Research article Special Issues

The onset of Marangoni bio-thermal convection in a layer of fluid containing gyrotactic microorganisms

  • Received: 17 April 2021 Accepted: 15 September 2021 Published: 24 September 2021
  • MSC : 76E06

  • The problem of the onset of Marangoni bio-thermal convection is investigated for a horizontal layer of fluid containing motile gyrotactic microorganisms. The fluid layer is assumed to rest on a rigid surface with fixed temperature and the top boundary of the layer is assumed to be a free non deformable surface. The resulting equations of the problem constitute an eigenvalue problem which is solved using the Chebyshev tau numerical method. The critical values of the thermal Marangoni number are calculated for several values of the bioconvection Péclet number, bioconvection Marangoni number, bioconvection Lewis number and gyrotaxis number. The results of this study showed that the existence of gyrotactic microorganisms increases the critical thermal Marangoni numbers. Moreover, the critical eigenvalues obtained were real-valued indicating that the mode of instability is via a stationary mode, however oscillatory mode is possible for some ranges of the parameters values.

    Citation: Latifa I. Khayyat, Abdullah A. Abdullah. The onset of Marangoni bio-thermal convection in a layer of fluid containing gyrotactic microorganisms[J]. AIMS Mathematics, 2021, 6(12): 13552-13565. doi: 10.3934/math.2021787

    Related Papers:

  • The problem of the onset of Marangoni bio-thermal convection is investigated for a horizontal layer of fluid containing motile gyrotactic microorganisms. The fluid layer is assumed to rest on a rigid surface with fixed temperature and the top boundary of the layer is assumed to be a free non deformable surface. The resulting equations of the problem constitute an eigenvalue problem which is solved using the Chebyshev tau numerical method. The critical values of the thermal Marangoni number are calculated for several values of the bioconvection Péclet number, bioconvection Marangoni number, bioconvection Lewis number and gyrotaxis number. The results of this study showed that the existence of gyrotactic microorganisms increases the critical thermal Marangoni numbers. Moreover, the critical eigenvalues obtained were real-valued indicating that the mode of instability is via a stationary mode, however oscillatory mode is possible for some ranges of the parameters values.



    加载中


    [1] J. Platt, Bioconvection patterns in cultures of free-swimming organisms, Science, 133 (1961), 1766–1767. doi: 10.1126/science.133.3466.1766
    [2] S. Childress, M. Levandowsky, E. Spiegel, Pattern formation in a suspension of swimming micro-organisms: Equations and stability theory, J. Fluid Mech., 69 (1975), 591–613. doi: 10.1017/S0022112075001577
    [3] N. Hill, T. Pedley, J. Kessler, Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth, J. Fluid Mech., 208 (1989), 509–543. doi: 10.1017/S0022112089002922
    [4] S. Ghorai, N. Hill, Development and stability of gyrotactic plumes in bio-thermal convection, J Fluid Mech., 400 (1999), 1–31. doi: 10.1017/S0022112099006473
    [5] T. Pedley, J. Kessler, Hydrodynamic phenomena of in suspensions of swimming micro-organisms, Annu. Rev. Fluid Mech., 24 (1992), 313–358. doi: 10.1146/annurev.fl.24.010192.001525
    [6] A. Kuznetsov, A. Avramenko, Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a fluid layer of finite depth, Int. Commun. Heat Mass, 31 (2004), 1–10. doi: 10.1016/S0735-1933(03)00196-9
    [7] P. Geng, A. Kuznetsov, Effect of small solid particles on the development of bioconvection plumes, Int. Commun. Heat Mass, 31 (2004), 629–638. doi: 10.1016/S0735-1933(04)00050-8
    [8] A. Kuznetsov, The onset of bioconvection in a suspension of gyrotactic microorganisms in a fluid layer of finite depth heated from below, Int. Commun. Heat Mass, 32 (2005), 574–582. doi: 10.1016/j.icheatmasstransfer.2004.10.021
    [9] D. Nield, A. Kuznetsov, The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection, Int. J. Therm. Sci., 45 (2006), 990–997. doi: 10.1016/j.ijthermalsci.2006.01.007
    [10] A. Avramenko, A. Kuznetsov, The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer with an inclined temperature gradient, Int. J. Numer. Method. H., 20 (2010), 111–129. doi: 10.1108/09615531011008154
    [11] A. Kuznetsov, The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass, 37 (2010), 1421–1425. doi: 10.1016/j.icheatmasstransfer.2010.08.015
    [12] A. Kuznetsov, Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth, Eur. J. Mech. B-Fluid., 30 (2011), 156–165. doi: 10.1016/j.euromechflu.2010.10.007
    [13] A. Kuznetsov, Bio-thermal convection induced by two different species of microorganisms, Int. J. Numer. Method. H., 8 (2011), 548–553.
    [14] A. Kuznetsov, The onset of bio-thermal convection induced by a combined effect of gyrotactic and oxytactic microorganisms, Int. J. Numer. Method. H., 23 (2013), 979–1000. doi: 10.1108/HFF-09-2011-0178
    [15] S. Saini, Y. Sharma, Analysis of onset of bio-thermal convection in a fluid containing gravitactic microorganisms by the energy method, Chinese J. Phys., 56 (2018), 2031–2038. doi: 10.1016/j.cjph.2018.09.001
    [16] M. Zhao, S. Wang, H. Wang, U. Mahabaleshwar, Darcy-Brinkman bio-thermal convection in a suspension of gyrotactic microorganisms in a porous medium, Neural Comput. Appl., 31 (2019), 1061–1067. doi: 10.1007/s00521-017-3137-y
    [17] J. Pearson, On convection cells induced by surface tension, J. Fluid Mech., 4 (1958), 489–500. doi: 10.1017/S0022112058000616
    [18] D. Nield, Surface tension and buoyancy effects in cellular convection, J. Fluid Mech., 19 (1964), 341–352. doi: 10.1017/S0022112064000763
    [19] M. Takashima, Surface tension driven instability in a horizontal liquid layer with a deformable free surface I. Stationary convection, J. Phys. Soc. Jpn., 50 (1981), 2745–2750. doi: 10.1143/JPSJ.50.2745
    [20] R. Benguria, M. Depassier, On the linear stability theory of Benard-Marangoni convection, Phys. Fluids A, 1 (1989), 1123–1127.
    [21] S. Wilson, The effect of a uniform magnetic field on the onset of steady Benard-Mrangoni convection in a layer of conducting fluid, J. Eng. Math., 27 (1993), 161–188. doi: 10.1007/BF00127480
    [22] I. Shivakumara, M. Venkatachalappa, S. Summa, Exact analysis of Marangoni convection with throughflow, Acta Mech., 136 (1999), 109–117. doi: 10.1007/BF01292301
    [23] I. Hashim, N. Arfin, Oscillatory Marangoni convection in a conducting fluid layer with a deformable free surface in the presence of a vertical magnetic field, Acta Mech., 164 (2003), 199–215. doi: 10.1007/s00707-003-0008-7
    [24] I. Shivakumara, C. Nanjundappa, K. Chavaraddi, Darcy-Benard-Marangoni convection in porous media, Int. J. Heat Mass Tran., 52 (2009), 2815–2823. doi: 10.1016/j.ijheatmasstransfer.2008.09.038
    [25] A. Abdullah, K. Lindsay, Marangoni convection in a layer of nanofluid, Int. J. Heat Mass Tran., 104 (2017), 693–702. doi: 10.1016/j.ijheatmasstransfer.2016.08.099
    [26] A. Abdullah, N. Alraiqab, K. Lindsay, Modelling the stability of Marangoni convection in a layer of nanofluid, Int. J. Therm. Sci., 151 (2020), 106228. doi: 10.1016/j.ijthermalsci.2019.106228
    [27] T. Pedley, J. Kessler, The orientation of spheroidal microorganisms swimming in a flow field, Proc. R. Soc. Lond. B, 231 (1987), 47–70. doi: 10.1098/rspb.1987.0035
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1749) PDF downloads(59) Cited by(4)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog