The main purpose of this paper is to establish the weighted boundedness result of vector valued bilinear $ \varpi(t) $-type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, where $ \varpi $ being nondecreasing and $ \varpi\in \rm{Dini}(1) $.
Citation: Yanqi Yang, Qi Wu. Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces[J]. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310
The main purpose of this paper is to establish the weighted boundedness result of vector valued bilinear $ \varpi(t) $-type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, where $ \varpi $ being nondecreasing and $ \varpi\in \rm{Dini}(1) $.
[1] | K. Yabuta, Generalizations of Calderón-Zygmund operators, Stud. Math., 82 (1985), 17–31. https://doi.org/10.4064/SM-82-1-17-31 doi: 10.4064/SM-82-1-17-31 |
[2] | D. Maldonado, V. Naibo, Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 15 (2009), 218–261. https://doi.org/10.1007/s00041-008-9029-x doi: 10.1007/s00041-008-9029-x |
[3] | G. Lu, P. Zhang, Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, Nonlinear Anal., 107 (2014), 92–117. https://doi.org/10.1016/j.na.2014.05.005 doi: 10.1016/j.na.2014.05.005 |
[4] | A. Nekvinda, Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^{n})$, Math. Inequal. Appl., 7 (2004), 255–265. |
[5] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044 |
[6] | A. Almeida, P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), 1628–1655. https://doi.org/10.1016/j.jfa.2009.09.012 doi: 10.1016/j.jfa.2009.09.012 |
[7] | M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4 |
[8] | S. Wang, J. Xu, Boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents, Chin. Ann. Math. Ser. B, 42 (2021), 693–720. https://doi.org/10.1007/s11401-021-0286-1 doi: 10.1007/s11401-021-0286-1 |
[9] | C. Pérez, R. Trujillo-González, Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math. J., 55 (2003), 109–129. https://doi.org/10.2748/TMJ/1113247449 doi: 10.2748/TMJ/1113247449 |
[10] | A. Huang, J. Xu, Multilinear singular integral and commutators in variable exponent Lebesgue space, Appl. Math., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3 |
[11] | Y. Sawano, Theory of Besov spaces, Springer Verlag, 2018. https://doi.org/10.1007/978-981-13-0836-9 |
[12] | D. Cruz-Uribe, J. M. Martell, C. Pérez, Extrapolation from $A_{\infty}$ weights and applications, J. Funct. Anal., 213 (2004), 412–439. https://doi.org/10.1016/j.jfa.2003.09.002 doi: 10.1016/j.jfa.2003.09.002 |
[13] | D. Cruz-Uribe, L. A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/TRAN/6730 doi: 10.1090/TRAN/6730 |