Research article

A sharp double inequality involving generalized complete elliptic integral of the first kind

  • Received: 31 March 2020 Accepted: 13 May 2020 Published: 21 May 2020
  • MSC : 33C05, 33E05

  • In the article, we establish a sharp double inequality involving the ratio of generalized complete elliptic integrals of the first kind, which is the improvement and generalization of some previously known results.

    Citation: Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu. A sharp double inequality involving generalized complete elliptic integral of the first kind[J]. AIMS Mathematics, 2020, 5(5): 4512-4528. doi: 10.3934/math.2020290

    Related Papers:

    [1] Li Xu, Lu Chen, Ti-Ren Huang . Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692
    [2] Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang . Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications. AIMS Mathematics, 2022, 7(4): 4974-4991. doi: 10.3934/math.2022277
    [3] Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu . Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453
    [4] Fei Wang, Bai-Ni Guo, Feng Qi . Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176
    [5] A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086
    [6] Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized $ (p, q) $-elliptic integrals and generalized $ (p, q) $-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597
    [7] Hassen Aydi, Bessem Samet, Manuel De la Sen . On $ \psi $-convex functions and related inequalities. AIMS Mathematics, 2024, 9(5): 11139-11155. doi: 10.3934/math.2024546
    [8] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [9] Ling Zhu . Concise high precision approximation for the complete elliptic integral of the first kind. AIMS Mathematics, 2021, 6(10): 10881-10889. doi: 10.3934/math.2021632
    [10] Abdelhamid Zaidi, Saleh Almuthaybiri . Explicit evaluations of subfamilies of the hypergeometric function $ _3F_2(1) $ along with specific fractional integrals. AIMS Mathematics, 2025, 10(3): 5731-5761. doi: 10.3934/math.2025264
  • In the article, we establish a sharp double inequality involving the ratio of generalized complete elliptic integrals of the first kind, which is the improvement and generalization of some previously known results.


    Let r(0,1). Then the Legendre complete elliptic integral K(r) [1,2,3,4] of the first kind is given by

    K=K(r)=π/20dθ1r2sin2θ=10dt(1t2)(1r2t2).

    It is well-known that the complete elliptic integral K(r) is the particular case of the Gaussian hypergeometric function [5,6,7,8,9,10]

    F(a,b;c;x)=n=0(a,n)(b,n)(c,n)xnn!,|x|<1 (1.1)

    where (a,0)=1 for a0, and (a,n)=a(a+1)(a+2)(a+n1) for nN is the shifted factorial function. Indeed

    K(r)=π2F(12,12;1;r2).

    It is well-known that the Legendre complete elliptic integrals play very important roles in many branches of pure and applied mathematics [11,12,13,14,15,16,17,18,19,20,21,22]. Recently, the complete elliptic integrals have attracted the attention of many researchers [23,24,25,26,27,28,29,30,31,32,33,34,35] due to their extreme importance. In particular, and many remarkable properties, inequalities and applications for the complete elliptic integrals and their related special functions can be found in the literature [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61].

    For r(0,1) and a(0,1), the generalized elliptic integral Ka(r) of the first kind [62] is defined by

    Ka=Ka(r)=π2F(a,1a;1,r2). (1.2)

    Clearly, Ka(0)=π/2 and Ka(1)=. In what follows, we assume that a(0,1/2] by the symmetry of (1.2).

    For p(1,) and r(0,1), the complete p-elliptic integral Kp(r) of the first kind [63] is defined by

    Kp(r)=πp/20dθ(1rpsinppθ)11/p=10dt(1tp)1p(1rptp)11/p, (1.3)

    where sinpθ is the generalized trigonometric function [64] and

    πp=210dt(1tp)1/p

    is the generalized circumference ratio.

    From (1.2) and (1.3) we clearly see that Ka(r) and Kp(r) reduce to the complete elliptic integral K(r) of the first kind if a=1/2 and p=2. Takeuchi [65] proved that

    Kp(r)=πp2F(1p,11p;1;rp).

    Therefore, it follows from (1.2) that

    K1/p(r)=ππpKp(r2/p). (1.4)

    Recently, the generalized elliptic integrals and complete p-elliptic integrals have attracted the attention of many mathematicians. For their recent research progress, we recommend the literature [65,66,67,68,69,70,71,72,73,74,75,76,77,78] to readers.

    Anderson et al. [79] proved that the inequality

    K(r)K(r)>11+r (1.5)

    holds for all r(0,1).

    In [80], Alzer and Richards proved that

    K(r)K(r)>11+r/4 (1.6)

    for r(0,1), which is an improvement of inequality (1.5).

    Motivated by the inequality (1.6), Yin et al. [81] generalized (1.6) to Kp(r) and proved that the double inequality

    11+1p(11p)r<Kp(r)Kp(pr)<1 (1.7)

    holds for r(0,1) and p(1,2].

    The main purpose of this paper is to generalized the inequality (1.6) to Ka and provide an improvement for inequality (1.7). Our main result is the following Theorem 1.1.

    We denote by σ=σ(a)=a(1a) and τ=τ(a)=[a(1a)(a2a+2)]/4 for short, which will be often used later. For a(0,1/2], it is easy to know 0<σ(a)1/4 and keep this in mind.

    Theorem 1.1. Let a(0,1/2] and r(0,1). Then the double inequality

    ˆλ(a)<[1+σ(a)r]Ka(r)[1+τ(a)r2]Ka(r)r3Ka(r)<ˆμ(a) (1.8)

    holds for all r(0,1) if and only if ˆλ(a)λ(a) and ˆμ(a)μ(a), where

    λ(a)=a(1a2)(2a)(4a24a+3)18andμ(a)=a(1a2)(2a)4.

    In particular, the double inequality

    1+τ(a)r2+λ(a)r31+σ(a)r<Ka(r)Ka(r)<1+τ(a)r2+μ(a)r31+σ(a)r. (1.9)

    holds for all r(0,1).

    As is known, Ka(r) reduces to the complete elliptic integral of the first kind K(r) if a=1/2. The following corollary can be derived from (1.9) of Theorem 1.1.

    Corollary 1.2. The double inequality

    1+[r2(74r)]/641+r/4<K(r)K(r)<1+[r2(7+9r)]/641+r/4

    holds for r(0,1).

    It is easy to see that

    1+[r2(74r)]/641+r/4>11+r/4

    for r(0,1) and no upper bound for K(r)/K(r) was given in (1.6), in other words, the bounds given in Corollary 1.2 are better than that given in (1.6).

    From (1.4) and the monotonicity of Kp(r), we clearly see that

    K1/p(r)K1/p(r)=Kp(r2/p)Kp(pr)()Kp(r)Kp(pr)

    for all r(0,1) and 1<p2(p2), which in conjunction with Theorem 1.1 gives the Corollary 1.3.

    Corollary 1.3. Let p(1,2]. Then the double inequality

    1+τ(1/p)r2+λ(1/p)r31+σ(1/p)r<Kp(r)Kp(pr)<1 (1.10)

    hold for r(0,1). If p[2,), then the inequality

    Kp(r)Kp(pr)<1+τ(1/p)r2+μ(1/p)r31+σ(1/p)r (1.11)

    holds for r(0,1).

    Note that if p(1,2] and r(0,1), then it follows from λ(1/p)<0 that

    τ(1/p)+λ(1/p)r>τ(1/p)+λ(1/p)=(p1)[8(p1)2+p2(p1)+6p4]36p6>0,

    which enables us to know that the lower bound of (1.10) is better than that of (1.7) and it also gives an improvement of [81, Theorem 1.1]. Moreover, it follows easily from σ(1/p)=τ(1/p)+μ(1/p) that

    1+τ(1/p)r2+μ(1/p)r31+σ(1/p)r<1

    for r(0,1), which leads to the conclusion that inequality (1.11) has a better upper bound than that of (1.7) for p[2,).

    In this section, we introduce some more notations and present some technical lemmas, which will be used to prove the main theorem.

    For x(0,), the classical gamma function Γ(x) [82,83] and psi (digamma) function Ψ(x) [84] are defined by

    Γ(x)=0tx1etdt,Ψ(x)=ddxlogΓ(x)=Γ(x)Γ(x),

    respectively.

    The following well-known formulas for Γ(x) and Ψ(n)(x)(n0) are presented in [85]

    Γ(x+1)=xΓ(x),Γ(1z)Γ(z)=πsin(πz),zZ, (2.1)
    Ψ(n)(x)={γ1x+k=1xk(k+x),n=0(1)n+1n!k=01(x+k)n+1,n1, (2.2)

    where γ=limn(nk=11/klogn)=0.577215 is the Euler-Mascheroni constant [86,87].

    For a(0,1/2], we clearly see from (1.2) and (2.1) that Ka(r) can be expressed in terms of power series as

    Ka(r)=π2n=0(a,n)(1a,n)(n!)2r2n=sin(πa)2n=0Wn(a)r2n, (2.3)

    where

    Wn=Wn(a)=Γ(a+n)Γ(1a+n)Γ(n+1)2 (2.4)

    is the generalized Wallis type ratio due to Wn(1/2)/π is the classical Wallis ratio.

    It is easy to verify that Wn satisfies the recurrence relation

    Wn+1Wn=(n+a)(n+1a)(n+1)2 (2.5)

    and also Wn is strictly decreasing with respect to n0.

    Lemma 2.1. (1) The function Wn(a) is strictly decreasing on (0,1/2] for each nN;

    (2) The function Wn(a)/Wm(a) is strictly decreasing on (0,1/2] for fixed m>n1. In particular,

    Wn(a)Wm(a)<mn. (2.6)

    Proof. Taking the logarithm, we dente by fn(a)=logWn(a) and gn,m(a)=log[Wn(a)/Wm(a)].

    Differentiation yields

    fn(a)=Ψ(a+n)Ψ(1a+n), (2.7)
    gn,m(a)=Ψ(a+n)Ψ(1a+n)Ψ(a+m)+Ψ(1a+m). (2.8)

    From (2.7) and (2.8), we clearly see that

    fn(1/2)=gn,m(1/2)=0. (2.9)

    Moreover, it follows from (2.2), (2.7) and (2.8) that

    fn(a)=Ψ(a+n)+Ψ(1a+n)=k=0[1(a+n+k)2+1(1a+n+k)2]>0, (2.10)
    gn,m(a)=Ψ(a+n)+Ψ(1a+n)Ψ(a+m)Ψ(1a+m)
    =k=0[1(a+n+k)21(a+m+k)2+1(1a+n+k)21(1a+m+k)2]>0 (2.11)

    for a(0,1/2] and m>n1.

    Therefore, the monotonicity of fn(a) and gn,m(a) follows easily from (2.9)–(2.11).

    Lemma 2.2. For a(0,1/2], define

    hn(a)=[1+σ(a)]Wn+22τ(a)W2n+2.

    Then hn(a)>1/(n+2) for n2.

    Proof. We first prove

    πasin(πa)>1+π2a26+7π4a4360>1+41a225+37a420 (2.12)

    for a(0,1/2]. Indeed, in terms of power series, one has

    πa(1+π2a26+7π4a4360)sin(πa)=(πa)790n=0(1)nαn(πa)2n
    =(πa)790k=0[α2kα2k+1(πa)2](πa)4k>(πa)790k=0(α2k3α2k+1)(πa)4k (2.13)

    for a(0,1/2], where

    αn=(n+1)(n+2)(465+224n+28n2)(2n+7)!.

    Moreover,

    α2k3α2k+1=2(k+1)(4k+7)(3861+15150k+15536k2+6272k3+896k4)(4k+9)!>0

    for k0. This in conjunction with (2.13) yields the inequality (2.12) is valid.

    Let ξ(a)=1800+600a100a2952a3+357a4+140a542a64a7+a8. Combing this with (2.1) and (2.12), we rewrite h2(a) as

    h2(a)=(4a)(9a2)(4a2)(1a2)ξ(a)1036800πasin(πa)14
    >(4a)(9a2)(4a2)(1a2)ξ(a)1036800(1+41a225+37a420)14
    >a103680000[4007308a7+16451833a8+20105580a7(1a2)+10501395a8(1a2)
    +6832264a11+999840a12+1242460a11(1a2)+32390a14+67672a15
    +7236a15(1a)+1480a15(1a2)+185a18+ˆξ(a)]>aˆξ(a)103680000, (2.14)

    where

    ˆξ(a)=2160000+3628800a12746400a2+7736800a32977632a448200080a53912980a6.

    Differentiation of ˆξ(a) yields

    ˆξ(a)=[2282400+46420800(12a)+8a2(4466448+120500200a+14673675a2)]<0

    for a(0,1/2], which implies that ˆξ(a) is strictly concave on (0,1/2].

    From the concavity property of ˆξ(a), we clearly see that

    ˆξ(a)min{ˆξ(0),ˆξ(1/2)}=2248316>0 (2.15)

    for a(0,1/2].

    Therefore, h2(a)>0 for a(0,1/2] follows from (2.14) and (2.15).

    Next, we prove Lemma 2.2 by mathematical induction on n. Assume the induction hypothesis that hn(a)>1/(n+2), in other words,

    [1+σ(a)]Wn+2>2τ(a)W2n+2+1n+2. (2.16)

    The recurrence relation (2.5) and (2.16) yield

    hn+1(a)1n+3=[1+σ(a)]Wn+32τ(a)W2n+41n+3
    >2τ(a)W2n+2(Wn+3Wn+2W2n+4W2n+2)+Wn+3(n+2)Wn+21n+3
    =τ(a)W2n+2ζn(a)2(2+n)2(3+n)2(3+2n)2+a(1a)(n+2)(n+3)2>0

    for a(0,1/2], where

    ζn(a)=9(6+σ)(4σ)+6[78+σ(2σ)]n+[372+σ(58σ)]n2+8(5σ+16)n3+8(σ+2)n4.

    This completes the proof.

    Lemma 2.3. For a(0,1/2], we define

    An=Wn+2λ(a)W2n+1τ(a)W2n+2W2n+4,Bn=σ(a)Wn+2λ(a)W2n+2τ(a)W2n+3W2n+5.

    Then (i) An>0; (ii) An+Bn>0 for n0.

    Proof. (ⅰ) It is easy to know that (1+x)n>1+nx for n>0 and x>0. Combining this with the definition of Wn and its recurrence relation, we clearly see that

    Wn+2W2n+1=Γ(a+n+2)Γ(1a+n+2)Γ(n+3)2Γ(2n+2)2Γ(a+2n+1)Γ(1a+2n+1)=(1+2n)2(a+2n)(1a+2n)(1+2n1)2(a+2n1)(1a+2n1)(1+n+2)2(a+n+2)(1a+n+2)[(1+2n)2(a+2n)(1a+2n)]n11+(n1)(1a+a2+2n)(a+2n)(1a+2n)

    and

    W2n+2W2n+1=(2n+1+a)(2n+2a)(2n+2)2,
    W2n+4W2n+1=(2n+1+a)[(2n+2)2a2][(2n+3)2a2](2n+4a)[(2n+2)(2n+3)(2n+4)]2.

    This yields

    AnW2n+1=Wn+2W2n+1λ(a)τ(a)W2n+2W2n+1W2n+4W2n+11+(n1)(1a+a2+2n)(a+2n)(1a+2n)λ(a)τ(a)(2n+1+a)(2n+2a)(2n+2)2(2n+1+a)[(2n+2)2a2][(2n+3)2a2](2n+4a)[(2n+2)(2n+3)(2n+4)]2=1144(a+2n)(1a+2n)(1+n)2(2+n)2(3+2n)28k=0εknk, (2.17)

    where the coefficients are given by

    ε0=5184+9072σ540σ21620σ3837σ4, ε1=19872+31104σ5904σ26240σ34236σ4,
    ε2=6624+32400σ20604σ217176σ38207σ4, ε3=724326744σ33692σ236712σ38004σ4,
    ε4=14659241352σ30604σ250016σ34220σ4, ε5=12859236912σ16496σ240672σ31152σ4,
    ε6=5846415936σ5248σ219200σ3128σ4, ε7=132483648σ896σ24864σ3,
    ε8=1152384σ64σ2512σ3.

    For a(0,1/2], we clearly see that 0<σ1/4. This enables us to know easily that εj>0 for 3j8. Moreover, we can verify

    ε0+ε3=67248+2328σ34232σ238332σ38841σ4>16505607256,
    ε1+ε4=4(316802562σ9127σ214064σ32114σ4)>387085532,
    ε2+ε5=1219684512σ37100σ257848σ39359σ4>30100689256,

    which yields

    8k=0εknk=(ε0+ε3n3)+(ε1n+ε4n4)+(ε2n2+ε5n5)+ε6n6+ε7n7+ε8n8(ε0+ε3)+(ε1+ε4)n+(ε2+ε5)n2+ε6n6+ε7n7+ε8n8>0 (2.18)

    for n1.

    Combining with (2.17) and (2.18), we clearly see that An>0 for n1. On the other hand,

    A0=πa(1a2)(2a)192sin(aπ)[22+2σ+σ2+32(116σ2)]>0

    for a(0,1/2]. This completes the first assertion.

    (ⅱ) We first compute A0+B0 and A1+B1. Simple calculations together with (2.1) and (2.4) lead to

    A0+B0=πa(1a2)(2a)14400sin(πa)[360+40535σ16+2963σ(14σ)+701σ(116σ2)]>0,
    A1+B1=πa(1a2)(4a2)(3a)705600sin(πa)[3293932+14570σ+4091(116σ2)+7293(164σ3)+260(1256σ4)]>0

    for a(0,1/2].

    For n2, it follows from Lemma 2.1(i) and Lemma 2.2 together with λ(a)<0 and the monotonicity of Wn with respect to n that

    An+Bn=[1+σ(a)]Wn+2λ(a)(W2n+1+W2n+2)τ(a)(W2n+2+W2n+3)(W2n+4+W2n+5)[1+σ(a)]Wn+22τ(a)W2n+22W2n+4=hn(a)2W2n+4(a)>1n+2212n+4=0

    for a(0,1/2].

    Lemma 2.4. For a(0,1/2], we define

    Cn=σ(a)Wn+1μ(a)W2nτ(a)W2n+1W2n+3,Dn=Wn+2μ(a)W2n+1τ(a)W2n+2W2n+4.

    Then (i) Dn>0; (ii) Cn+Dn<0 for n0.

    Proof. (ⅰ) From the similar argument as in the proof of Lemma 2.3(i), we clearly see that

    DnW2n+1=Wn+2W2n+1μ(a)τ(a)W2n+2W2n+1W2n+4W2n+11+(n1)(1a+a2+2n)(a+2n)(1a+2n)μ(a)τ(a)(2n+1+a)(2n+2a)(2n+2)2(2n+1+a)[(2n+2)2a2][(2n+3)2a2](2n+4a)[(2n+2)(2n+3)(2n+4)]2=116(a+2n)(1a+2n)(1+n)2(2+n)2(3+2n)28k=0ϵknk, (2.19)

    where the coefficients are given by

    ϵ0=576+1008σ540σ2164σ3+35σ4,ϵ1=2208+2496σ2704σ2368σ3+84σ4,
    ϵ2=7362480σ5780σ2164σ3+73σ4,ϵ3=804816456σ6660σ2+224σ3+28σ4,
    ϵ4=1628826248σ4452σ2+276σ3+4σ4,ϵ5=1428821408σ1736σ2+112σ3,
    ϵ6=64969824σ368σ2+16σ3,ϵ7=14722432σ32σ2,ϵ8=128256σ.

    Since 0<σ1/4, it is easy to verify that ϵj>0 for 3j8. Moreover, we have

    ϵ0+ϵ3=747215448σ7200σ2+60σ3+63σ4>3160,
    ϵ1+ϵ4=1408023752σ7156σ292σ3+88σ4>12309316,
    ϵ2+ϵ5=1355223888σ7516σ252σ3+73σ4>11375116,

    which yields

    8k=0ϵknk=(ϵ0+ϵ3n3)+(ϵ1n+ϵ4n4)+(ϵ2n2+ϵ5n5)+ϵ6n6+ϵ7n7+ϵ8n8(ϵ0+ϵ3)+(ϵ1+ϵ4)n+(ϵ2+ϵ5)n2+ϵ6n6+ϵ7n7+ϵ8n8>0 (2.20)

    for n1.

    From (2.19) and (2.20), we clearly see that Dn>0 for n1. For n=0, we verify directly

    D0=πa(1a2)(2a)576sin(aπ)[272+234(14σ)+35σ2]>0

    for a(0,1/2]. This complete the proof of (i).

    (ⅱ) For n0, it follows from (2.6) and σ(a)=τ(a)+μ(a) together with the monotonicity of Wn with respect to n that

    Cn+Dn=σ(a)Wn+1+Wn+2μ(a)(W2n+W2n+1)τ(a)(W2n+1+W2n+2)(W2n+3+W2n+4)<σ(a)Wn+12[τ(a)+μ(a)]W2n+2+Wn+22W2n+4=σ(a)(Wn+12W2n+2)+Wn+22W2n+4<0

    for a(0,1/2]. This completes the proof.

    Proof. Define

    φa(r)=[1+σ(a)r]Ka(r)[1+τ(a)r2+λ(a)r3]Ka(r)

    and

    ϕa(r)=[1+σ(a)r]Ka(r)[1+τ(a)r2+μ(a)r3]Ka(r).

    In order to prove the inequalities (1.8) is valid, it suffices to show φa(r)>0 and ϕa(r)<0 for r(0,1).

    From (2.3), we can rewrite φa(r) and ϕa(r), in terms of power series, as

    2sin(πa)φa(r)=[1+σ(a)r]n=0Wnr2n[1+τ(a)r2+λ(a)r3]n=0Wnrn=r4[n=0(An+Bnr)r2n], (3.1)
    2sin(πa)ϕa(r)=[1+σ(a)r]n=0Wnr2n[1+τ(a)r2+μ(a)r3]n=0Wnrn=r3[n=0(Cn+Dnr)r2n], (3.2)

    where An,Bn and Cn,Dn are defined as in Lemma 2.3 and Lemma 2.4, respectively.

    ● If Bn0, then it follows from Lemma 2.3(i) that An+Bnr>An>0 for r(0,1). If Bn<0, then Lemma 2.3(ii) enables us to know that An+Bnr>An+Bn>0 for r(0,1). This in conjunction with (3.1) yields φa(r)>0 for r(0,1).

    ● From Lemma 2.4, we clearly see that Cn+Dnr<Cn+Dn<0 for r(0,1). This in conjunction with (3.2) implies that ϕa(r)<0 for r(0,1).

    We now prove that λ(a) and μ(a) are the best possible constants.

    Let

    Φa(r)=[1+σ(a)r]Ka(r)[1+τ(a)r2]Ka(r)r3Ka(r). (3.3)

    If λ(a)<δ(a)<μ(a), then it follows from Φa(0+)=λ(a)<δ(a) and Φa(1)=μ(a)>δW(a) that there exist sufficiently small r1,r2(0,1) such that Φa(r)<δ(a) for r(0,r1) and Φa(r)>δ(a) for r(1r2,1).

    For a(0,1/2], computer experiments enable us to know that Φa(r) is strictly increasing on (0,1) and we leave it to the reader as an open problem.

    Open Problem. For a(0,1/2], Φa(r) is defined as in (3.3). Then Φa(r) is strictly increasing from (0,1) onto (λ(a),μ(a)).

    We establish a sharp double inequality involving the ratio of generalized complete elliptic integrals of the first kind, more precisely, the double inequality

    1+τ(a)r2+λ(a)r31+σ(a)r<Ka(r)Ka(r)<1+τ(a)r2+μ(a)r31+σ(a)r

    holds for all r(0,1), where

    σ(a)=a(1a),τ(a)=a(1a)(a2a+2)4,λ(a)=a(1a2)(2a)(4a24a+3)18,μ(a)=a(1a2)(2a)4,

    which is the improvement and generalization of some previously known results.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485) and the Natural Science Foundation of Zhejiang Province (Grant No. LY19A010012).

    The authors declare that they have no competing interests.



    [1] M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Convexity of the complete elliptic integrals of the first kind with respect to Hölder means, J. Math. Anal. Appl., 388 (2012), 1141-1146. doi: 10.1016/j.jmaa.2011.10.063
    [2] Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714-1726. doi: 10.1016/j.jmaa.2018.03.005
    [3] Z. H. Yang, W. M. Qian, Y. M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199.
    [4] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [5] M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zerobalanced hypergeometric functions, Rocky Mountain J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679
    [6] M. K. Wang, Y. M. Chu, Refinements of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37B (2017), 607-622.
    [7] T. H. Zhao, M. K. Wang, W. Zhang, et al. Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
    [8] S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018
    [9] M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617.
    [10] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [11] M. K. Wang, S. L. Qiu, Y. M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
    [12] Y. M. Chu, M. K. Wang, S. L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038
    [13] Y. M. Chu, Y. F. Qiu, M. K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integral Transforms Spec. Funct., 23 (2012), 521-527. doi: 10.1080/10652469.2011.609482
    [14] Y. M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
    [15] Z. H. Yang, W. M. Qian, Y. M. Chu, et al. Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., 2017 (2017), 1-13. doi: 10.1186/s13660-016-1272-0
    [16] M. K. Wang, Y. M. Li, Y. M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 46 (2018), 189-200. doi: 10.1007/s11139-017-9888-3
    [17] M. K. Wang, Y. M. Chu, W. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J., 49 (2019), 653-668. doi: 10.1007/s11139-018-0130-8
    [18] S. H. Wu, Y. M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
    [19] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for coordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [20] I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [21] X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
    [22] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [23] M. K. Wang, Y. M. Chu, Y. F. Qiu, et al. An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887-890. doi: 10.1016/j.aml.2010.12.044
    [24] G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833-837.
    [25] Y. M. Chu, M. K. Wang, Inequalities between arithmetic-geometric, Gini, and Toader means, Abstr. Appl. Anal., 2012 (2012), 1-11.
    [26] Y. M. Chu, M. K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math., 61 (2012), 223-229. doi: 10.1007/s00025-010-0090-9
    [27] Y. M. Chu, M. K. Wang, Y. P. Jiang, et al. Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637-642. doi: 10.1016/j.jmaa.2012.05.083
    [28] M. K. Wang, Y. M. Chu, S. L. Qiu, et al. Bounds for the perimeter of an ellipse, J. Approx. Theory, 164 (2012), 928-937. doi: 10.1016/j.jat.2012.03.011
    [29] Y. M. Chu, M. K. Wang, S. L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, P. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y
    [30] W. M. Qian, Y. M. Chu, Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., 2017 (2017), 1-10. doi: 10.1186/s13660-016-1272-0
    [31] W. M. Qian, X. H. Zhang, Y. M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127.
    [32] M. K. Wang, S. L. Qiu, Y. M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl., 21 (2018), 629-648.
    [33] T. H. Zhao, B. C. Zhou, M. K. Wang, et al. On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
    [34] J. L. Wang, W. M. Qian, Z. Y. He, et al. On approximating the Toader mean by other bivariate means, J. Funct. Space., 2019 (2019), 1-7.
    [35] W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
    [36] Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653-663. doi: 10.1002/mana.200810197
    [37] Y. M. Chu, B. Y. Long, Sharp inequalities between means, Math. Inequal. Appl., 14 (2011), 647-655.
    [38] Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412-421. doi: 10.1016/j.jmva.2011.08.004
    [39] M. Adil Khan, Y. M. Chu, T. U. Khan, et al. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
    [40] Y. Q. Song, M. Adil Khan, S. Zaheer Ullah, et al. Integral inequalities involving strongly convex functions, J. Funct. Space., 2018 (2018), 1-8.
    [41] M. Adil Khan, Y. M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of HermiteHadamard inequalities and their generalizations, J. Funct. Space., 2018 (2018), 1-9.
    [42] H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
    [43] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [44] M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 1-9.
    [45] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [46] M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
    [47] S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11.
    [48] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
    [49] M. Adil Khan, S. H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 1-18. doi: 10.1186/s13660-019-1955-4
    [50] Y. Khurshid, M. Adil Khan, Y. M. Chu, Conformable integral inequalities of the HermiteHadamard type in terms of GG- and GA-convexities, J. Funct. Space., 2019 (2019), 1-8.
    [51] Y. Khurshid, M. Adil Khan, Y. M. Chu, et al. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-9.
    [52] W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of twoparameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
    [53] W. M. Qian, H. Z. Xu, Y. M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 1-8. doi: 10.1186/s13660-019-1955-4
    [54] X. H. He, W. M. Qian, H. Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
    [55] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166.
    [56] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [57] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [58] S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
    [59] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [60] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
    [61] B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
    [62] M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39B (2019), 1440-1450.
    [63] T. R. Huang, S. Y. Tan, X. Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 1-11. doi: 10.1186/s13660-017-1594-6
    [64] M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.
    [65] S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai Math. J., 39 (2016), 202-226. doi: 10.2996/kmj/1458651700
    [66] Y. F. Qiu, M. K. Wang, Y. M. Chu, et al. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., 5 (2011), 301-306.
    [67] M. K. Wang, Z. K. Wang, Y. M. Chu, An optimal double inequality between geometric and identric means, Appl. Math. Lett., 25 (2012), 471-475. doi: 10.1016/j.aml.2011.09.038
    [68] G. D. Wang, X. H. Zhang, Y. M. Chu, A power mean inequality involving the complete elliptic integrals, Rocky Mountain J. Math., 44 (2014), 1661-1667. doi: 10.1216/RMJ-2014-44-5-1661
    [69] Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735.
    [70] Z. H. Yang, Y. M. Chu, W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput., 348 (2019), 552-564.
    [71] W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [72] S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20.
    [73] S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18.
    [74] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mappings with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [75] S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114.
    [76] M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10.
    [77] M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [78] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [79] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Functional inequalities for complete elliptic integrals and ratios, SIAM J. Math. Anal., 21 (1990), 536-549. doi: 10.1137/0521029
    [80] H. Alzer, K. Richards, Inequalities for the ratio of complete elliptic integrals, P. Am. Math. Soc., 145 (2017), 1661-1670.
    [81] L. Yin, L. G. Huang, Y. L. Wang, et al. An inequality for generalized complete elliptic integral, J. Inequal. Appl., 2017 (2017), 1-6. doi: 10.1186/s13660-016-1272-0
    [82] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [83] Z. H. Yang, W. M. Qian, Y. M. Chu, et al. On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
    [84] G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
    [85] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1992.
    [86] T. R. Huang, B. W. Han, X. Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 1-9. doi: 10.1186/s13660-017-1594-6
    [87] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 125.
  • This article has been cited by:

    1. Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612
    2. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals, 2020, 1617-9447, 10.1007/s40315-020-00352-7
    3. Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392
    4. Jing-Feng Tian, Zhenhang Yang, Ming-Hu Ha, Hong-Jie Xing, A family of high order approximations of Ramanujan type for perimeter of an ellipse, 2021, 115, 1578-7303, 10.1007/s13398-021-01021-7
    5. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5
    6. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    7. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    8. Zhen-Hang Yang, Jing-Feng Tian, Ya-Ru Zhu, A sharp lower bound for the complete elliptic integrals of the first kind, 2021, 115, 1578-7303, 10.1007/s13398-020-00949-6
    9. Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328
    10. Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1
    11. Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390
    12. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418
    13. Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453
    14. Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798
    15. Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391
    16. Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341
    17. Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139
    18. Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456
    19. Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable fractional integral inequalities for GG- and GA-convex functions, 2020, 5, 2473-6988, 5012, 10.3934/math.2020322
    20. Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860
    21. Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231
    22. Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375
    23. Thabet Abdeljawad, Saima Rashid, Hasib Khan, Yu-Ming Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02782-y
    24. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    25. Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z
    26. Tie-Hong Zhao, Miao-Kun Wang, Yu-Ming Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, 2021, 115, 1578-7303, 10.1007/s13398-020-00992-3
    27. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    28. Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412
    29. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    30. Zhen-Hang Yang, Jing-Feng Tian, Sharp bounds for the Toader mean in terms of arithmetic and geometric means, 2021, 115, 1578-7303, 10.1007/s13398-021-01040-4
    31. Song-Liang Qiu, Xiao-Yan Ma, Yu-Ming Chu, Transformation Properties of Hypergeometric Functions and Their Applications, 2021, 1617-9447, 10.1007/s40315-021-00390-9
    32. Mehrdad Ahmadi Kamarposhti, Ilhami Colak, Hassan Shokouhandeh, Celestine Iwendi, Sanjeevikumar Padmanaban, Shahab S. Band, Optimum operation management of microgrids with cost and environment pollution reduction approach considering uncertainty using multi‐objective NSGAII algorithm, 2022, 1752-1416, 10.1049/rpg2.12579
    33. Mohammad Hemmat Esfe, Hossein Rostamian, Davood Toghraie, Maboud Hekmatifar, Amir Taghavi Khalil Abad, Numerical study of heat transfer of U-shaped enclosure containing nanofluids in a porous medium using two-phase mixture method, 2022, 38, 2214157X, 102150, 10.1016/j.csite.2022.102150
    34. Yinyin Wang, Fuzhang Wang, Taher A. Nofal, Mahmoud M. Selim, RETRACTED ARTICLE: Augmentations of solar collector performance with involve of nanomaterial and perforated twisted tape, 2022, 2190-5509, 10.1007/s13204-022-02363-3
    35. Pengfei Wang, Xiuhui Diao, Mahmoud M. Selim, Study for nanomaterial transportation within the channel with apply of complicated turbulator, 2022, 36, 0217-9849, 10.1142/S0217984922500932
    36. Muhammad Bilal Khan, Aleksandr Rakhmangulov, Najla Aloraini, Muhammad Aslam Noor, Mohamed S. Soliman, Generalized Harmonically Convex Fuzzy-Number-Valued Mappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities, 2023, 11, 2227-7390, 656, 10.3390/math11030656
    37. Yinghong Qin, Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin, 2021, 44, 2352152X, 103452, 10.1016/j.est.2021.103452
    38. Tie-Hong Zhao, Wei-Mao Qian, Yu-Ming Chu, On approximating the arc lemniscate functions, 2022, 53, 0019-5588, 316, 10.1007/s13226-021-00016-9
    39. Saade Abdalkareem Jasim, Ahmed M. Mohsen, Usama S. Altimari, Mustafa Z. Mahmoud, Yehya M. Ahmed, Maryam Derakhshandeh, The CH3F and CH3Cl detection by the BeO nanotube in the presence of environmental gases, 2022, 153, 0026-9247, 331, 10.1007/s00706-022-02907-x
    40. Weerawat Sudsutad, Nantapat Jarasthitikulchai, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications, 2022, 10, 2227-7390, 573, 10.3390/math10040573
    41. Hamad Hassan Awan, Arshad Hussain, Muhammad Faisal Javed, Yanjun Qiu, Raid Alrowais, Abdeliazim Mustafa Mohamed, Dina Fathi, Abdullah Mossa Alzahrani, Predicting Marshall Flow and Marshall Stability of Asphalt Pavements Using Multi Expression Programming, 2022, 12, 2075-5309, 314, 10.3390/buildings12030314
    42. Muhammad Bilal Khan, Adriana Cătaş, Najla Aloraini, Mohamed S. Soliman, Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings, 2023, 7, 2504-3110, 223, 10.3390/fractalfract7030223
    43. Tie-Hong Zhao, Zhong-Hua Shen, Yu-Ming Chu, Sharp power mean bounds for the lemniscate type means, 2021, 115, 1578-7303, 10.1007/s13398-021-01117-0
    44. Mohammad Arefi, Shayan Mannani, L. Collini, Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching, 2022, 22, 1644-9665, 10.1007/s43452-022-00514-5
    45. Ali Aldrees, Hamad Hassan Awan, Muhammad Faisal Javed, Abdeliazim Mustafa Mohamed, Prediction of water quality indexes with ensemble learners: Bagging and boosting, 2022, 168, 09575820, 344, 10.1016/j.psep.2022.10.005
    46. Musaad S. Aldhabani, Kamsing Nonlaopon, S. Rezaei, Fatimah S.Bayones, S.K. Elagan, Sobhy A.A. El-Marouf, Abundant solitary wave solutions to a perturbed Schrödinger equation with Kerr law nonlinearity via a novel approach, 2022, 35, 22113797, 105385, 10.1016/j.rinp.2022.105385
    47. Ali Rostamian, Keivan Fallah, Yasser Rostamiyan, Javad Alinejad, Application of computational fluid dynamics for detection of high risk region in middle cerebral artery (MCA) aneurysm, 2023, 34, 0129-1831, 10.1142/S0129183123500195
    48. Fan Zhang, Weimao Qian, Hui Zuo Xu, Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means, 2022, 2022, 1029-242X, 10.1186/s13660-022-02768-2
    49. A A Menazea, Nasser S Awwad, Hala A Ibrahium, Khadijah H Alharbi, Mohammed S Alqahtani, Titanium doping effect on the sensing performance of ZnO nanosheets toward phosgene gas, 2022, 97, 0031-8949, 055816, 10.1088/1402-4896/ac6382
    50. Guodong Zhang, Yakun Li, Doaa Basim Mohammed, Davood Toghraie, Optimization of a high-temperature recuperator equipped with corrugated helical heat exchanger for improvement of thermal-hydraulic performance, 2022, 33, 2214157X, 101956, 10.1016/j.csite.2022.101956
    51. Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Some estimations of the Jensen difference and applications, 2023, 46, 0170-4214, 5863, 10.1002/mma.8873
    52. Ghassan Fadhil Smaisim, Azher M. Abed, Hayder Al-Madhhachi, Salema K. Hadrawi, Hasan Mahdi M. Al-Khateeb, Ehsan Kianfar, Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review, 2023, 13, 2191-1630, 219, 10.1007/s12668-022-01048-z
    53. Adel Almarashi, Irreversibility and thermal analysis of ferrofluid with numerical modeling, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-02106-3
    54. Ali A Rajhi, Sagr Alamri, Ghaffar Ebadi, Retracted: A density functional theory investigation on the Au-decorated zinc oxide nanosheet as a chemical sensor for mesalamine drug detection, 2022, 97, 0031-8949, 045401, 10.1088/1402-4896/ac51c7
    55. Saade Abdalkareem Jasim, Maria Jade Catalan Opulencia, Ali Majdi, Dildora Zukhriddinovna Yusupova, Yasser Fakri Mustafa, Ali Thaeer Hammid, Parvaneh Delir Kheirollahi Nezhad, Investigation of crotonaldehyde adsorption on pure and Pd-decorated GaN nanotubes: A density functional theory study, 2022, 348-349, 00381098, 114741, 10.1016/j.ssc.2022.114741
    56. Murad Ali Shah, Kejia Pan, Muhammad Ibrahim, Tareq Saeed, Use of neural network and machine learning in optimizing heat transfer and entropy generated in a cavity filled with nanofluid under the influence of magnetic field: A numerical study, 2022, 139, 09557997, 113, 10.1016/j.enganabound.2022.03.012
    57. Zeqi Wang, Yingqian Liu, Mustafa Z. Mahmoud, Simultaneous application of active and passive methods in cooling of a cylindrical lithium-ion battery by changing the size of the elliptical cavity filled with nano phase change materials, 2022, 50, 2352152X, 104693, 10.1016/j.est.2022.104693
    58. Xiao-Yong Shen, Hong-Qin Xu, M. Barzegar Gerdroodbary, S. Valiallah Mousavi, Amir Musa Abazari, S. Misagh Imani, Numerical simulation of blood flow effects on rupture of aneurysm in middle cerebral artery, 2022, 33, 0129-1831, 10.1142/S0129183122500309
    59. Firoozeh Abolhasani Zadeh, Saade Abdalkareem Jasim, Mohammad Javed Ansari, Dmitry Olegovich Bokov, Ghulam Yasin, Lakshmi Thangavelu, Maryam Derakhshandeh, Boron carbide nanotube as targeted drug delivery system for melphalan anticancer drug, 2022, 354, 01677322, 118796, 10.1016/j.molliq.2022.118796
    60. Qingji Tian, Yi-Peng Xu, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Mahmoud M. Selim, Flow structure and fuel mixing of hydrogen multi-jets in existence of upstream divergent ramp at supersonic combustion chamber, 2022, 121, 12709638, 107299, 10.1016/j.ast.2021.107299
    61. Raheel Asghar, Muhammad Faisal Javed, Raid Alrowais, Alamgir Khalil, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, Nikolai Ivanovich Vatin, Predicting the Lateral Load Carrying Capacity of Reinforced Concrete Rectangular Columns: Gene Expression Programming, 2022, 15, 1996-1944, 2673, 10.3390/ma15072673
    62. Ying Lai, Peng Liu, Potential application of BC3 nanotube for removal of bisphenol from water; density functional theory study, 2022, 357, 01677322, 119147, 10.1016/j.molliq.2022.119147
    63. Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities, 2022, 14, 2073-8994, 1901, 10.3390/sym14091901
    64. Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities, 2022, 6, 2504-3110, 679, 10.3390/fractalfract6110679
    65. Ahmad Rajabizadeh, Maryam Alihosseini, Hawraz Ibrahim M. Amin, Haider Abdulkareem Almashhadani, Faride Mousazadeh, Marcos Augusto Lima Nobre, Maryam Dehghani Soltani, Shapari Sharaki, Abduladheem Turki Jalil, Mustafa M. Kadhim, The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries, 2022, 1574-1443, 10.1007/s10904-022-02467-x
    66. Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Class of Preinvex Fuzzy Mappings and Related Inequalities, 2022, 10, 2227-7390, 3753, 10.3390/math10203753
    67. Guangli Fan, Adel Almarashi, Peixi Guo, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, R. Moradi, Comparison of convergent/divergent ramp on fuel mixing of single jet at supersonic crossflow, 2022, 120, 12709638, 107236, 10.1016/j.ast.2021.107236
    68. Li-E Yan, Nidal H. Abu-Hamdeh, Rashad A.R. Bantan, Mahmoud M. Selim, Heat storage unit for melting of paraffin considering hybrid nanomaterial and helical tubes, 2021, 44, 2352152X, 103427, 10.1016/j.est.2021.103427
    69. Muhammad Bilal Khan, Hakeem A. Othman, Michael Gr. Voskoglou, Lazim Abdullah, Alia M. Alzubaidi, Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings, 2023, 11, 2227-7390, 550, 10.3390/math11030550
    70. Syed Modassir Hussain, Wasim Jamshed, Amjad Ali Pasha, Mohammad Adil, Mohammad Akram, Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface, 2022, 137, 07351933, 106243, 10.1016/j.icheatmasstransfer.2022.106243
    71. Nastaran Chokhachi Zadeh Moghadam, Saade Abdalkareem Jasim, Fuad Ameen, Dalal H. Alotaibi, Marcos A. L. Nobre, Hanen Sellami, Mehrdad Khatami, Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans, 2022, 45, 1615-7591, 1201, 10.1007/s00449-022-02736-6
    72. Mohammed Zwawi, Treatment of ferrofluid through a sinusoidal cavity with impose of magnetic source, 2022, 2190-5509, 10.1007/s13204-022-02361-5
    73. Waleed Hamali, Musawa Yahya Almusawa, Efficiency of nanoparticles on heat transfer of working fluid in presence of twisted tape, 2022, 36, 2214157X, 102178, 10.1016/j.csite.2022.102178
    74. Saade Abdalkareem Jasim, Indrajit Patra, Maria Jade Catalan Opulencia, Kadda Hachem, Rosario Mireya Romero Parra, Mohammad Javed Ansari, Abduladheem Turki Jalil, Moaed E. Al-Gazally, Mahin Naderifar, Mehrdad Khatami, Reza Akhavan-Sigari, Green synthesis of spinel copper ferrite (CuFe2O4) nanoparticles and their toxicity, 2022, 11, 2191-9097, 2483, 10.1515/ntrev-2022-0143
    75. Yahya Ali Rothan, Numerical investigation for augmentation of performance of solar absorber utilizing perforated tape and nanomaterial, 2022, 102, 0044-2267, 10.1002/zamm.202100542
    76. A. A. Menazea, Nasser S. Awwad, Hala A. Ibrahium, M. Derakh, Mohammed S. Alqahtani, DNA Nucleobase Interaction with Silicon Carbide Nanosheet, 2022, 14, 1876-990X, 11355, 10.1007/s12633-022-01781-w
    77. Yaser Heidari, Mohsen Irani Rahaghi, Mohammad Arefi, Buckling analysis of FG cylindrical nano shell integrated with CNTRC patches, 2022, 1745-5030, 1, 10.1080/17455030.2022.2086320
    78. S. Rezaei, Shahram Rezapour, Jehad Alzabut, Robert de Sousa, B.M. Alotaibi, S.A. El-Tantawy, Some novel approaches to analyze a nonlinear Schrodinger’s equation with group velocity dispersion: Plasma bright solitons, 2022, 35, 22113797, 105316, 10.1016/j.rinp.2022.105316
    79. Zhenping Zhou, Xin Liu, Ping Li, B24N24 nanocage as an electronic sensor for metronidazole drug: density functional theory studies, 2022, 28, 1610-2940, 10.1007/s00894-022-05127-6
    80. Ehsan Kianfar, A review of recent advances in carbon dioxide absorption–stripping by employing a gas–liquid hollow fiber polymeric membrane contactor, 2022, 0170-0839, 10.1007/s00289-022-04626-z
    81. Amjad Ali Pasha, Nazrul Islam, Wasim Jamshed, Mohammad Irfan Alam, Abdul Gani Abdul Jameel, Khalid A. Juhany, Radi Alsulami, Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique, 2022, 137, 07351933, 106244, 10.1016/j.icheatmasstransfer.2022.106244
    82. Zaid Mohammed Mohammed Mahdi Sayed, Muhammad Adil Khan, Shahid Khan, Josip Pečarić, Hugo Leiva, A Refinement of the Integral Jensen Inequality Pertaining Certain Functions with Applications, 2022, 2022, 2314-8888, 1, 10.1155/2022/8396644
    83. Limei Fan, Zhansheng Cheng, Juan Du, Parvaneh Delir Kheirollahi Nezhad, A computational study on the Al-doped CuO nanocluster for CO gas sensor applications, 2022, 153, 0026-9247, 321, 10.1007/s00706-022-02906-y
    84. Hassan Shokouhandeh, Mehrdad Ahmadi Kamarposhti, Fariba Asghari, Ilhami Colak, Kei Eguchi, Distributed Generation Management in Smart Grid with the Participation of Electric Vehicles with Respect to the Vehicle Owners’ Opinion by Using the Imperialist Competitive Algorithm, 2022, 14, 2071-1050, 4770, 10.3390/su14084770
    85. Muhammad Bilal Hafeez, Marek Krawczuk, Hasan Shahzad, Amjad Ali Pasha, Mohammad Adil, Simulation of hybridized nanofluids flowing and heat transfer enhancement via 3-D vertical heated plate using finite element technique, 2022, 12, 2045-2322, 10.1038/s41598-022-15560-5
    86. Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457
    87. Fatemeh Meghdadi Esfahani, Ebrahim Balali, Seyedeh Sedigheh Hashemi, Ramona Khadivi, Mohsen Mohammad Raei Nayini, B. Voung, Investigating an iron-doped fullerene cage for adsorption of niacin (vitamin B3): DFT analyses of bimolecular complex formations, 2022, 1214, 2210271X, 113768, 10.1016/j.comptc.2022.113768
    88. Maryam Darvish, Navid Nasrabadi, Farnoush Fotovat, Setareh Khosravi, Mehrdad Khatami, Samira Jamali, Elnaz Mousavi, Siavash Iravani, Abbas Rahdar, Biosynthesis of Zn-doped CuFe2O4 nanoparticles and their cytotoxic activity, 2022, 12, 2045-2322, 10.1038/s41598-022-13692-2
    89. Ya-jun Chen, Tie-hong Zhao, On the monotonicity and convexity for generalized elliptic integral of the first kind, 2022, 116, 1578-7303, 10.1007/s13398-022-01211-x
    90. Hani Sait, Cooling a plate lithium-ion battery using a thermoelectric system and evaluating the geometrical impact on the performance of heatsink connected to the system, 2022, 52, 2352152X, 104692, 10.1016/j.est.2022.104692
    91. Meznah M. Alanazi, Areej A. Al-Moneef, Ghaffar Ebadi, Hossam Donya, Potential application of different metal-decorated boron nitride nanosheets as chemical sensors for trichlorosilane detection, 2022, 448, 03759601, 128303, 10.1016/j.physleta.2022.128303
    92. Neelu Kumari Kumarasamy Subramaniam, Youssef Trabelsi, Ali Azarkaman, Homa Farmani, Advanced nanostructures plasmonics noninvasive sensors for type 1 diabetes, 2022, 54, 0306-8919, 10.1007/s11082-022-03879-2
    93. Kamsing Nonlaopon, Sachin Kumar, S. Rezaei, Fatimah S. Bayones, S.K. Elagan, Some optical solutions to the higher-order nonlinear Schrödinger equation with Kerr nonlinearity and a local fractional derivative, 2022, 36, 22113797, 105430, 10.1016/j.rinp.2022.105430
    94. Mustafa M. Kadhim, Mohanad Hatem Shadhar, Khalidah Salih Merzah, Hadeer Jasem, Safa K. Hachim, Ahmed Mahdi Rheima, Roya Ahmadi, Propylthiouracil drug adsorption on pristine, Cu, Ag, and Au decorated AlP nanosheets, 2022, 444, 03759601, 128236, 10.1016/j.physleta.2022.128236
    95. Majid Reza Akbarizadeh, Mina Sarani, Samaneh Darijani, Study of antibacterial performance of biosynthesized pure and Ag-doped ZnO nanoparticles, 2022, 33, 2037-4631, 613, 10.1007/s12210-022-01079-4
    96. R. Sivaraman, Indrajit Patra, Maria Jade Catalan Opulencia, Rafid Sagban, Himanshu Sharma, Abduladheem Turki Jalil, Abdol Ghaffar Ebadi, Evaluating the potential of graphene-like boron nitride as a promising cathode for Mg-ion batteries, 2022, 917, 15726657, 116413, 10.1016/j.jelechem.2022.116413
    97. Omar Dheyauldeen Salahdin, Hamzah H Kzar, Maria Jade Catalan Opulencia, Adnan Hashim Abdulkadhim, Ali Thaeer Hammid, Abdol Ghaffar Ebadi, Potential application of AlP nanosheet semiconductor in the detection of toxic phosgene, thiophosgene, and formaldehyde gases, 2022, 37, 0268-1242, 095015, 10.1088/1361-6641/ac7b9f
    98. Man-Wen Tian, Ghassan Fadhil Smaisim, Shu-Rong Yan, S. Mohammad Sajadi, Mustafa Z. Mahmoud, Hikmet Ş. Aybar, Azher M. Abed, Economic cost and efficiency analysis of a lithium-ion battery pack with the circular and elliptical cavities filled with phase change materials, 2022, 52, 2352152X, 104794, 10.1016/j.est.2022.104794
    99. Muhammad Bilal Khan, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman, New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals, 2022, 10, 2227-7390, 3251, 10.3390/math10183251
    100. Abdulilah Mohammad Mayet, Seyed Mehdi Alizadeh, Karina Shamilyevna Nurgalieva, Robert Hanus, Ehsan Nazemi, Igor M. Narozhnyy, Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems, 2022, 15, 1996-1073, 1986, 10.3390/en15061986
    101. Ghassan Fadhil Smaisim, Doaa Basim mohammed, Ahmed M. Abdulhadi, Khusniddin Fakhriddinovich Uktamov, Forat H. Alsultany, Samar Emad Izzat, Mohammad Javed Ansari, Hamzah H. Kzar, Moaed E. Al-Gazally, Ehsan Kianfar, Nanofluids: properties and applications, 2022, 104, 0928-0707, 1, 10.1007/s10971-022-05859-0
    102. Tiehong Zhao, Miaokun Wang, Yuming Chu, On the Bounds of the Perimeter of an Ellipse, 2022, 42, 0252-9602, 491, 10.1007/s10473-022-0204-y
    103. Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475
    104. K. Nonlaopon, B. Günay, Mohamed S. Mohamed, S.K. Elagan, S.A. Najati, Shahram Rezapour, On extracting new wave solutions to a modified nonlinear Schrödinger’s equation using two integration methods, 2022, 38, 22113797, 105589, 10.1016/j.rinp.2022.105589
    105. Xin Liu, Yi-Peng Xu, Hamdi Ayed, Yahya Ali Rothan, Mahmoud M. Selim, Modeling for solidification of paraffin equipped with nanoparticles utilizing fins, 2022, 45, 2352152X, 103763, 10.1016/j.est.2021.103763
    106. Wang Xifeng, Zhang Xiaoluan, Ibrahim Mahariq, Mohamed Salem, Mohammad Ghalandari, Farhad Ghadak, Mostafa Abedini, Performance Optimization of the Helical Heat Exchanger With Turbulator, 2022, 9, 2296-598X, 10.3389/fenrg.2021.789316
    107. Raed Qahiti, Transportation of ferrofluid due to non-uniform magnetic force through a curved permeable container, 2022, 2190-5509, 10.1007/s13204-021-02285-6
    108. Basem H. Elesawy, Ahmad El Askary, Nasser S. Awwad, Hala A. Ibrahium, P. D. Nezhad, Mohd Shkir, A density functional theory study of Au-decorated gallium nitride nano-tubes as chemical sensors for the recognition of sulfonamide, 2022, 43, 1741-5993, 482, 10.1080/17415993.2022.2074794
    109. Lirong Wang, Guodao Zhang, Xuesong Yin, Hongkai Zhang, Mohammad Ghalandari, Optimal control of renewable energy in buildings using the machine learning method, 2022, 53, 22131388, 102534, 10.1016/j.seta.2022.102534
    110. Ye-Cong Han, Chuan-Yu Cai, Ti-Ren Huang, Monotonicity, convexity properties and inequalities involving Gaussian hypergeometric functions with applications, 2022, 7, 2473-6988, 4974, 10.3934/math.2022277
    111. Jinyuan Wang, Yi-Peng Xu, Raed Qahiti, M. Jafaryar, Mashhour A. Alazwari, Nidal H. Abu-Hamdeh, Alibek Issakhov, Mahmoud M. Selim, Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability, 2022, 208, 09204105, 109734, 10.1016/j.petrol.2021.109734
    112. Gustavo Santos-García, Muhammad Bilal Khan, Hleil Alrweili, Ahmad Aziz Alahmadi, Sherif S. M. Ghoneim, Hermite–Hadamard and Pachpatte Type Inequalities for Coordinated Preinvex Fuzzy-Interval-Valued Functions Pertaining to a Fuzzy-Interval Double Integral Operator, 2022, 10, 2227-7390, 2756, 10.3390/math10152756
    113. Ehsan Kianfar, The Effects of SiO2/Al2O3 and H2O/Al2O3 Molar Ratios on SAPO-34 Catalyst in the Methanol to Olefin Process, 2023, 15, 1876-990X, 381, 10.1007/s12633-022-02008-8
    114. Bardia Mortezagholi, Emad Movahed, Amirhossein Fathi, Milad Soleimani, Armita Forutan Mirhosseini, Negar Zeini, Mehrdad Khatami, Mahin Naderifar, Bahman Abedi Kiasari, Mehran Zareanshahraki, Plant‐mediated synthesis of silver‐doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay, 2022, 85, 1059-910X, 3553, 10.1002/jemt.24207
    115. Ahmad Banji Jafar, Sharidan Shafie, Imran Ullah, Rabia Safdar, Wasim Jamshed, Amjad Ali Pasha, Mustafa Mutiur Rahman, Syed M. Hussain, Aysha Rehman, El Sayed M. Tag El Din, Mohamed R. Eid, Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet, 2022, 12, 2045-2322, 10.1038/s41598-022-18761-0
    116. Sagr Alamri, Ali A. Rajhi, M. Derakhshande, Potential detection of C2N2 gas by the pure, Al, and Cu-doped graphynes: a DFT study, 2022, 48, 0892-7022, 574, 10.1080/08927022.2022.2036338
    117. Fuzhang Wang, Waleed Hamali, Musawa Yahya Almusawa, Taher A. Nofal, Mahmoud M. Selim, Juan Zhang, Simulation of spiral tube during melting utilizing multi-type nanoparticles, 2022, 213, 09204105, 110353, 10.1016/j.petrol.2022.110353
    118. Kamsing Nonlaopon, Shahram Rezapour, Musaad S. Aldhabani, Samirah H. Alsulami, S.K. Elagan, On an efficient approach to solutions of a perturbed nonlinear Schrödinger’s equation, 2022, 39, 22113797, 105738, 10.1016/j.rinp.2022.105738
    119. Guangli Fan, Hassan Abdulwahab Anjal, Raed Qahiti, Nidal H. Abu-Hamdeh, Abdullah M. Abusorrah, Jin Xu, Hailong Zhang, Zhixiong Li, Comparison of different lobe-injectors on fuel mixing characteristics of single jet at the supersonic combustion chamber, 2021, 119, 12709638, 107193, 10.1016/j.ast.2021.107193
    120. Israr Ilyas, Adeel Zafar, Muhammad Afzal, Muhammad Javed, Raid Alrowais, Fadi Althoey, Abdeliazim Mohamed, Abdullah Mohamed, Nikolai Vatin, Advanced Machine Learning Modeling Approach for Prediction of Compressive Strength of FRP Confined Concrete Using Multiphysics Genetic Expression Programming, 2022, 14, 2073-4360, 1789, 10.3390/polym14091789
    121. Si Yuanlei, Bassem F. Felemban, Ali Bahadar, Yahya Ali Rothan, Mahmoud M. Selim, Investigation of nanofluid flow within a duct with complicated swirl flow device using numerical computing technology, 2022, 33, 0129-1831, 10.1142/S0129183122500954
    122. Syed M Hussain, Faisal Shahzad, Wasim Jamshed, Mohammad Kalimuddin Ahmad, Zulfiqar Rehman, Imran Ullah, Thermal scrutinization of magetohydrodynamics CuO engine oil nanofluid flow across a horizontal surface via Koo–Kleinstreuer–Li modeling: A thermal case study, 2022, 0954-4089, 095440892211311, 10.1177/09544089221131147
    123. MohammadKazem Rostamian, Soroush Maddah, Yasser Rostamiyan, Influence of sinusoidal shock generator on mixing performance of hydrogen and air co-flow jets in dual-combustor ramjet, 2022, 195, 00945765, 109, 10.1016/j.actaastro.2022.03.002
    124. Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman, Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions, 2023, 8, 2473-6988, 7437, 10.3934/math.2023374
    125. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Mohamed S. Soliman, Muhammad Aslam Noor, Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 622, 10.3390/axioms11110622
    126. Hesham Alhumade, Eydhah Almatrafi, Muhyaddin Rawa, A.S. El-Shafay, Cong Qi, Yacine Khetib, Numerical study of simultaneous use of non-Newtonian hybrid nano-coolant and thermoelectric system in cooling of lithium-ion battery and changes in the flow geometry, 2022, 540, 03787753, 231626, 10.1016/j.jpowsour.2022.231626
    127. Xue-De Luan, Yi-Peng Xu, Hamdi Ayed, Mahmoud M. Selim, Heat transfer treatment of nanomaterial with considering turbulator effects, 2022, 131, 07351933, 105787, 10.1016/j.icheatmasstransfer.2021.105787
    128. Muhammad Bilal Khan, Adriana Cătaş, Omar Mutab Alsalami, Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions, 2022, 6, 2504-3110, 415, 10.3390/fractalfract6080415
    129. Si Yuanlei, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Muhammad Asif Zahoor Raja, Nanomaterial migration due to magnetic field through a porous region utilizing numerical modeling, 2021, 785, 00092614, 139162, 10.1016/j.cplett.2021.139162
    130. Yahya Ali Rothan, Modeling for freezing of PCM enhanced with nano-powders within a duct, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-02505-0
    131. Saade Abdalkareem Jasim, Moaed E. Al-Gazally, Maria Jade Catalan Opulencia, Mustafa M. Kadhim, Ahmed B. Mahdi, Ali Thaeer Hammid, Abdol Ghaffar Ebadi, Toxic hydrazoic acid vapor detection and adsorption by different metal-decorated BN nanotubes: A first-principles study, 2022, 1212, 2210271X, 113721, 10.1016/j.comptc.2022.113721
    132. Yahya Ali Rothan, Modeling approach for nanomaterial convective migration with inclusion of Lorentz force, 2022, 102, 0044-2267, 10.1002/zamm.202100204
    133. Cunhong Li, Yan Xu, Abdol Ghaffar Ebadi, The electronic response of the aluminum phosphide nanotube to different concentrations of carbon disulfide molecules, 2022, 153, 0026-9247, 339, 10.1007/s00706-022-02912-0
    134. Ali Aldrees, Mohsin Ali Khan, Muhammad Atiq Ur Rehman Tariq, Abdeliazim Mustafa Mohamed, Ane Wai Man Ng, Abubakr Taha Bakheit Taha, Multi-Expression Programming (MEP): Water Quality Assessment Using Water Quality Indices, 2022, 14, 2073-4441, 947, 10.3390/w14060947
    135. Genhong Zhong, Xiaoyan Ma, Fei Wang, Approximations related to the complete p-elliptic integrals, 2022, 20, 2391-5455, 1046, 10.1515/math-2022-0493
    136. Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, 2022, 7, 2473-6988, 10454, 10.3934/math.2022583
    137. Zhongliang Shen, Shuaixian Yu, Shichuang Zheng, Taher A. Nofal, Awad Musa, Z. Li, Numerical study of multi-jet with upstream divergent ramp at supersonic cross flow, 2022, 127, 12709638, 107689, 10.1016/j.ast.2022.107689
    138. Yu Jiang, Xiaomei Wang, Mustafa Z. Mahmoud, Mohamed Abdelghany Elkotb, Lavania Baloo, Zhixiong Li, Behzad Heidarshenas, A study of nanoparticle shape in water/alumina/boehmite nanofluid flow in the thermal management of a lithium-ion battery under the presence of phase-change materials, 2022, 539, 03787753, 231522, 10.1016/j.jpowsour.2022.231522
    139. Kamsing Nonlaopon, B. Günay, Shahram Rezapour, Musaad S. Aldhabani, A.M. Alotaibi, S.K. Elagan, On novel application of piece-wise fractional operators for a predator–prey model, 2022, 39, 22113797, 105683, 10.1016/j.rinp.2022.105683
    140. Omar Dheyauldeen Salahdin, Hamidreza Sayadi, Reena Solanki, Rosario Mireya Romero Parra, Mohaimen Al-Thamir, Abduladheem Turki Jalil, Samar Emad Izzat, Ali Thaeer Hammid, Luis Andres Barboza Arenas, Ehsan Kianfar, Graphene and carbon structures and nanomaterials for energy storage, 2022, 128, 0947-8396, 10.1007/s00339-022-05789-2
    141. Xinglong Liu, Zahir Shah, Mohammed R. Alzahrani, Numerical modeling of nanofluid exergy loss within tube with multi-helical tapes, 2022, 137, 2190-5444, 10.1140/epjp/s13360-021-02327-6
    142. Jawed Mustafa, Saeed Alqaed, Fahad Awjah Almehmadi, Mohsen Sharifpur, Effect of simultaneous use of water-alumina nanofluid and phase change nanomaterial in a lithium-ion battery with a specific geometry connected solar system, 2022, 539, 03787753, 231570, 10.1016/j.jpowsour.2022.231570
    143. Yahya Ali Rothan, Simulation of physical behavior of nanomaterial during freezing within a container, 2022, 36, 0217-9849, 10.1142/S0217984922501184
    144. Jorge E. Macías-Díaz, Muhammad Bilal Khan, Hleil Alrweili, Mohamed S. Soliman, Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral, 2022, 14, 2073-8994, 1639, 10.3390/sym14081639
    145. Masoome Sadeghi, Asal Yousefi Siavoshani, Mahdiye Bazargani, Abduladheem Turki Jalil, Mojtaba Ramezani, Mohammad Reza Poor Heravi, Dichlorosilane adsorption on the Al, Ga, and Zn-doped fullerenes, 2022, 153, 0026-9247, 427, 10.1007/s00706-022-02926-8
    146. Te Ma, Mahdi Aghaabbasi, Mujahid Ali, Rosilawati Zainol, Amin Jan, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, Nonlinear Relationships between Vehicle Ownership and Household Travel Characteristics and Built Environment Attributes in the US Using the XGBT Algorithm, 2022, 14, 2071-1050, 3395, 10.3390/su14063395
    147. Syed M. Hussain, B. Shankar Goud, Prakash Madheshwaran, Wasim Jamshed, Amjad Ali Pasha, Rabia Safdar, Misbah Arshad, Rabha W. Ibrahim, Mohammad Kalimuddin Ahmad, Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study, 2022, 7, 2470-1343, 25309, 10.1021/acsomega.2c02207
    148. Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Hamed H. Alsulami, Z. M. M. M. Sayed, Ahmed Mohammed Alshehri, Fahd Jarad, Estimations of the Slater Gap via Convexity and Its Applications in Information Theory, 2022, 2022, 1563-5147, 1, 10.1155/2022/1750331
    149. Waleed Hamali, Musawa Yahya Almusawa, Transient heat transfer of NEPCM during solidification using Galerkin method, 2022, 35, 2214157X, 102114, 10.1016/j.csite.2022.102114
    150. Chuan-Yu Cai, Lu Chen, Ti-Ren Huang, Yuming Chu, New properties for the Ramanujan R-function, 2022, 20, 2391-5455, 724, 10.1515/math-2022-0045
    151. Hui-Zuo Xu, Wei-Mao Qian, Yu-Ming Chu, Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means, 2022, 116, 1578-7303, 10.1007/s13398-021-01162-9
    152. Ahmad El Askary, Basem H. Elesawy, Nasser S. Awwad, Hala A. Ibrahium, Mohd. Shkir, Different metal-decorated aluminum phosphide nanotubes as hydrazine sensors for biomedical applications, 2022, 28, 1610-2940, 10.1007/s00894-022-05102-1
    153. Shen-Yang Tan, Ti-Ren Huang, Yu-Ming Chu, Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind, 2021, 71, 1337-2211, 667, 10.1515/ms-2021-0012
    154. Yinghong Qin, Simulation based on Galerkin method for solidification of water through energy storage enclosure, 2022, 50, 2352152X, 104672, 10.1016/j.est.2022.104672
    155. Muhammad Bilal Khan, Gustavo Santos-García, Savin Treanțǎ, Mohamed S. Soliman, New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals, 2022, 14, 2073-8994, 2322, 10.3390/sym14112322
    156. Li Xu, Lu Chen, Ti-Ren Huang, Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function, 2022, 7, 2473-6988, 12471, 10.3934/math.2022692
    157. Saade Abdalkareem Jasim, Hawraz Ibrahim M. Amin, Ahmad Rajabizadeh, Marcos Augusto Lima Nobre, Fariba Borhani, Abduladheem Turki Jalil, Marwan Mahmood Saleh, Mustafa M. Kadhim, Mehrdad Khatami, Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants, 2022, 86, 0273-1223, 2303, 10.2166/wst.2022.318
    158. Bandar Almohsen, Computational modeling of a complex container with nanofluid carrier fluid and magnetic force, 2022, 1745-5030, 1, 10.1080/17455030.2022.2096945
    159. Yahya Ali Rothan, Investigation of hybrid nanomaterial application in melting process of paraffin enhanced with nanoparticles, 2021, 96, 0031-8949, 125253, 10.1088/1402-4896/ac3877
    160. Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, 2021, 6, 2473-6988, 8001, 10.3934/math.2021465
    161. Hamdi Ayed, Modeling of nanomaterial transportation within an enclosure with imposing external magnetic source, 2022, 2190-5509, 10.1007/s13204-021-02136-4
    162. Xuexiao You, Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Improvements of Slater’s Inequality by Means of 4-Convexity and Its Applications, 2022, 10, 2227-7390, 1274, 10.3390/math10081274
    163. Panyu Tang, Mahdi Aghaabbasi, Mujahid Ali, Amin Jan, Abdeliazim Mustafa Mohamed, Abdullah Mohamed, How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships, 2022, 14, 2071-1050, 3989, 10.3390/su14073989
    164. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions, 2022, 10, 2227-7390, 3851, 10.3390/math10203851
    165. Bandar Almohsen, Magnetohydrodynamic migration of nanomaterial within a cavity with involvement of hybrid nanoparticles, 2022, 36, 0217-9849, 10.1142/S0217984922500269
    166. Haiwei Yang, Yahya Ali Rothan, Saad Althobaiti, Mahmoud M. Selim, Simulation for influence of Y-shape fin on phase change of paraffin inside triplex pipe with using Al2O3 nanoparticles, 2022, 46, 2352152X, 103878, 10.1016/j.est.2021.103878
    167. Menglin Qin, Bandar Almohsen, M. Sabershahraki, Alibek Issakhov, Investigation of water freezing with inclusion of nanoparticle within a container with fins, 2022, 2190-5509, 10.1007/s13204-021-02139-1
    168. Kaikai Jin, Yulei Tai, Davood Toghraie, Maboud Hekmatifar, The effects of nanoparticle percentages and an external variable magnetic field on the atomic and thermal behaviors in an oscillating heat pipe via molecular dynamics simulation, 2022, 360, 01677322, 119570, 10.1016/j.molliq.2022.119570
    169. Menglin Qin, Adel Almarashi, Ziyad Jamil Talabany, Sajjad Haider, Shaukat Khan, Mahmoud M. Selim, Charging of phase change material layers though air heat exchanger considering TiO2 nanomaterial, 2022, 47, 2352152X, 103652, 10.1016/j.est.2021.103652
    170. Menglin Qin, Sajjad Haider, Shaukat Khan, Alibek Issakhov, Mahmoud M. Selim, RETRACTED ARTICLE: Study for Lorentz force impact on irreversibility of nanomaterial with considering the permeable zone, 2022, 2190-5509, 10.1007/s13204-021-02183-x
    171. Jian Wang, Wissam H. Alawee, Hayder A. Dhahad, Taher A. Nofal, Awad Musa, Ping Xu, Numerical study for solidification of water inside a storage tank considering copper oxide nanoparticles, 2022, 52, 2352152X, 104683, 10.1016/j.est.2022.104683
    172. Muhammad Bilal Khan, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, Alia M. Alzubaidi, Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation, 2023, 11, 2227-7390, 1356, 10.3390/math11061356
    173. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Saeid Jafari, Abdulwadoud A. Maash, Mohamed S. Soliman, Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation, 2023, 15, 2073-8994, 862, 10.3390/sym15040862
    174. Muhammad Bilal Khan, Aziz Ur Rahman, Abdulwadoud A. Maash, Savin Treanțǎ, Mohamed S. Soliman, Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation, 2023, 12, 2075-1680, 365, 10.3390/axioms12040365
    175. Ling Zhu, A new upper bound for the complete elliptic integral of the first kind, 2023, 117, 1578-7303, 10.1007/s13398-023-01453-3
    176. Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885
    177. Muhammad Adil Khan, Hidayat Ullah, Tareq Saeed, Zaid M. M. M. Sayed, Salha Alshaikey, Emad E. Mahmoud, Daniel Maria Busiello, Determination of Novel Estimations for the Slater Difference and Applications, 2024, 2024, 1099-0526, 1, 10.1155/2024/8481103
    178. Jiahui Wu, Tiehong Zhao, On the Absolute Monotonicity of the Logarithmic of Gaussian Hypergeometric Function, 2024, 50, 1017-060X, 10.1007/s41980-024-00889-6
    179. Muhammad Adil Khan, Asadullah Sohail, Hidayat Ullah, Tareq Saeed, Estimations of the Jensen Gap and Their Applications Based on 6-Convexity, 2023, 11, 2227-7390, 1957, 10.3390/math11081957
    180. Tie-Hong Zhao, Miao-Kun Wang, Sharp double-exponent type bounds for the lemniscate sine function, 2024, 18, 1452-8630, 148, 10.2298/AADM230417005Z
    181. Ebrahem A. Algehyne, Izharul Haq, Zehba Raizah, Fuad S. Alduais, Anwar Saeed, Ahmed M. Galal, Heat transport phenomenon of the MHD water-based hybrid nanofluid flow over a rotating disk with velocity slips, 2024, 38, 0217-9792, 10.1142/S0217979224501005
    182. Tareq Saeed, Adriana Cătaș, Muhammad Bilal Khan, Ahmed Mohammed Alshehri, Some New Fractional Inequalities for Coordinated Convexity over Convex Set Pertaining to Fuzzy-Number-Valued Settings Governed by Fractional Integrals, 2023, 7, 2504-3110, 856, 10.3390/fractalfract7120856
    183. Muhammad Bilal Khan, Eze R. Nwaeze, Cheng-Chi Lee, Hatim Ghazi Zaini, Der-Chyuan Lou, Khalil Hadi Hakami, Weighted Fractional Hermite–Hadamard Integral Inequalities for up and down Ԓ-Convex Fuzzy Mappings over Coordinates, 2023, 11, 2227-7390, 4974, 10.3390/math11244974
    184. Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Chanisara Metpattarahiran, Thanin Sitthiwirattham, Improvements of Integral Majorization Inequality with Applications to Divergences, 2023, 13, 2075-1680, 21, 10.3390/axioms13010021
    185. Muhammad Bilal Khan, Željko Stević, Abdulwadoud A. Maash, Muhammad Aslam Noor, Mohamed S. Soliman, Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation, 2023, 12, 2075-1680, 399, 10.3390/axioms12040399
    186. Muhammad Bilal Khan, Ali Althobaiti, Cheng-Chi Lee, Mohamed S. Soliman, Chun-Ta Li, Some New Properties of Convex Fuzzy-Number-Valued Mappings on Coordinates Using Up and Down Fuzzy Relations and Related Inequalities, 2023, 11, 2227-7390, 2851, 10.3390/math11132851
    187. Tareq Saeed, Muhammad Adil Khan, Shah Faisal, Hamed H. Alsulami, Mohammed Sh. Alhodaly, New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization, 2023, 56, 2391-4661, 10.1515/dema-2022-0225
    188. Wei-Dong Jiang, Sharp inequalities for the complete elliptic integrals of the first and second kinds, 2023, 17, 1452-8630, 388, 10.2298/AADM200613020J
    189. Muhammad Bilal Khan, Jorge E. Macías-Díaz, Ali Althobaiti, Saad Althobaiti, Some New Properties of Exponential Trigonometric Convex Functions Using up and down Relations over Fuzzy Numbers and Related Inequalities through Fuzzy Fractional Integral Operators Having Exponential Kernels, 2023, 7, 2504-3110, 567, 10.3390/fractalfract7070567
    190. Adil Jhangeer, Abdallah M. Talafha, Ariana Abdul Rahimzai, Lubomír Říha, Investigating wave solutions in coupled nonlinear Schrödinger equation: insights into bifurcation, chaos, and sensitivity, 2025, 7, 3004-9261, 10.1007/s42452-024-06359-2
    191. Asadullah Sohail, Muhammad Adil Khan, Hidayat Ullah, Khalid A. Alnowibet, Yi-Xia Li, Yu-Ming Chu, Improvements to Slater's inequality and their applications via functions whose fourth-order derivatives are convex, 2025, 33, 2769-0911, 10.1080/27690911.2025.2468935
    192. Jiahui Wu, Tiehong Zhao, On the power series related to zero-balanced hypergeometric function, 2025, 0019-5588, 10.1007/s13226-025-00768-8
    193. Muhammad Khan, Shah Faisal, Derivation of conticrete Hermite-Hadamard-Jensen-Mercer inequalities through k-Caputo fractional derivatives and majorization, 2024, 38, 0354-5180, 3389, 10.2298/FIL2410389K
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7384) PDF downloads(478) Cited by(190)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog