ϵ7=1472−2432σ−32σ2,ϵ8=128−256σ. |
Since 0<σ≤1/4, it is easy to verify that ϵj>0 for 3≤j≤8. Moreover, we have
ϵ0+ϵ3=7472−15448σ−7200σ2+60σ3+63σ4>3160, |
ϵ1+ϵ4=14080−23752σ−7156σ2−92σ3+88σ4>12309316, |
ϵ2+ϵ5=13552−23888σ−7516σ2−52σ3+73σ4>11375116, |
which yields
8∑k=0ϵknk=(ϵ0+ϵ3n3)+(ϵ1n+ϵ4n4)+(ϵ2n2+ϵ5n5)+ϵ6n6+ϵ7n7+ϵ8n8≥(ϵ0+ϵ3)+(ϵ1+ϵ4)n+(ϵ2+ϵ5)n2+ϵ6n6+ϵ7n7+ϵ8n8>0 | (2.20) |
for n≥1.
From (2.19) and (2.20), we clearly see that Dn>0 for n≥1. For n=0, we verify directly
D0=πa(1−a2)(2−a)576sin(aπ)[272+234(14−σ)+35σ2]>0 |
for a∈(0,1/2]. This complete the proof of (i).
(ⅱ) For n≥0, it follows from (2.6) and σ(a)=τ(a)+μ(a) together with the monotonicity of Wn with respect to n that
Cn+Dn=σ(a)Wn+1+Wn+2−μ(a)(W2n+W2n+1)−τ(a)(W2n+1+W2n+2)−(W2n+3+W2n+4)<σ(a)Wn+1−2[τ(a)+μ(a)]W2n+2+Wn+2−2W2n+4=σ(a)(Wn+1−2W2n+2)+Wn+2−2W2n+4<0 |
for a∈(0,1/2]. This completes the proof.
Proof. Define
φa(r)=[1+σ(a)r]Ka(r)−[1+τ(a)r2+λ(a)r3]Ka(√r) |
and
ϕa(r)=[1+σ(a)r]Ka(r)−[1+τ(a)r2+μ(a)r3]Ka(√r). |
In order to prove the inequalities (1.8) is valid, it suffices to show φa(r)>0 and ϕa(r)<0 for r∈(0,1).
From (2.3), we can rewrite φa(r) and ϕa(r), in terms of power series, as
2sin(πa)φa(r)=[1+σ(a)r]∞∑n=0Wnr2n−[1+τ(a)r2+λ(a)r3]∞∑n=0Wnrn=r4[∞∑n=0(An+Bnr)r2n], | (3.1) |
2sin(πa)ϕa(r)=[1+σ(a)r]∞∑n=0Wnr2n−[1+τ(a)r2+μ(a)r3]∞∑n=0Wnrn=r3[∞∑n=0(Cn+Dnr)r2n], | (3.2) |
where An,Bn and Cn,Dn are defined as in Lemma 2.3 and Lemma 2.4, respectively.
● If Bn≥0, then it follows from Lemma 2.3(i) that An+Bnr>An>0 for r∈(0,1). If Bn<0, then Lemma 2.3(ii) enables us to know that An+Bnr>An+Bn>0 for r∈(0,1). This in conjunction with (3.1) yields φa(r)>0 for r∈(0,1).
● From Lemma 2.4, we clearly see that Cn+Dnr<Cn+Dn<0 for r∈(0,1). This in conjunction with (3.2) implies that ϕa(r)<0 for r∈(0,1).
We now prove that λ(a) and μ(a) are the best possible constants.
Let
Φa(r)=[1+σ(a)r]Ka(r)−[1+τ(a)r2]Ka(√r)r3Ka(√r). | (3.3) |
If λ(a)<δ(a)<μ(a), then it follows from Φa(0+)=λ(a)<δ(a) and Φa(1−)=μ(a)>δW(a) that there exist sufficiently small r1,r2∈(0,1) such that Φa(r)<δ(a) for r∈(0,r1) and Φa(r)>δ(a) for r∈(1−r2,1).
For a∈(0,1/2], computer experiments enable us to know that Φa(r) is strictly increasing on (0,1) and we leave it to the reader as an open problem.
Open Problem. For a∈(0,1/2], Φa(r) is defined as in (3.3). Then Φa(r) is strictly increasing from (0,1) onto (λ(a),μ(a)).
We establish a sharp double inequality involving the ratio of generalized complete elliptic integrals of the first kind, more precisely, the double inequality
1+τ(a)r2+λ(a)r31+σ(a)r<Ka(r)Ka(√r)<1+τ(a)r2+μ(a)r31+σ(a)r |
holds for all r∈(0,1), where
σ(a)=a(1−a),τ(a)=a(1−a)(a2−a+2)4,λ(a)=−a(1−a2)(2−a)(4a2−4a+3)18,μ(a)=a(1−a2)(2−a)4, |
which is the improvement and generalization of some previously known results.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485) and the Natural Science Foundation of Zhejiang Province (Grant No. LY19A010012).
The authors declare that they have no competing interests.
[1] |
M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl., 388 (2012), 1141-1146. doi: 10.1016/j.jmaa.2011.10.063
![]() |
[2] |
Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714-1726. doi: 10.1016/j.jmaa.2018.03.005
![]() |
[3] | Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199. |
[4] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[5] |
M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zerobalanced hypergeometric functions, Rocky Mountain J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679
![]() |
[6] | M. K. Wang, Y. M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37B (2017), 607-622. |
[7] |
T. H. Zhao, M. K. Wang, W. Zhang, et al. Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
![]() |
[8] |
S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018
![]() |
[9] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[10] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[11] |
M. K. Wang, S. L. Qiu, Y. M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
![]() |
[12] |
Y. M. Chu, M. K. Wang, S. L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038
![]() |
[13] |
Y. M. Chu, Y. F. Qiu, M. K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct., 23 (2012), 521-527. doi: 10.1080/10652469.2011.609482
![]() |
[14] |
Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
![]() |
[15] |
Z. H. Yang, W. M. Qian, Y. M. Chu, et al. Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., 2017 (2017), 1-13. doi: 10.1186/s13660-016-1272-0
![]() |
[16] |
M. K. Wang, Y. M. Li, Y. M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 46 (2018), 189-200. doi: 10.1007/s11139-017-9888-3
![]() |
[17] |
M. K. Wang, Y. M. Chu, W. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J., 49 (2019), 653-668. doi: 10.1007/s11139-018-0130-8
![]() |
[18] |
S. H. Wu, Y. M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
![]() |
[19] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for coordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[20] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7. |
[21] |
X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
![]() |
[22] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[23] |
M. K. Wang, Y. M. Chu, Y. F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890. doi: 10.1016/j.aml.2010.12.044
![]() |
[24] | G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837. |
[25] | Y. M. Chu, M. K. Wang, Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal., 2012 (2012), 1-11. |
[26] |
Y. M. Chu, M. K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math., 61 (2012), 223-229. doi: 10.1007/s00025-010-0090-9
![]() |
[27] |
Y. M. Chu, M. K. Wang, Y. P. Jiang, et al. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637-642. doi: 10.1016/j.jmaa.2012.05.083
![]() |
[28] |
M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Bounds for the perimeter of an ellipse, J. Approx. Theory, 164 (2012), 928-937. doi: 10.1016/j.jat.2012.03.011
![]() |
[29] |
Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, P. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y
![]() |
[30] |
W. M. Qian, Y. M. Chu, Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., 2017 (2017), 1-10. doi: 10.1186/s13660-016-1272-0
![]() |
[31] | W. M. Qian, X. H. Zhang, Y. M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127. |
[32] | M. K. Wang, S. L. Qiu, Y. M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl., 21 (2018), 629-648. |
[33] |
T. H. Zhao, B. C. Zhou, M. K. Wang, et al. On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[34] | J. L. Wang, W. M. Qian, Z. Y. He, et al. On approximating the Toader mean by other bivariate means, J. Funct. Space., 2019 (2019), 1-7. |
[35] |
W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[36] |
Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653-663. doi: 10.1002/mana.200810197
![]() |
[37] | Y. M. Chu, B. Y. Long, Sharp inequalities between means, Math. Inequal. Appl., 14 (2011), 647-655. |
[38] |
Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412-421. doi: 10.1016/j.jmva.2011.08.004
![]() |
[39] |
M. Adil Khan, Y. M. Chu, T. U. Khan, et al. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
![]() |
[40] | Y. Q. Song, M. Adil Khan, S. Zaheer Ullah, et al. Integral inequalities involving strongly convex functions, J. Funct. Space., 2018 (2018), 1-8. |
[41] | M. Adil Khan, Y. M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of HermiteHadamard inequalities and their generalizations, J. Funct. Space., 2018 (2018), 1-9. |
[42] |
H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
![]() |
[43] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[44] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9. |
[45] |
M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[46] |
M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
![]() |
[47] | S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11. |
[48] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[49] |
M. Adil Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
![]() |
[50] | Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral inequalities of the HermiteHadamard type in terms of GG- and GA-convexities, J. Funct. Space., 2019 (2019), 1-8. |
[51] | Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-9. |
[52] |
W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of twoparameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[53] |
W. M. Qian, H. Z. Xu, Y. M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 1-8. doi: 10.1186/s13660-019-1955-4
![]() |
[54] |
X. H. He, W. M. Qian, H. Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
![]() |
[55] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[56] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[57] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[58] |
S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
![]() |
[59] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[60] |
S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
![]() |
[61] |
B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
![]() |
[62] | M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39B (2019), 1440-1450. |
[63] |
T. R. Huang, S. Y. Tan, X. Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-017-1594-6
![]() |
[64] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[65] |
S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202-226. doi: 10.2996/kmj/1458651700
![]() |
[66] | Y. F. Qiu, M. K. Wang, Y. M. Chu, et al. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., 5 (2011), 301-306. |
[67] |
M. K. Wang, Z. K. Wang, Y. M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25 (2012), 471-475. doi: 10.1016/j.aml.2011.09.038
![]() |
[68] |
G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality involving the complete elliptic integrals, Rocky Mountain J. Math., 44 (2014), 1661-1667. doi: 10.1216/RMJ-2014-44-5-1661
![]() |
[69] | Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735. |
[70] | Z. H. Yang, Y. M. Chu, W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput., 348 (2019), 552-564. |
[71] |
W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[72] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20. |
[73] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18. |
[74] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mappings with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[75] | S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114. |
[76] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10. |
[77] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[78] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[79] |
G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Functional inequalities for complete elliptic integrals and ratios, SIAM J. Math. Anal., 21 (1990), 536-549. doi: 10.1137/0521029
![]() |
[80] | H. Alzer, K. Richards, Inequalities for the ratio of complete elliptic integrals, P. Am. Math. Soc., 145 (2017), 1661-1670. |
[81] |
L. Yin, L. G. Huang, Y. L. Wang, et al. An inequality for generalized complete elliptic integral, J. Inequal. Appl., 2017 (2017), 1-6. doi: 10.1186/s13660-016-1272-0
![]() |
[82] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[83] |
Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
![]() |
[84] |
G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
![]() |
[85] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1992. |
[86] |
T. R. Huang, B. W. Han, X. Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 1-9. doi: 10.1186/s13660-017-1594-6
![]() |
[87] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 125. |
1. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
2. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals, 2020, 1617-9447, 10.1007/s40315-020-00352-7 | |
3. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
4. | Jing-Feng Tian, Zhenhang Yang, Ming-Hu Ha, Hong-Jie Xing, A family of high order approximations of Ramanujan type for perimeter of an ellipse, 2021, 115, 1578-7303, 10.1007/s13398-021-01021-7 | |
5. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
7. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
8. | Zhen-Hang Yang, Jing-Feng Tian, Ya-Ru Zhu, A sharp lower bound for the complete elliptic integrals of the first kind, 2021, 115, 1578-7303, 10.1007/s13398-020-00949-6 | |
9. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
10. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
11. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
12. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
13. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
14. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
15. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
16. | Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341 | |
17. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
18. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
19. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable fractional integral inequalities for GG- and GA-convex functions, 2020, 5, 2473-6988, 5012, 10.3934/math.2020322 | |
20. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
21. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
22. | Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375 | |
23. | Thabet Abdeljawad, Saima Rashid, Hasib Khan, Yu-Ming Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02782-y | |
24. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
25. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
26. | Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, 2021, 115, 1578-7303, 10.1007/s13398-020-00992-3 | |
27. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
28. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
29. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
30. | Zhen-Hang Yang, Jing-Feng Tian, Sharp bounds for the Toader mean in terms of arithmetic and geometric means, 2021, 115, 1578-7303, 10.1007/s13398-021-01040-4 | |
31. | Song-Liang Qiu, Xiao-Yan Ma, Yu-Ming Chu, Transformation Properties of Hypergeometric Functions and Their Applications, 2021, 1617-9447, 10.1007/s40315-021-00390-9 | |
32. | Mehrdad Ahmadi Kamarposhti, Ilhami Colak, Hassan Shokouhandeh, Celestine Iwendi, Sanjeevikumar Padmanaban, Shahab S. Band, Optimum operation management of microgrids with cost and environment pollution reduction approach considering uncertainty using multi‐objective NSGAII algorithm, 2022, 1752-1416, 10.1049/rpg2.12579 | |
33. | Mohammad Hemmat Esfe, Hossein Rostamian, Davood Toghraie, Maboud Hekmatifar, Amir Taghavi Khalil Abad, Numerical study of heat transfer of U-shaped enclosure containing nanofluids in a porous medium using two-phase mixture method, 2022, 38, 2214157X, 102150, 10.1016/j.csite.2022.102150 | |
34. | Yinyin Wang, Fuzhang Wang, Taher A. Nofal, Mahmoud M. Selim, RETRACTED ARTICLE: Augmentations of solar collector performance with involve of nanomaterial and perforated twisted tape, 2022, 2190-5509, 10.1007/s13204-022-02363-3 | |
35. | Pengfei Wang, Xiuhui Diao, Mahmoud M. Selim, Study for nanomaterial transportation within the channel with apply of complicated turbulator, 2022, 36, 0217-9849, 10.1142/S0217984922500932 | |
36. | Muhammad Bilal Khan, Aleksandr Rakhmangulov, Najla Aloraini, Muhammad Aslam Noor, Mohamed S. Soliman, Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities, 2023, 11, 2227-7390, 656, 10.3390/math11030656 | |
37. | Yinghong Qin, Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin, 2021, 44, 2352152X, 103452, 10.1016/j.est.2021.103452 | |
38. | Tie-Hong Zhao, Wei-Mao Qian, Yu-Ming Chu, On approximating the arc lemniscate functions, 2022, 53, 0019-5588, 316, 10.1007/s13226-021-00016-9 | |
39. | Saade Abdalkareem Jasim, Ahmed M. Mohsen, Usama S. Altimari, Mustafa Z. Mahmoud, Yehya M. Ahmed, Maryam Derakhshandeh, The CH3F and CH3Cl detection by the BeO nanotube in the presence of environmental gases, 2022, 153, 0026-9247, 331, 10.1007/s00706-022-02907-x | |
40. | Weerawat Sudsutad, Nantapat Jarasthitikulchai, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications, 2022, 10, 2227-7390, 573, 10.3390/math10040573 | |
41. | Hamad Hassan Awan, Arshad Hussain, Muhammad Faisal Javed, Yanjun Qiu, Raid Alrowais, Abdeliazim Mustafa Mohamed, Dina Fathi, Abdullah Mossa Alzahrani, Predicting Marshall Flow and Marshall Stability of Asphalt Pavements Using Multi Expression Programming, 2022, 12, 2075-5309, 314, 10.3390/buildings12030314 | |
42. | Muhammad Bilal Khan, Adriana Cătaş, Najla Aloraini, Mohamed S. Soliman, Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings, 2023, 7, 2504-3110, 223, 10.3390/fractalfract7030223 | |
43. | Tie-Hong Zhao, Zhong-Hua Shen, Yu-Ming Chu, Sharp power mean bounds for the lemniscate type means, 2021, 115, 1578-7303, 10.1007/s13398-021-01117-0 | |
44. | Mohammad Arefi, Shayan Mannani, L. Collini, Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching, 2022, 22, 1644-9665, 10.1007/s43452-022-00514-5 | |
45. | Ali Aldrees, Hamad Hassan Awan, Muhammad Faisal Javed, Abdeliazim Mustafa Mohamed, Prediction of water quality indexes with ensemble learners: Bagging and boosting, 2022, 168, 09575820, 344, 10.1016/j.psep.2022.10.005 | |
46. | Musaad S. Aldhabani, Kamsing Nonlaopon, S. Rezaei, Fatimah S.Bayones, S.K. Elagan, Sobhy A.A. El-Marouf, Abundant solitary wave solutions to a perturbed Schrödinger equation with Kerr law nonlinearity via a novel approach, 2022, 35, 22113797, 105385, 10.1016/j.rinp.2022.105385 | |
47. | Ali Rostamian, Keivan Fallah, Yasser Rostamiyan, Javad Alinejad, Application of computational fluid dynamics for detection of high risk region in middle cerebral artery (MCA) aneurysm, 2023, 34, 0129-1831, 10.1142/S0129183123500195 | |
48. | Fan Zhang, Weimao Qian, Hui Zuo Xu, Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means, 2022, 2022, 1029-242X, 10.1186/s13660-022-02768-2 | |
49. | A A Menazea, Nasser S Awwad, Hala A Ibrahium, Khadijah H Alharbi, Mohammed S Alqahtani, Titanium doping effect on the sensing performance of ZnO nanosheets toward phosgene gas, 2022, 97, 0031-8949, 055816, 10.1088/1402-4896/ac6382 | |
50. | Guodong Zhang, Yakun Li, Doaa Basim Mohammed, Davood Toghraie, Optimization of a high-temperature recuperator equipped with corrugated helical heat exchanger for improvement of thermal-hydraulic performance, 2022, 33, 2214157X, 101956, 10.1016/j.csite.2022.101956 | |
51. | Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Some estimations of the Jensen difference and applications, 2023, 46, 0170-4214, 5863, 10.1002/mma.8873 | |
52. | Ghassan Fadhil Smaisim, Azher M. Abed, Hayder Al-Madhhachi, Salema K. Hadrawi, Hasan Mahdi M. Al-Khateeb, Ehsan Kianfar, Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review, 2023, 13, 2191-1630, 219, 10.1007/s12668-022-01048-z | |
53. | Adel Almarashi, Irreversibility and thermal analysis of ferrofluid with numerical modeling, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02106-3 | |
54. | Ali A Rajhi, Sagr Alamri, Ghaffar Ebadi, Retracted: A density functional theory investigation on the Au-decorated zinc oxide nanosheet as a chemical sensor for mesalamine drug detection, 2022, 97, 0031-8949, 045401, 10.1088/1402-4896/ac51c7 | |
55. | Saade Abdalkareem Jasim, Maria Jade Catalan Opulencia, Ali Majdi, Dildora Zukhriddinovna Yusupova, Yasser Fakri Mustafa, Ali Thaeer Hammid, Parvaneh Delir Kheirollahi Nezhad, Investigation of crotonaldehyde adsorption on pure and Pd-decorated GaN nanotubes: A density functional theory study, 2022, 348-349, 00381098, 114741, 10.1016/j.ssc.2022.114741 | |
56. | Murad Ali Shah, Kejia Pan, Muhammad Ibrahim, Tareq Saeed, Use of neural network and machine learning in optimizing heat transfer and entropy generated in a cavity filled with nanofluid under the influence of magnetic field: A numerical study, 2022, 139, 09557997, 113, 10.1016/j.enganabound.2022.03.012 | |
57. | Zeqi Wang, Yingqian Liu, Mustafa Z. Mahmoud, Simultaneous application of active and passive methods in cooling of a cylindrical lithium-ion battery by changing the size of the elliptical cavity filled with nano phase change materials, 2022, 50, 2352152X, 104693, 10.1016/j.est.2022.104693 | |
58. | Xiao-Yong Shen, Hong-Qin Xu, M. Barzegar Gerdroodbary, S. Valiallah Mousavi, Amir Musa Abazari, S. Misagh Imani, Numerical simulation of blood flow effects on rupture of aneurysm in middle cerebral artery, 2022, 33, 0129-1831, 10.1142/S0129183122500309 | |
59. | Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Mohammad Javed Ansari, Dmitry Olegovich Bokov, Ghulam Yasin, Lakshmi Thangavelu, Maryam Derakhshandeh, Boron carbide nanotube as targeted drug delivery system for melphalan anticancer drug, 2022, 354, 01677322, 118796, 10.1016/j.molliq.2022.118796 | |
60. | Qingji Tian, Yi-Peng Xu, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Mahmoud M. Selim, Flow structure and fuel mixing of hydrogen multi-jets in existence of upstream divergent ramp at supersonic combustion chamber, 2022, 121, 12709638, 107299, 10.1016/j.ast.2021.107299 | |
61. | Raheel Asghar, Muhammad Faisal Javed, Raid Alrowais, Alamgir Khalil, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, Nikolai Ivanovich Vatin, Predicting the Lateral Load Carrying Capacity of Reinforced Concrete Rectangular Columns: Gene Expression Programming, 2022, 15, 1996-1944, 2673, 10.3390/ma15072673 | |
62. | Ying Lai, Peng Liu, Potential application of BC3 nanotube for removal of bisphenol from water; density functional theory study, 2022, 357, 01677322, 119147, 10.1016/j.molliq.2022.119147 | |
63. | Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities, 2022, 14, 2073-8994, 1901, 10.3390/sym14091901 | |
64. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities, 2022, 6, 2504-3110, 679, 10.3390/fractalfract6110679 | |
65. | Ahmad Rajabizadeh, Maryam Alihosseini, Hawraz Ibrahim M. Amin, Haider Abdulkareem Almashhadani, Faride Mousazadeh, Marcos Augusto Lima Nobre, Maryam Dehghani Soltani, Shapari Sharaki, Abduladheem Turki Jalil, Mustafa M. Kadhim, The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries, 2022, 1574-1443, 10.1007/s10904-022-02467-x | |
66. | Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class of Preinvex Fuzzy Mappings and Related Inequalities, 2022, 10, 2227-7390, 3753, 10.3390/math10203753 | |
67. | Guangli Fan, Adel Almarashi, Peixi Guo, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, R. Moradi, Comparison of convergent/divergent ramp on fuel mixing of single jet at supersonic crossflow, 2022, 120, 12709638, 107236, 10.1016/j.ast.2021.107236 | |
68. | Li-E Yan, Nidal H. Abu-Hamdeh, Rashad A.R. Bantan, Mahmoud M. Selim, Heat storage unit for melting of paraffin considering hybrid nanomaterial and helical tubes, 2021, 44, 2352152X, 103427, 10.1016/j.est.2021.103427 | |
69. | Muhammad Bilal Khan, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim Abdullah, Alia M. Alzubaidi, Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings, 2023, 11, 2227-7390, 550, 10.3390/math11030550 | |
70. | Syed Modassir Hussain, Wasim Jamshed, Amjad Ali Pasha, Mohammad Adil, Mohammad Akram, Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface, 2022, 137, 07351933, 106243, 10.1016/j.icheatmasstransfer.2022.106243 | |
71. | Nastaran Chokhachi Zadeh Moghadam, Saade Abdalkareem Jasim, Fuad Ameen, Dalal H. Alotaibi, Marcos A. L. Nobre, Hanen Sellami, Mehrdad Khatami, Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans, 2022, 45, 1615-7591, 1201, 10.1007/s00449-022-02736-6 | |
72. | Mohammed Zwawi, Treatment of ferrofluid through a sinusoidal cavity with impose of magnetic source, 2022, 2190-5509, 10.1007/s13204-022-02361-5 | |
73. | Waleed Hamali, Musawa Yahya Almusawa, Efficiency of nanoparticles on heat transfer of working fluid in presence of twisted tape, 2022, 36, 2214157X, 102178, 10.1016/j.csite.2022.102178 | |
74. | Saade Abdalkareem Jasim, Indrajit Patra, Maria Jade Catalan Opulencia, Kadda Hachem, Rosario Mireya Romero Parra, Mohammad Javed Ansari, Abduladheem Turki Jalil, Moaed E. Al-Gazally, Mahin Naderifar, Mehrdad Khatami, Reza Akhavan-Sigari, Green synthesis of spinel copper ferrite (CuFe2O4) nanoparticles and their toxicity, 2022, 11, 2191-9097, 2483, 10.1515/ntrev-2022-0143 | |
75. | Yahya Ali Rothan, Numerical investigation for augmentation of performance of solar absorber utilizing perforated tape and nanomaterial, 2022, 102, 0044-2267, 10.1002/zamm.202100542 | |
76. | A. A. Menazea, Nasser S. Awwad, Hala A. Ibrahium, M. Derakh, Mohammed S. Alqahtani, DNA Nucleobase Interaction with Silicon Carbide Nanosheet, 2022, 14, 1876-990X, 11355, 10.1007/s12633-022-01781-w | |
77. | Yaser Heidari, Mohsen Irani Rahaghi, Mohammad Arefi, Buckling analysis of FG cylindrical nano shell integrated with CNTRC patches, 2022, 1745-5030, 1, 10.1080/17455030.2022.2086320 | |
78. | S. Rezaei, Shahram Rezapour, Jehad Alzabut, Robert de Sousa, B.M. Alotaibi, S.A. El-Tantawy, Some novel approaches to analyze a nonlinear Schrodinger’s equation with group velocity dispersion: Plasma bright solitons, 2022, 35, 22113797, 105316, 10.1016/j.rinp.2022.105316 | |
79. | Zhenping Zhou, Xin Liu, Ping Li, B24N24 nanocage as an electronic sensor for metronidazole drug: density functional theory studies, 2022, 28, 1610-2940, 10.1007/s00894-022-05127-6 | |
80. | Ehsan Kianfar, A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor, 2022, 0170-0839, 10.1007/s00289-022-04626-z | |
81. | Amjad Ali Pasha, Nazrul Islam, Wasim Jamshed, Mohammad Irfan Alam, Abdul Gani Abdul Jameel, Khalid A. Juhany, Radi Alsulami, Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique, 2022, 137, 07351933, 106244, 10.1016/j.icheatmasstransfer.2022.106244 | |
82. | Zaid Mohammed Mohammed Mahdi Sayed, Muhammad Adil Khan, Shahid Khan, Josip Pečarić, Hugo Leiva, A Refinement of the Integral Jensen Inequality Pertaining Certain Functions with Applications, 2022, 2022, 2314-8888, 1, 10.1155/2022/8396644 | |
83. | Limei Fan, Zhansheng Cheng, Juan Du, Parvaneh Delir Kheirollahi Nezhad, A computational study on the Al-doped CuO nanocluster for CO gas sensor applications, 2022, 153, 0026-9247, 321, 10.1007/s00706-022-02906-y | |
84. | Hassan Shokouhandeh, Mehrdad Ahmadi Kamarposhti, Fariba Asghari, Ilhami Colak, Kei Eguchi, Distributed Generation Management in Smart Grid with the Participation of Electric Vehicles with Respect to the Vehicle Owners’ Opinion by Using the Imperialist Competitive Algorithm, 2022, 14, 2071-1050, 4770, 10.3390/su14084770 | |
85. | Muhammad Bilal Hafeez, Marek Krawczuk, Hasan Shahzad, Amjad Ali Pasha, Mohammad Adil, Simulation of hybridized nanofluids flowing and heat transfer enhancement via 3-D vertical heated plate using finite element technique, 2022, 12, 2045-2322, 10.1038/s41598-022-15560-5 | |
86. | Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457 | |
87. | Fatemeh Meghdadi Esfahani, Ebrahim Balali, Seyedeh Sedigheh Hashemi, Ramona Khadivi, Mohsen Mohammad Raei Nayini, B. Voung, Investigating an iron-doped fullerene cage for adsorption of niacin (vitamin B3): DFT analyses of bimolecular complex formations, 2022, 1214, 2210271X, 113768, 10.1016/j.comptc.2022.113768 | |
88. | Maryam Darvish, Navid Nasrabadi, Farnoush Fotovat, Setareh Khosravi, Mehrdad Khatami, Samira Jamali, Elnaz Mousavi, Siavash Iravani, Abbas Rahdar, Biosynthesis of Zn-doped CuFe2O4 nanoparticles and their cytotoxic activity, 2022, 12, 2045-2322, 10.1038/s41598-022-13692-2 | |
89. | Ya-jun Chen, Tie-hong Zhao, On the monotonicity and convexity for generalized elliptic integral of the first kind, 2022, 116, 1578-7303, 10.1007/s13398-022-01211-x | |
90. | Hani Sait, Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of heatsink connected to the system, 2022, 52, 2352152X, 104692, 10.1016/j.est.2022.104692 | |
91. | Meznah M. Alanazi, Areej A. Al-Moneef, Ghaffar Ebadi, Hossam Donya, Potential application of different metal-decorated boron nitride nanosheets as chemical sensors for trichlorosilane detection, 2022, 448, 03759601, 128303, 10.1016/j.physleta.2022.128303 | |
92. | Neelu Kumari Kumarasamy Subramaniam, Youssef Trabelsi, Ali Azarkaman, Homa Farmani, Advanced nanostructures plasmonics noninvasive sensors for type 1 diabetes, 2022, 54, 0306-8919, 10.1007/s11082-022-03879-2 | |
93. | Kamsing Nonlaopon, Sachin Kumar, S. Rezaei, Fatimah S. Bayones, S.K. Elagan, Some optical solutions to the higher-order nonlinear Schrödinger equation with Kerr nonlinearity and a local fractional derivative, 2022, 36, 22113797, 105430, 10.1016/j.rinp.2022.105430 | |
94. | Mustafa M. Kadhim, Mohanad Hatem Shadhar, Khalidah Salih Merzah, Hadeer Jasem, Safa K. Hachim, Ahmed Mahdi Rheima, Roya Ahmadi, Propylthiouracil drug adsorption on pristine, Cu, Ag, and Au decorated AlP nanosheets, 2022, 444, 03759601, 128236, 10.1016/j.physleta.2022.128236 | |
95. | Majid Reza Akbarizadeh, Mina Sarani, Samaneh Darijani, Study of antibacterial performance of biosynthesized pure and Ag-doped ZnO nanoparticles, 2022, 33, 2037-4631, 613, 10.1007/s12210-022-01079-4 | |
96. | R. Sivaraman, Indrajit Patra, Maria Jade Catalan Opulencia, Rafid Sagban, Himanshu Sharma, Abduladheem Turki Jalil, Abdol Ghaffar Ebadi, Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries, 2022, 917, 15726657, 116413, 10.1016/j.jelechem.2022.116413 | |
97. | Omar Dheyauldeen Salahdin, Hamzah H Kzar, Maria Jade Catalan Opulencia, Adnan Hashim Abdulkadhim, Ali Thaeer Hammid, Abdol Ghaffar Ebadi, Potential application of AlP nanosheet semiconductor in the detection of toxic phosgene, thiophosgene, and formaldehyde gases, 2022, 37, 0268-1242, 095015, 10.1088/1361-6641/ac7b9f | |
98. | Man-Wen Tian, Ghassan Fadhil Smaisim, Shu-Rong Yan, S. Mohammad Sajadi, Mustafa Z. Mahmoud, Hikmet Ş. Aybar, Azher M. Abed, Economic cost and efficiency analysis of a lithium-ion battery pack with the circular and elliptical cavities filled with phase change materials, 2022, 52, 2352152X, 104794, 10.1016/j.est.2022.104794 | |
99. | Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals, 2022, 10, 2227-7390, 3251, 10.3390/math10183251 | |
100. | Abdulilah Mohammad Mayet, Seyed Mehdi Alizadeh, Karina Shamilyevna Nurgalieva, Robert Hanus, Ehsan Nazemi, Igor M. Narozhnyy, Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems, 2022, 15, 1996-1073, 1986, 10.3390/en15061986 | |
101. | Ghassan Fadhil Smaisim, Doaa Basim mohammed, Ahmed M. Abdulhadi, Khusniddin Fakhriddinovich Uktamov, Forat H. Alsultany, Samar Emad Izzat, Mohammad Javed Ansari, Hamzah H. Kzar, Moaed E. Al-Gazally, Ehsan Kianfar, Nanofluids: properties and applications, 2022, 104, 0928-0707, 1, 10.1007/s10971-022-05859-0 | |
102. | Tiehong Zhao, Miaokun Wang, Yuming Chu, On the Bounds of the Perimeter of an Ellipse, 2022, 42, 0252-9602, 491, 10.1007/s10473-022-0204-y | |
103. | Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475 | |
104. | K. Nonlaopon, B. Günay, Mohamed S. Mohamed, S.K. Elagan, S.A. Najati, Shahram Rezapour, On extracting new wave solutions to a modified nonlinear Schrödinger’s equation using two integration methods, 2022, 38, 22113797, 105589, 10.1016/j.rinp.2022.105589 | |
105. | Xin Liu, Yi-Peng Xu, Hamdi Ayed, Yahya Ali Rothan, Mahmoud M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins, 2022, 45, 2352152X, 103763, 10.1016/j.est.2021.103763 | |
106. | Wang Xifeng, Zhang Xiaoluan, Ibrahim Mahariq, Mohamed Salem, Mohammad Ghalandari, Farhad Ghadak, Mostafa Abedini, Performance Optimization of the Helical Heat Exchanger With Turbulator, 2022, 9, 2296-598X, 10.3389/fenrg.2021.789316 | |
107. | Raed Qahiti, Transportation of ferrofluid due to non-uniform magnetic force through a curved permeable container, 2022, 2190-5509, 10.1007/s13204-021-02285-6 | |
108. | Basem H. Elesawy, Ahmad El Askary, Nasser S. Awwad, Hala A. Ibrahium, P. D. Nezhad, Mohd Shkir, A density functional theory study of Au-decorated gallium nitride nano-tubes as chemical sensors for the recognition of sulfonamide, 2022, 43, 1741-5993, 482, 10.1080/17415993.2022.2074794 | |
109. | Lirong Wang, Guodao Zhang, Xuesong Yin, Hongkai Zhang, Mohammad Ghalandari, Optimal control of renewable energy in buildings using the machine learning method, 2022, 53, 22131388, 102534, 10.1016/j.seta.2022.102534 | |
110. | Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang, Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications, 2022, 7, 2473-6988, 4974, 10.3934/math.2022277 | |
111. | Jinyuan Wang, Yi-Peng Xu, Raed Qahiti, M. Jafaryar, Mashhour A. Alazwari, Nidal H. Abu-Hamdeh, Alibek Issakhov, Mahmoud M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, 2022, 208, 09204105, 109734, 10.1016/j.petrol.2021.109734 | |
112. | Gustavo Santos-García, Muhammad Bilal Khan, Hleil Alrweili, Ahmad Aziz Alahmadi, Sherif S. M. Ghoneim, Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator, 2022, 10, 2227-7390, 2756, 10.3390/math10152756 | |
113. | Ehsan Kianfar, The Effects of SiO2/Al2O3 and H2O/Al2O3 Molar Ratios on SAPO-34 Catalyst in the Methanol to Olefin Process, 2023, 15, 1876-990X, 381, 10.1007/s12633-022-02008-8 | |
114. | Bardia Mortezagholi, Emad Movahed, Amirhossein Fathi, Milad Soleimani, Armita Forutan Mirhosseini, Negar Zeini, Mehrdad Khatami, Mahin Naderifar, Bahman Abedi Kiasari, Mehran Zareanshahraki, Plant‐mediated synthesis of silver‐doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay, 2022, 85, 1059-910X, 3553, 10.1002/jemt.24207 | |
115. | Ahmad Banji Jafar, Sharidan Shafie, Imran Ullah, Rabia Safdar, Wasim Jamshed, Amjad Ali Pasha, Mustafa Mutiur Rahman, Syed M. Hussain, Aysha Rehman, El Sayed M. Tag El Din, Mohamed R. Eid, Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet, 2022, 12, 2045-2322, 10.1038/s41598-022-18761-0 | |
116. | Sagr Alamri, Ali A. Rajhi, M. Derakhshande, Potential detection of C2N2 gas by the pure, Al, and Cu-doped graphynes: a DFT study, 2022, 48, 0892-7022, 574, 10.1080/08927022.2022.2036338 | |
117. | Fuzhang Wang, Waleed Hamali, Musawa Yahya Almusawa, Taher A. Nofal, Mahmoud M. Selim, Juan Zhang, Simulation of spiral tube during melting utilizing multi-type nanoparticles, 2022, 213, 09204105, 110353, 10.1016/j.petrol.2022.110353 | |
118. | Kamsing Nonlaopon, Shahram Rezapour, Musaad S. Aldhabani, Samirah H. Alsulami, S.K. Elagan, On an efficient approach to solutions of a perturbed nonlinear Schrödinger’s equation, 2022, 39, 22113797, 105738, 10.1016/j.rinp.2022.105738 | |
119. | Guangli Fan, Hassan Abdulwahab Anjal, Raed Qahiti, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Jin Xu, Hailong Zhang, Zhixiong Li, Comparison of different lobe-injectors on fuel mixing characteristics of single jet at the supersonic combustion chamber, 2021, 119, 12709638, 107193, 10.1016/j.ast.2021.107193 | |
120. | Israr Ilyas, Adeel Zafar, Muhammad Afzal, Muhammad Javed, Raid Alrowais, Fadi Althoey, Abdeliazim Mohamed, Abdullah Mohamed, Nikolai Vatin, Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming, 2022, 14, 2073-4360, 1789, 10.3390/polym14091789 | |
121. | Si Yuanlei, Bassem F. Felemban, Ali Bahadar, Yahya Ali Rothan, Mahmoud M. Selim, Investigation of nanofluid flow within a duct with complicated swirl flow device using numerical computing technology, 2022, 33, 0129-1831, 10.1142/S0129183122500954 | |
122. | Syed M Hussain, Faisal Shahzad, Wasim Jamshed, Mohammad Kalimuddin Ahmad, Zulfiqar Rehman, Imran Ullah, Thermal scrutinization of magetohydrodynamics CuO engine oil nanofluid flow across a horizontal surface via Koo–Kleinstreuer–Li modeling: A thermal case study, 2022, 0954-4089, 095440892211311, 10.1177/09544089221131147 | |
123. | MohammadKazem Rostamian, Soroush Maddah, Yasser Rostamiyan, Influence of sinusoidal shock generator on mixing performance of hydrogen and air co-flow jets in dual-combustor ramjet, 2022, 195, 00945765, 109, 10.1016/j.actaastro.2022.03.002 | |
124. | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions, 2023, 8, 2473-6988, 7437, 10.3934/math.2023374 | |
125. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Mohamed S. Soliman, Muhammad Aslam Noor, Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 622, 10.3390/axioms11110622 | |
126. | Hesham Alhumade, Eydhah Almatrafi, Muhyaddin Rawa, A.S. El-Shafay, Cong Qi, Yacine Khetib, Numerical study of simultaneous use of non-Newtonian hybrid nano-coolant and thermoelectric system in cooling of lithium-ion battery and changes in the flow geometry, 2022, 540, 03787753, 231626, 10.1016/j.jpowsour.2022.231626 | |
127. | Xue-De Luan, Yi-Peng Xu, Hamdi Ayed, Mahmoud M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects, 2022, 131, 07351933, 105787, 10.1016/j.icheatmasstransfer.2021.105787 | |
128. | Muhammad Bilal Khan, Adriana Cătaş, Omar Mutab Alsalami, Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions, 2022, 6, 2504-3110, 415, 10.3390/fractalfract6080415 | |
129. | Si Yuanlei, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Muhammad Asif Zahoor Raja, Nanomaterial migration due to magnetic field through a porous region utilizing numerical modeling, 2021, 785, 00092614, 139162, 10.1016/j.cplett.2021.139162 | |
130. | Yahya Ali Rothan, Modeling for freezing of PCM enhanced with nano-powders within a duct, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02505-0 | |
131. | Saade Abdalkareem Jasim, Moaed E. Al-Gazally, Maria Jade Catalan Opulencia, Mustafa M. Kadhim, Ahmed B. Mahdi, Ali Thaeer Hammid, Abdol Ghaffar Ebadi, Toxic hydrazoic acid vapor detection and adsorption by different metal-decorated BN nanotubes: A first-principles study, 2022, 1212, 2210271X, 113721, 10.1016/j.comptc.2022.113721 | |
132. | Yahya Ali Rothan, Modeling approach for nanomaterial convective migration with inclusion of Lorentz force, 2022, 102, 0044-2267, 10.1002/zamm.202100204 | |
133. | Cunhong Li, Yan Xu, Abdol Ghaffar Ebadi, The electronic response of the aluminum phosphide nanotube to different concentrations of carbon disulfide molecules, 2022, 153, 0026-9247, 339, 10.1007/s00706-022-02912-0 | |
134. | Ali Aldrees, Mohsin Ali Khan, Muhammad Atiq Ur Rehman Tariq, Abdeliazim Mustafa Mohamed, Ane Wai Man Ng, Abubakr Taha Bakheit Taha, Multi-Expression Programming (MEP): Water Quality Assessment Using Water Quality Indices, 2022, 14, 2073-4441, 947, 10.3390/w14060947 | |
135. | Genhong Zhong, Xiaoyan Ma, Fei Wang, Approximations related to the complete p-elliptic integrals, 2022, 20, 2391-5455, 1046, 10.1515/math-2022-0493 | |
136. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, 2022, 7, 2473-6988, 10454, 10.3934/math.2022583 | |
137. | Zhongliang Shen, Shuaixian Yu, Shichuang Zheng, Taher A. Nofal, Awad Musa, Z. Li, Numerical study of multi-jet with upstream divergent ramp at supersonic cross flow, 2022, 127, 12709638, 107689, 10.1016/j.ast.2022.107689 | |
138. | Yu Jiang, Xiaomei Wang, Mustafa Z. Mahmoud, Mohamed Abdelghany Elkotb, Lavania Baloo, Zhixiong Li, Behzad Heidarshenas, A study of nanoparticle shape in water/alumina/boehmite nanofluid flow in the thermal management of a lithium-ion battery under the presence of phase-change materials, 2022, 539, 03787753, 231522, 10.1016/j.jpowsour.2022.231522 | |
139. | Kamsing Nonlaopon, B. Günay, Shahram Rezapour, Musaad S. Aldhabani, A.M. Alotaibi, S.K. Elagan, On novel application of piece-wise fractional operators for a predator–prey model, 2022, 39, 22113797, 105683, 10.1016/j.rinp.2022.105683 | |
140. | Omar Dheyauldeen Salahdin, Hamidreza Sayadi, Reena Solanki, Rosario Mireya Romero Parra, Mohaimen Al-Thamir, Abduladheem Turki Jalil, Samar Emad Izzat, Ali Thaeer Hammid, Luis Andres Barboza Arenas, Ehsan Kianfar, Graphene and carbon structures and nanomaterials for energy storage, 2022, 128, 0947-8396, 10.1007/s00339-022-05789-2 | |
141. | Xinglong Liu, Zahir Shah, Mohammed R. Alzahrani, Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes, 2022, 137, 2190-5444, 10.1140/epjp/s13360-021-02327-6 | |
142. | Jawed Mustafa, Saeed Alqaed, Fahad Awjah Almehmadi, Mohsen Sharifpur, Effect of simultaneous use of water-alumina nanofluid and phase change nanomaterial in a lithium-ion battery with a specific geometry connected solar system, 2022, 539, 03787753, 231570, 10.1016/j.jpowsour.2022.231570 | |
143. | Yahya Ali Rothan, Simulation of physical behavior of nanomaterial during freezing within a container, 2022, 36, 0217-9849, 10.1142/S0217984922501184 | |
144. | Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639 | |
145. | Masoome Sadeghi, Asal Yousefi Siavoshani, Mahdiye Bazargani, Abduladheem Turki Jalil, Mojtaba Ramezani, Mohammad Reza Poor Heravi, Dichlorosilane adsorption on the Al, Ga, and Zn-doped fullerenes, 2022, 153, 0026-9247, 427, 10.1007/s00706-022-02926-8 | |
146. | Te Ma, Mahdi Aghaabbasi, Mujahid Ali, Rosilawati Zainol, Amin Jan, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm, 2022, 14, 2071-1050, 3395, 10.3390/su14063395 | |
147. | Syed M. Hussain, B. Shankar Goud, Prakash Madheshwaran, Wasim Jamshed, Amjad Ali Pasha, Rabia Safdar, Misbah Arshad, Rabha W. Ibrahim, Mohammad Kalimuddin Ahmad, Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study, 2022, 7, 2470-1343, 25309, 10.1021/acsomega.2c02207 | |
148. | Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Hamed H. Alsulami, Z. M. M. M. Sayed, Ahmed Mohammed Alshehri, Fahd Jarad, Estimations of the Slater Gap via Convexity and Its Applications in Information Theory, 2022, 2022, 1563-5147, 1, 10.1155/2022/1750331 | |
149. | Waleed Hamali, Musawa Yahya Almusawa, Transient heat transfer of NEPCM during solidification using Galerkin method, 2022, 35, 2214157X, 102114, 10.1016/j.csite.2022.102114 | |
150. | Chuan-Yu Cai, Lu Chen, Ti-Ren Huang, Yuming Chu, New properties for the Ramanujan R-function, 2022, 20, 2391-5455, 724, 10.1515/math-2022-0045 | |
151. | Hui-Zuo Xu, Wei-Mao Qian, Yu-Ming Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, 2022, 116, 1578-7303, 10.1007/s13398-021-01162-9 | |
152. | Ahmad El Askary, Basem H. Elesawy, Nasser S. Awwad, Hala A. Ibrahium, Mohd. Shkir, Different metal-decorated aluminum phosphide nanotubes as hydrazine sensors for biomedical applications, 2022, 28, 1610-2940, 10.1007/s00894-022-05102-1 | |
153. | Shen-Yang Tan, Ti-Ren Huang, Yu-Ming Chu, Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind, 2021, 71, 1337-2211, 667, 10.1515/ms-2021-0012 | |
154. | Yinghong Qin, Simulation based on Galerkin method for solidification of water through energy storage enclosure, 2022, 50, 2352152X, 104672, 10.1016/j.est.2022.104672 | |
155. | Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322 | |
156. | Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692 | |
157. | Saade Abdalkareem Jasim, Hawraz Ibrahim M. Amin, Ahmad Rajabizadeh, Marcos Augusto Lima Nobre, Fariba Borhani, Abduladheem Turki Jalil, Marwan Mahmood Saleh, Mustafa M. Kadhim, Mehrdad Khatami, Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants, 2022, 86, 0273-1223, 2303, 10.2166/wst.2022.318 | |
158. | Bandar Almohsen, Computational modeling of a complex container with nanofluid carrier fluid and magnetic force, 2022, 1745-5030, 1, 10.1080/17455030.2022.2096945 | |
159. | Yahya Ali Rothan, Investigation of hybrid nanomaterial application in melting process of paraffin enhanced with nanoparticles, 2021, 96, 0031-8949, 125253, 10.1088/1402-4896/ac3877 | |
160. | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, 2021, 6, 2473-6988, 8001, 10.3934/math.2021465 | |
161. | Hamdi Ayed, Modeling of nanomaterial transportation within an enclosure with imposing external magnetic source, 2022, 2190-5509, 10.1007/s13204-021-02136-4 | |
162. | Xuexiao You, Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Improvements of Slater’s Inequality by Means of 4-Convexity and Its Applications, 2022, 10, 2227-7390, 1274, 10.3390/math10081274 | |
163. | Panyu Tang, Mahdi Aghaabbasi, Mujahid Ali, Amin Jan, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships, 2022, 14, 2071-1050, 3989, 10.3390/su14073989 | |
164. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions, 2022, 10, 2227-7390, 3851, 10.3390/math10203851 | |
165. | Bandar Almohsen, Magnetohydrodynamic migration of nanomaterial within a cavity with involvement of hybrid nanoparticles, 2022, 36, 0217-9849, 10.1142/S0217984922500269 | |
166. | Haiwei Yang, Yahya Ali Rothan, Saad Althobaiti, Mahmoud M. Selim, Simulation for influence of Y-shape fin on phase change of paraffin inside triplex pipe with using Al2O3 nanoparticles, 2022, 46, 2352152X, 103878, 10.1016/j.est.2021.103878 | |
167. | Menglin Qin, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Investigation of water freezing with inclusion of nanoparticle within a container with fins, 2022, 2190-5509, 10.1007/s13204-021-02139-1 | |
168. | Kaikai Jin, Yulei Tai, Davood Toghraie, Maboud Hekmatifar, The effects of nanoparticle percentages and an external variable magnetic field on the atomic and thermal behaviors in an oscillating heat pipe via molecular dynamics simulation, 2022, 360, 01677322, 119570, 10.1016/j.molliq.2022.119570 | |
169. | Menglin Qin, Adel Almarashi, Ziyad Jamil Talabany, Sajjad Haider, Shaukat Khan, Mahmoud M. Selim, Charging of phase change material layers though air heat exchanger considering TiO2 nanomaterial, 2022, 47, 2352152X, 103652, 10.1016/j.est.2021.103652 | |
170. | Menglin Qin, Sajjad Haider, Shaukat Khan, Alibek Issakhov, Mahmoud M. Selim, RETRACTED ARTICLE: Study for Lorentz force impact on irreversibility of nanomaterial with considering the permeable zone, 2022, 2190-5509, 10.1007/s13204-021-02183-x | |
171. | Jian Wang, Wissam H. Alawee, Hayder A. Dhahad, Taher A. Nofal, Awad Musa, Ping Xu, Numerical study for solidification of water inside a storage tank considering copper oxide nanoparticles, 2022, 52, 2352152X, 104683, 10.1016/j.est.2022.104683 | |
172. | Muhammad Bilal Khan, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, Alia M. Alzubaidi, Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation, 2023, 11, 2227-7390, 1356, 10.3390/math11061356 | |
173. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, Mohamed S. Soliman, Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation, 2023, 15, 2073-8994, 862, 10.3390/sym15040862 | |
174. | Muhammad Bilal Khan, Aziz Ur Rahman, Abdulwadoud A. Maash, Savin Treanțǎ, Mohamed S. Soliman, Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation, 2023, 12, 2075-1680, 365, 10.3390/axioms12040365 | |
175. | Ling Zhu, A new upper bound for the complete elliptic integral of the first kind, 2023, 117, 1578-7303, 10.1007/s13398-023-01453-3 | |
176. | Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885 | |
177. | Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Zaid M. M. M. Sayed, Salha Alshaikey, Emad E. Mahmoud, Daniel Maria Busiello, Determination of Novel Estimations for the Slater Difference and Applications, 2024, 2024, 1099-0526, 1, 10.1155/2024/8481103 | |
178. | Jiahui Wu, Tiehong Zhao, On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function, 2024, 50, 1017-060X, 10.1007/s41980-024-00889-6 | |
179. | Muhammad Adil Khan, Asadullah Sohail, Hidayat Ullah, Tareq Saeed, Estimations of the Jensen Gap and Their Applications Based on 6-Convexity, 2023, 11, 2227-7390, 1957, 10.3390/math11081957 | |
180. | Tie-Hong Zhao, Miao-Kun Wang, Sharp double-exponent type bounds for the lemniscate sine function, 2024, 18, 1452-8630, 148, 10.2298/AADM230417005Z | |
181. | Ebrahem A. Algehyne, Izharul Haq, Zehba Raizah, Fuad S. Alduais, Anwar Saeed, Ahmed M. Galal, Heat transport phenomenon of the MHD water-based hybrid nanofluid flow over a rotating disk with velocity slips, 2024, 38, 0217-9792, 10.1142/S0217979224501005 | |
182. | Tareq Saeed, Adriana Cătaș, Muhammad Bilal Khan, Ahmed Mohammed Alshehri, Some New Fractional Inequalities for Coordinated Convexity over Convex Set Pertaining to Fuzzy-Number-Valued Settings Governed by Fractional Integrals, 2023, 7, 2504-3110, 856, 10.3390/fractalfract7120856 | |
183. | Muhammad Bilal Khan, Eze R. Nwaeze, Cheng-Chi Lee, Hatim Ghazi Zaini, Der-Chyuan Lou, Khalil Hadi Hakami, Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates, 2023, 11, 2227-7390, 4974, 10.3390/math11244974 | |
184. | Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Chanisara Metpattarahiran, Thanin Sitthiwirattham, Improvements of Integral Majorization Inequality with Applications to Divergences, 2023, 13, 2075-1680, 21, 10.3390/axioms13010021 | |
185. | Muhammad Bilal Khan, Željko Stević, Abdulwadoud A. Maash, Muhammad Aslam Noor, Mohamed S. Soliman, Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation, 2023, 12, 2075-1680, 399, 10.3390/axioms12040399 | |
186. | Muhammad Bilal Khan, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, Chun-Ta Li, Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities, 2023, 11, 2227-7390, 2851, 10.3390/math11132851 | |
187. | Tareq Saeed, Muhammad Adil Khan, Shah Faisal, Hamed H. Alsulami, Mohammed Sh. Alhodaly, New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization, 2023, 56, 2391-4661, 10.1515/dema-2022-0225 | |
188. | Wei-Dong Jiang, Sharp inequalities for the complete elliptic integrals of the first and second kinds, 2023, 17, 1452-8630, 388, 10.2298/AADM200613020J | |
189. | Muhammad Bilal Khan, Jorge E. Macías-Díaz, Ali Althobaiti, Saad Althobaiti, Some New Properties of Exponential Trigonometric Convex Functions Using up and down Relations over Fuzzy Numbers and Related Inequalities through Fuzzy Fractional Integral Operators Having Exponential Kernels, 2023, 7, 2504-3110, 567, 10.3390/fractalfract7070567 | |
190. | Adil Jhangeer, Abdallah M. Talafha, Ariana Abdul Rahimzai, Lubomír Říha, Investigating wave solutions in coupled nonlinear Schrödinger equation: insights into bifurcation, chaos, and sensitivity, 2025, 7, 3004-9261, 10.1007/s42452-024-06359-2 | |
191. | Asadullah Sohail, Muhammad Adil Khan, Hidayat Ullah, Khalid A. Alnowibet, Yi-Xia Li, Yu-Ming Chu, Improvements to Slater's inequality and their applications via functions whose fourth-order derivatives are convex, 2025, 33, 2769-0911, 10.1080/27690911.2025.2468935 | |
192. | Jiahui Wu, Tiehong Zhao, On the power series related to zero-balanced hypergeometric function, 2025, 0019-5588, 10.1007/s13226-025-00768-8 | |
193. | Muhammad Khan, Shah Faisal, Derivation of conticrete Hermite-Hadamard-Jensen-Mercer inequalities through k-Caputo fractional derivatives and majorization, 2024, 38, 0354-5180, 3389, 10.2298/FIL2410389K |