Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces

  • Received: 15 June 2023 Revised: 14 August 2023 Accepted: 21 August 2023 Published: 05 September 2023
  • MSC : 42B20, 42B25, 42B35

  • The main purpose of this paper is to establish the weighted boundedness result of vector valued bilinear ϖ(t)-type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, where ϖ being nondecreasing and ϖDini(1).

    Citation: Yanqi Yang, Qi Wu. Vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type in variable exponents Herz-Morrey spaces[J]. AIMS Mathematics, 2023, 8(11): 25688-25713. doi: 10.3934/math.20231310

    Related Papers:

    [1] Bo Xu . Bilinear θ-type Calderón-Zygmund operators and its commutators on generalized variable exponent Morrey spaces. AIMS Mathematics, 2022, 7(7): 12123-12143. doi: 10.3934/math.2022674
    [2] Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652
    [3] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand p-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [4] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [5] Suixin He, Shuangping Tao . Boundedness of some operators on grand generalized Morrey spaces over non-homogeneous spaces. AIMS Mathematics, 2022, 7(1): 1000-1014. doi: 10.3934/math.2022060
    [6] Jing Liu, Kui Li . Compactness for commutators of Calderón-Zygmund singular integral on weighted Morrey spaces. AIMS Mathematics, 2024, 9(2): 3483-3504. doi: 10.3934/math.2024171
    [7] Ming Liu, Bin Zhang, Xiaobin Yao . Weighted variable Morrey-Herz space estimates for mth order commutators of ndimensional fractional Hardy operators. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
    [8] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
    [9] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [10] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
  • The main purpose of this paper is to establish the weighted boundedness result of vector valued bilinear ϖ(t)-type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, where ϖ being nondecreasing and ϖDini(1).



    In 1985, Yabuta [1] proposed the definitions of ϖ(t)-type Calderón-Zygmund operators, he introduced certain ϖ(t)-type Calderón-Zygmund operators to facilitate his study of certain classes of pseudodifferential operators. After that, Maldonado and Naibo [2] established the weighted norm inequalities for the bilinear Calderón-Zygmund operators of type ϖ(t), and applied them to the study of para-products and bilinear pseudo-differential operators with mild regularity. In 2009, Lu and Zhang [3] established the a number of results concerning boundedness of multi-linear ϖ(t)-type Calderón-Zygmund operators. we recall the so-called ϖ(t)-type Calderón-Zygmund operators.

    Let ϖ(t): [0,)[0,) be a nondecreasing function with 0<ϖ(1)<. For α>0, we say that ϖDini(a) if

    |ϖ|Dini(α)=10ϖα(t)tdt<. (1.1)

    It is evident that for 0<α1<α2, there is Dini(α1)<Dini(α2). If ϖDini(1), then

    0ϖ(2j)10ϖ(t)tdt<,

    here and in what follows, for any quantities A and B, if there exists a constant C>0 such that ACB, we write AB. If AB and BA, we write AB.

    A measurable function K(,,) on Rn×Rn×Rn{(x,y1,y2):x=y1=y2} is said to be a bilinear ϖ(t)-type Calderón-Zygmund kernel if it satisfies: for all (x,y1,y2)Rn with xyi,i=1,2, if there exists a constant A>0 such that

    |K(x,y1,y2)|Aϖ(2i=1|xyi|)2n, (1.2)

    and for (x,y1,y2)(Rn)3 with xy1,y2, and

    |K(x,y1,y2)K(z,,y1,y2)|Aω(|xz|2i=1|xyi|)[2i=1|xyi|]2n. (1.3)

    whenever 2|xz|<max{|xy1|,|xy2|}.

    Definition 1.1. ([2]) Let ϖDini(1). One can say that Tϖ is a bilinear ϖ(t)-type operator with the kernel K satisfying (1.2) and (1.3), for all f1, f2Cc(Rn),

    Tϖ(f1,f2)(x)=RnRnK(x,y1,y2)f1(y1)f2(y2)dy1dy2,xsuppf1suppf2. (1.4)

    In the following, for each kZ, we define Bk={xRn:|x|2k}, Dk=BkBk1, χk=χDk, m1, ˜χ0=χB0.

    Given a function p(x)P(Rn), the space Lp(x)(Rn) is now defined by

    Denote \mathcal{P}(\mathbb{R}^{n}) to be the set of the all measurable functions p(x) with

    p_{-} = :\mathrm{ess}\inf\limits_{x\in \mathbb{R}^{n}}p(x) > 1

    and

    p_{+} = :\mathrm{ess}\sup\limits_{x\in \mathbb{R}^{n}}p(x) < \infty,

    and \mathcal{B}(\mathbb{R}^{n}) to be the set of all functions p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) satisfying the condition that the Hardy-littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) , \mathcal{P}^{0}(\mathbb{R}^{n}) the set of all measurable functions p(x) with p_{-} > 0 and p_{+} < \infty .

    The space L_{\rm{loc}}^{p(\cdot)}(\mathbb{R}^{n}) is defined by

    L_{\rm{loc}}^{p(\cdot)}(\mathbb{R}^{n}) = \{f:f_{\chi_{K}}\in L_{\rm{loc}}^{p(\cdot)}(\mathbb{R}^{n})\ \text{for all compact subsets K} \in \mathbb{R}^{n}\},

    where and what follows, \chi_{S} denotes the characteristic function of a measurable set S \subset \mathbb{R}^{n} .

    Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) and \omega be a nonnegative measurable function on \mathbb{R}^{n} . Then the weighted variable exponent Lebesgue space L^{p(\cdot)}(\omega) is the set of all complex-valued measurable functions f such that f\omega\in L^{p(\cdot)} . The space L^{p(\cdot)}(\omega) is a Banach space equipped with the norm

    \|f\|_{L^{p(\cdot)}(\omega)} = \|f\omega\|_{L^{p(\cdot)}}.

    Let f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{n}) . Then the standard Hardy-Littlewood maximal function of f is defined by

    Mf(x) = \sup\limits_{x\in B}\frac{1}{|B|}\int_{B}f(y)\mathrm{d}y,\; \; \; \forall\; x\in \mathbb{R}^{n},

    where the supremum is taken over all balls containing x in \mathbb{R}^{n} .

    \textbf{Definition 1.2.} ([4]) Let \alpha(\cdot) be a real-valued function on \mathbb{R}^{n} .

    (ⅰ) For any x, y\in \mathbb{R}^{n} , |x-y| < 1/2 , if

    |\alpha(x)-\alpha(y)|\lesssim \frac{1}{\log(e+1/|x-y|)},

    then \alpha(\cdot) is said local \log -Hölder continuous on \mathbb{R}^{n} .

    (ⅱ) For all x\in \mathbb{R}^{n} , if

    |\alpha(x)-\alpha(0)|\lesssim\frac{1}{\log(e+1/|x|)},

    then \alpha(\cdot) is said \log -Hölder continuous functions at origin, denote by \mathcal{P}_{0}^{\rm{log}}(\mathbb{R}^{n}) the set of all \log -Hölder continuous at origin.

    (ⅲ) If there exists \alpha_{\infty}\in \mathbb{R} , for x\in \mathbb{R}^{n} , if

    |\alpha(x)-\alpha_{\infty}|\lesssim \frac{1}{\log(e+|x|)},

    then \alpha(\cdot) is said \log -Hölder continuous at infinity, denote by \mathcal{P}_{\infty}^{\rm{log}}(\mathbb{R}^{n}) the set of all \log -Hölder continuous functions at infinity.

    (ⅳ) The function \alpha(\cdot) is global \log -Hölder continuous if \alpha(\cdot) are both locally \log -Hölder continuous and \log -Hölder continuous at infinity. Denote by \mathcal{P}^{\rm{log}}(\mathbb{R}^{n}) the set of all global \log -Hölder continuous functions.

    Let \omega be a weighted function on \mathbb{R}^{n} , that is, \omega is real-valued, non-negative and locally integrable. \omega is said to be a Muckenhoupt A_{1} weight if

    M\omega(x)\lesssim \omega(x)\; \; \; \; a.e., x\in \mathbb{R}^{n}.

    For 1 < p < \infty , we say that \omega is an A_{p} weight if

    \sup\limits_{B}\left(\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x \right) \left(\frac{1}{|B|}\int_{B}\omega(x)^{1-p^{\prime}}\mathrm{d}x\right)^{p-1} < \infty.

    \textbf{Definition 1.3.} ([5]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) . For some constant C , a weight \omega is said to be an A_{p(\cdot)} weight, if for all balls B in \mathbb{R}^{n} such that

    \frac{1}{|B|}\|\omega\chi_{B}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}\|\omega^{-1}\chi_{B}\|_{L^{p^{\prime}(\cdot)}(\mathbb{R}^{n})}\leq C.

    \textbf{Lemma 1.1.} ([5]) If p(\cdot)\in \mathcal{P}^{\rm{log}}(\mathbb{R}^{n})\cap \mathcal{P}(\mathbb{R}^{n}) and \omega\in A_{p(\cdot)} , then for each f\in L^{p(\cdot)}(\omega) ,

    \|(Mf)\omega\|_{L^{p(\cdot)}}\lesssim \|f\omega\|_{L^{p(\cdot)}},

    Before give the definitions of the weighted Herz space and Herz-Morrey space with variable exponents, we also need the notation of the variable mixed sequence space \ell^{q}(L^{p(\cdot)}) , which was firstly defined in [6]. Let \omega be a nonnegative measurable function. Given a sequence of functions \{f_{j}\}_{j\in \mathbb{Z}} , we define the modular

    \rho_{\ell^{q}(L^{p(\cdot)}(\omega))}((f_{j})_{j}) = \sum\limits_{j\in \mathbb{Z}}\inf\Big\{\lambda_{j}:\int_{\mathbb{R}^{n}}\Big(\frac{|f_{j}(x)\omega(x)|}{\lambda_{j}^{\frac{1}{q(x)}}}\Big)^{p(x)}\mathrm{d}x\leq 1\Big\},

    where \lambda^{\frac{1}{\infty}} = 1 . If q^{+} < \infty or q(\cdot)\leq p(\cdot) , the above can be written as

    \rho_{\ell^{q}(L^{p(\cdot)}(\omega))}((f_{j})_{j}) = \sum\limits_{j\in \mathbb{Z}}\left\|f_{j}\omega|^{q(\cdot)}\right\|_{L^{\frac{p(\cdot)}{q(\cdot)}}}.

    The norm is

    \|(f_{j})_{j}\|_{\rho_{\ell^{q}(L^{p(\cdot)}(\omega))}} = \inf\bigg\{\mu > 0:\rho_{\ell^{q}(L^{p(\cdot)}(\omega))}((\frac{f_{j}}{\mu})_{j})\leq 1\bigg\}.

    \textbf{Definition 1.4.} ([7]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) , q \in \mathcal{P}^{0}(\mathbb{R}^{n}) . Let \alpha(\cdot) be a bounded real-valued measurable function on \mathbb{R}^{n} . The homogeneous weighted Herz space \dot{K}^{\alpha(\cdot), q(\cdot)}_{p(\cdot)}(\omega) are defined by

    \dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}(\omega) = \{f\in L^{p(\cdot)}_{\mathrm{loc}}(\mathbb{R}^{n}\backslash\{0\},\omega):\|f\|_{\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}(\omega)} < \infty\},

    where

    \|f\|_{\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}(\omega)} = \|(2^{j\alpha(\cdot)}f\chi_{j})_{j}\|_{\rho_{\ell^{q}(L^{p(\cdot)}(\omega))}}.

    \textbf{Lemma 1.2.} ([7]) Let \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n}) , p(\cdot), q(\cdot)\in \mathcal{P}^{0}(\mathbb{R}^{n}) and \omega be a weight. If \alpha(\cdot) and q(\cdot) are \log -Hölder continuous at the origin, then T

    \|f\|_{\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}(\omega)} = \|f\|_{\dot{K}^{\alpha_{\infty},q_{\infty}}_{p(\cdot)}(\omega)}.

    Additionally, if \alpha(\cdot) and q(\cdot) are log-Hölder continuous at the origin, then

    \|f\|_{\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}(\omega)} \approx \Big(\sum\limits_{k\leq 0}\|2^{k\alpha(0)}f\chi_{k}\|_{L^{p(\cdot)}}^{q(0)}\Big)^{\frac{1}{q(0)}}+ \Big(\sum\limits_{k > 0}\|2^{k\alpha_{\infty}}f\chi_{k}\|_{L^{p(\cdot)}}^{q(0)}\Big)^{\frac{1}{q_{\infty}}}.

    \textbf{Definition 1.5.} ([8]) Let p(\cdot), q(\cdot)\in \mathcal{P}^{0}(\mathbb{R}^{n}) , \lambda\in[0, 1) . Let \alpha(\cdot) be a bounded real-valued measurable function on \mathbb{R}^{n} . The homogeneous weighted Herz-Morrey space M\dot{K}^{\alpha(\cdot), q(\cdot)}_{p(\cdot), \lambda}(\omega) are defined by

    M\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\omega) = \{f\in L^{p(\cdot)}_{\mathrm{loc}}(\mathbb{R}^{n}\backslash{\left \{0 \right \}},\omega):\|f\|_{M\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\omega)} < \infty\},

    where

    \|f\|_{M\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\omega)} = \sup\limits_{L\in \mathbb{Z}}2^{-L\lambda}\|(2^{k\alpha(\cdot)k}f\chi_{k})_{k\leq L}\|_{\rho_{\ell^{q}(L^{p(\cdot)}(\omega))}}.

    \textbf{Lemma 1.3.} ([8]) Let p(\cdot), q(\cdot)\in \mathcal{P}^{0}(\mathbb{R}^{n}) , \omega be a weight, \lambda\in [0, \infty) and \alpha\in L^{\infty}(\mathbb{R}^{n}) . If \alpha(\cdot) , q(\cdot)\in \mathcal{P}_{0}^{\rm{log}}(\mathbb{R}^{n})\cap \mathcal{P}_{\infty}^{\rm{log}}(\mathbb{R}^{n}) , then for any f\in L_{\rm{loc}}^{p(\cdot)}(\mathbb{R}^{n}\backslash \left \{ 0 \right \}, \omega) ,

    \begin{align*} \|f\|_{M\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\omega)} & \approx \max\bigg\{\sup\limits_{L\leq 0,L\in \mathbb{Z}}2^{-L\lambda}\|(2^{k\alpha(0)}f\chi_{k})_{k\leq L}\|_{l^{q_{0}} (L^{p(\cdot)}(\omega))}, \Big.\\ &\quad\Big.\sup\limits_{L > 0,L\in \mathbb{Z}}\Big[2^{-L\lambda}\|(2^{k\alpha(0)}f\chi_{k})_{k\leq L}\|_{\rho_{\ell^{q_{0}}(L^{p(\cdot)}(\omega))}}+2^{-L\lambda}\|(2^{k\alpha_{\infty}}f\chi_{k})_{k = 0}^{L}\|_{\rho_{\ell^{q_{0}}(L^{p(\cdot)}(\omega))}}\Big]\bigg\}, \end{align*}

    where and hereafter, q_{0} = q(0).

    \textbf{Lemma 1.4.} ([8]) If p(\cdot)\in \mathcal{P}^{\rm{log}}(\mathbb{R}^{n})\cap \mathcal{P}(\mathbb{R}^{n}) and \omega \in A_{p(\cdot)} , then there exist constants \delta_{1}, \delta_{2}\in (0, 1) , such that for all balls B in \mathbb{R}^{n} and all measurable subsets S\subset B ,

    \frac{\|\chi_{S}\|_{L^{p(\cdot)}(\omega)}}{\|\chi_{B}\|_{L^{p(\cdot)}(\omega)}}\lesssim\left(\frac{|S|}{|B|}\right)^{\delta_{1}}, \; \; \frac{\|\chi_{S}\|_{L^{p^{'}(\cdot)}(\omega^{-1})}}{\|\chi_{B}\|_{L^{p^{'}(\cdot)}(\omega^{-1})}}\lesssim\left(\frac{|S|}{|B|}\right)^{\delta_{2}}.

    Before proving the main results, we need the following lemmas.

    For \delta > 0 , we denote [M(|f|^{\delta})]^{\frac{1}{\delta}} by M_{\delta} . Let f\in L_{\rm{loc}}^{1}(\mathbb{R}^n) . Then the sharp maximal function is defined by

    M^{\#}f(x) = \sup\limits_{Q}\frac{1}{Q}\int_{Q}|f(y)-f_{Q}|\rm{d}y,

    where the supremum is taken over all the cubes Q containing the point x , and where as usual f_{Q} denotes the average of f on Q . we denote [M^{\#}(|f|^{\delta})]^{\frac{1}{\delta}} by M^{\#}_{\delta} .

    \textbf{Lemma 2.1.} ([3]) Let T_{\omega} be a bilinear \omega(t) -type Calderón-Zygmund operator with \varpi\in \rm{Dini}(1) and let 0 < \delta < \frac{1}{2} . Then, for any vector function \vec{f} = (f_{1}, f_{2}) , where each component is smooth and with compact support, the following inequality holds

    M^{\#}_{\delta}(T_{\omega}(f_{1},f_{2}))(x)\lesssim M(f_{1})(x)M(f_{2})(x).

    \textbf{Lemma 2.2.} ([9]) Let 0 < p, \; \delta < \infty and \omega\in A_{\infty} . There exists a positive constant C such that

    \int_{\mathbb{R}^{n}}[M_{\delta}f(x)]^{p}\omega(x)\rm{d}x\leq \int_{\mathbb{R}^{n}}[M^{\#}_{\delta}f(x)]^{p}\omega(x)\rm{d}x

    for every function f such that the left hand side is finite.

    \textbf{Lemma 2.3.} ([10]) Let p(\cdot), \; p_{1}(\cdot), \; p_{2}(\cdot)\in \mathcal{P}^{0}(\mathbb{R}^{n}) such that \frac{1}{p(x)} = \frac{1}{p_{1}(x)}+\frac{1}{p_{2}(x)} . Then for every f\in L^{p_{1}(\cdot)}(\mathbb{R}^{n}) and g\in L^{p_{2}(\cdot)}(\mathbb{R}^{n}) , there exists

    \|fg\|_{L^{p(\cdot)}}\lesssim \|f\|_{L^{p_{1}(\cdot)}}\|g\|_{L^{p_{2}(\cdot)}}

    If p\in \mathcal{P}(\mathbb{R}^{n}) , \omega is a weight with \omega = \omega_{1}\times \omega_{2} , there exists

    \|fg\|_{L^{p(\cdot)}(\omega)}\lesssim\|f\|_{L^{p_{1}(\cdot)}(\omega_{1})}\|g\|_{L^{p_{2}(\cdot)}(\omega_{2})}.

    \textbf{Lemma 2.4.} ([11]) Let 0 < p\leq \infty , \delta > 0 . Then for non-negative sequence \{a_{j}\}_{j = -\infty}^{\infty} , there exists

    \bigg(\sum\limits_{j = -\infty}^{\infty}\bigg(\sum\limits_{k = -\infty}^{\infty}2^{-|k-j|^{\delta}}a_{k}\bigg)^{p}\bigg)^{\frac{1}{p}}\lesssim (\sum\limits_{j = -\infty}^{\infty}a_{j}^{p})^{\frac{1}{p}},

    when p = \infty , above inequality stands for

    \sum\limits_{k = -\infty}^{\infty}(2^{-|k-j|^{\delta}}a_{k})\lesssim \sup\limits_{j\in \mathbb{Z}}a_{j}.

    \textbf{Lemma 2.5.} ([12]) Assume that for some p_{0}\in(0, \infty) and every \omega_{0}\in A_{\infty} , let \mathcal{F} be a family of pairs of non-negative functions such that

    \begin{align} \int_{\mathbb{R}^{n}}f(x)^{p_{0}}\omega_{0}(x)\mathrm{d}x\lesssim \int_{\mathbb{R}^{n}}g_{0}(x)^{p_{0}}\omega_{0}(x)\mathrm{d}x,\; \; (f,g)\in \mathcal{F}. \end{align} (2.1)

    Then for all 0 < p < \infty and \omega_{0}\in A_{\infty} ,

    \int_{\mathbb{R}^{n}}f(x)^{p}\omega_{0}(x)\mathrm{d}x\lesssim \int_{\mathbb{R}^{n}}g_{0}(x)^{p}\omega_{0}(x)\mathrm{d}x,\; \; (f,g)\in \mathcal{F}.

    Furthermore, for every p, q\in(0, \infty) , \omega_{0}\in A_{\infty} , and sequences \{(f_{j}, g_{j})\}\in \mathcal{F} ,

    \begin{align} \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}(f_{j})\bigg)^{q}\bigg\|_{L^{p}(\omega_{0})}\lesssim \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}(g_{j})\bigg)^{q}\bigg\|_{L^{p}(\omega_{0})}. \end{align} (2.2)

    \textbf{Lemma 2.6.} ([8]) Assume that for some p_{0} and let F be a family of pairs of non-negative functions such that (2.1) holds. Let p(\cdot)\in \mathcal{P}_{0}(\mathbb{R}^{n}) . If there exists s\leq p_{-} such that \omega^{s}\in A_{\frac{p(\cdot)}{s}} and M is bounded on L^{(\frac{p(\cdot)}{s})^{'}}(\omega^{-s}) . Then for every q\in(1, \infty) and sequence \{(f_{j}, g_{j})\}_{j\in \mathbb{N}}\subset \mathcal{F}

    \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}(f_{j})\bigg)^{q}\bigg\|_{L^{p(\cdot)}(\omega)}\lesssim \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}(g_{j})\bigg)^{q}\bigg\|_{L^{p(\cdot)}(\omega)}.

    \textbf{Lemma 2.7.} ([13]) Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and \omega be a weight. If the maximal operator M is bounded both on L^{p(\cdot)}(\omega) and L^{p^{'}(\cdot)}(\omega^{-1}) , q\in (1.\infty) , then

    \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}(Mf_{j})^{q}\bigg)^{\frac{1}{q}}\bigg\|_{L^{p(\cdot)}(\omega)}\lesssim \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}|f_{j}|^{q}\bigg)^{\frac{1}{q}}\bigg\|_{L^{p(\cdot)}(\omega)}.

    \textbf{Lemma 2.8.} Let T_{\varpi} be a bilinear Calderón-Zygmund operator with \varpi\in \rm{Dini}(1) and p(\cdot)\in \mathcal{P}_{0} such that there exists s\leq p_{-} such that \omega^{s}\in A_{\frac{p(\cdot)}{s}} and M is bounded on L^{(\frac{p(\cdot)}{s})^{'}}(\omega^{-s}) . Suppose that \omega = \omega_{1}\times \omega_{2} and \omega_{i}\in A_{p_{i}(\cdot)}, \; i = 1, 2 . If p_{i}\in \mathcal{P}^{\mathrm{log}}(\mathbb{R}^{n})\cap\mathcal{P}(\mathbb{R}^{n})\; (i = 1, 2) satisfying

    \frac{1}{p(x)} = \frac{1}{p_{1}(x)}+\frac{1}{p_{2}(x)}

    for x\in \mathbb{R}^{n} . Then for compactly supported bounded functions f_{1}^{j}, f_{2}^{j}\in L^{p_{0}}(\mathbb{R}^{n}) , j\in \mathbb{N} such that

    \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}|T_{\varpi}(f_{1}^{j},f_{2}^{j})|^{q}\bigg)^{\frac{1}{q}}\bigg\|_{L^{p(\cdot)}(\omega)}\lesssim \prod\limits_{i = 1}^{2}\bigg\|\bigg(\sum\limits_{j = 1}^{\infty}|f_{i}^{j}|^{q_{i}}\bigg)^{\frac{1}{q_{i}}}\bigg\|_{L^{p_{i}(\cdot)}(\omega_{i})},

    where q_{i}\in (1, \infty) for i = 1, 2 and

    \frac{1}{q} = \frac{1}{q_{1}}+\frac{1}{q_{2}}.

    Proof of Lemma 2.8. Since f_{1}^{j}, f_{2}^{j} are bounded functions with compact support, T_{\varpi}(f_{1}^{j}, f_{2}^{j})\in L^{p}(\mathbb{R}^{n}) for every 0 < p < \infty . With Lemmas 2.1 and 2.2, Lu and Zhang [3] showed that for all \omega\in A_{\infty} ,

    \int _{\mathbb{R}^{n}}|T_{\varpi}(f_{1},f_{2})(x)|^{p}\omega(x)\mathrm{d}x\lesssim \int _{\mathbb{R}^{n}}(Mf_{1}(x)Mf_{2}(x))^{p}\omega(x)\mathrm{d}x.

    Therefore, by Lemmas 2.5 and 2.6, we have

    \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}|T_{\varpi}(f_{1}^{j},f_{2}^{j})|^{q}\bigg)^{\frac{1}{q}}\bigg\|_{L^{p(\cdot)}(\omega)}\lesssim \bigg\|\bigg(\sum\limits_{j = 1}^{\infty}|Mf^{j}_{1}(x)Mf^{j}_{2}(x)|^{q}\bigg)^{\frac{1}{q}}\bigg\|_{L^{p(\cdot)}(\omega)}.

    Since

    \frac{1}{q} = \frac{1}{q_{1}}+\frac{1}{q_{2}},\ \ \ \ \frac{1}{p} = \frac{1}{p_{1}}+\frac{1}{p_{2}}

    and \omega = \omega_{1}\omega_{2} , together with Hölders inequality, Lemmas 2.3 and 2.7, we have

    \begin{align*} \Big\|\Big(\sum\limits_{j = 1}^{\infty}|Mf^{j}_{1}(x)Mf^{j}_{2}(x)|^{q}\Big)^{\frac{1}{q}}\Big\|_{L^{p(\cdot)}(\omega)}&\lesssim \prod\limits_{i = 1}^{2}\Big\|\Big(\sum\limits_{j = 1}^{\infty}|Mf^{j}_{i}|^{q_{i}}\Big)^{\frac{1}{q_{i}}}\Big\|_{L^{p_{i}(\cdot)}(\omega_{i})}\\ &\lesssim \prod\limits_{i = 1}^{2}\Big\|\Big(\sum\limits_{j = 1}^{\infty}|f^{j}_{i}|^{q_{i}}\Big)^{\frac{1}{q_{i}}}\Big\|_{L^{p_{i}(\cdot)}(\omega_{i})}. \end{align*}

    We complete the proof of Lemma 2.8.

    \textbf{Theorem 3.1.} Let T_{\varpi} be a bilinear \varpi -type Calderón-Zygmund operator with \varpi\in \rm{Dini}(1) , p_{1} and p_{2} \in \mathcal{P}^{\rm{log}}(\mathbb{R}^{n})\cap \mathcal{P}^{\rm{log}}(\mathbb{R}^{n}) santisfying

    \frac{1}{p(x)} = \frac{1}{p_{1}(x)}+\frac{1}{p_{2}(x)}

    and p(\cdot)\in \mathcal{P}_{0} such that there exists s\leq p_{-} such that \omega^{s}\in A_{\frac{p(\cdot)}{s}} and M is bounded on L^{(\frac{p(\cdot)}{s})^{'}}(\omega^{-s}) , where \omega = \omega_{1}\omega_{2} and \omega_{i}\in A_{p_{i}(\cdot)} , i = 1, 2 . Suppose that

    \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{P}_{0}^{\rm{log}}(\mathbb{R}^{n})\cap \mathcal{P}_{\infty}^{\rm{log}}(\mathbb{R}^{n}),\quad \alpha(0) = \alpha_{1}(0)+\alpha_{2}(0),
    \alpha_{\infty} = \alpha_{1\infty}+\alpha_{2\infty},\quad q(\cdot)\in \mathcal{P}_{0}^{\rm{log}}(\mathbb{R}^{n})\cap \mathcal{P}_{\infty}^{\rm{log}}(\mathbb{R}^{n}),
    \frac{1}{q(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)},\quad \frac{1}{q_{\infty}} = \frac{1}{q_{1 \infty}}+\frac{1}{q_{2 \infty}},
    \lambda = \lambda_{1}+\lambda_{2},\quad 0\leq \lambda_{i} < \infty,\quad \delta_{i1}, \delta_{i2}\in (0,1)

    are the constants in Lemma 1.4 for exponents p_{i}(\cdot) and weights \omega_{i}(\; i = 1, 2) . Let r_{i}\in (1, \infty) and

    \frac{1}{r} = \frac{1}{r_{1}}+\frac{1}{r_{2}}.

    If \lambda_{i}-n\delta_{i1} < \alpha_{i\infty} , \alpha_{i}(0)\leq n \delta_{i2} , then

    \Big\|\Big(\sum\limits_{j = 1}^{\infty}|T_{\varpi}(f_{1}^{j},f_{2}^{j})|^{r}\Big)^{\frac{1}{r}}\Big\|_{M\dot{K}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\omega)}\lesssim \prod\limits_{i = 1}^{2}\Big\|\Big(\sum\limits_{j = 1}^{\infty}|(f_{i}^{j})|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}^{\alpha_{i}(\cdot),q_{i}(\cdot)}_{p_{i}(\cdot),\lambda_{i}}(\omega_{i})}

    for all f_{i}^{j}\in M\dot{K}^{\alpha_{i}(\cdot), q_{i}(\cdot)}_{p_{i}(\cdot), \lambda_{i}}(\omega_{i}) , j\in \mathbb{N} , i = 1, 2 .

    Proof of Theorem 3.1. We only consider bounded compact supported functions for the set of all bounded compactly supported functions is dense in weighted variable Lebesgue spaces (see [13]). Let f_{1}^{v} and f_{2}^{v} be bounded functions with compact support for v\in{\mathbb{N}} and write

    f_{i}^{v} = \sum\limits_{l = -\infty}^{\infty}f_{il}^{v}\chi_{l} = \sum\limits_{l = -\infty}^{\infty}f_{il}^{v},\quad i = 1,2,v\in{\mathbb{N}}.

    By Lemma 1.3, we have

    \begin{align*} \Big\|\Big(\sum\limits_{v = 1}^{\infty}|T_{\varpi}(f_1^v,f_2^v)|^r)^{\frac{1}{r}}\Big\|_{M\dot{K}_{p(\cdot),\lambda}^{\alpha(\cdot),q(\cdot)}(w)} &\approx\max\Big\{\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big\|(2^{k\alpha(0)}(\sum\limits_{v = 1}^{\infty}|T_{\varpi}(f_1^v,f_2^v)|^r)^{\frac{1}{r}}\chi_k\Big)_{k \leq L}\Big\|_{\ell^{q_0}(L^{p(\cdot)}(w))}\\ &\ \ \ \ \sup\limits_{L > 0,L\in\mathbb{Z}}\Big[2^{-L\lambda}\Big\|\Big(2^{k\alpha(0)}(\sum\limits_{v = 1}^{\infty}|T_{\varpi}(f_1^v,f_2^v)|^r)^{\frac{1}{r}}\chi_k\Big)_{k < 0}\Big\|_{\ell^{q_0}(L^{p(\cdot)}(w))}\\ &\ \ \ \ \ \Big.\Big.+2^{-L\lambda}\Big\|\Big(2^{k\alpha_{\infty}}\Big(\sum\limits_{v = 1}^{\infty}\Big|T_{\varpi}(f_1^v,f_2^v)\Big|^r\Big)^{\frac{1}{r}}\chi_k\Big)_{k = 0}^L\Big\|_{\ell^{q_{\infty}}(L^{p(\cdot)}(w))}\Big]\Big\}\\ & = \max\{E,F\}, \end{align*}

    where

    \begin{eqnarray*} E& = & \sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big\|\Big(2^{k\alpha(0)}\Big(\sum\limits_{v = 1}^{\infty}\Big|T_{\varpi}(f_{1}^{v},f_{2}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big)_{k\leq L}\Big\|_{\ell^{q_{0}}(L^{p(\cdot)}(w))},\\ F& = &\sup\limits_{L > 0,L\in\mathbb{Z}}\{G+H\},\\ G& = &2^{-L\lambda}\Big\|\Big(2^{k\alpha(0)}\Big(\sum\limits_{v = 1}^{\infty}\Big|T_{\varpi}(f_{1}^{v},f_{2}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big)_{k < 0}\Big\|_{\ell^{q_{0}}{(L^{p(\cdot)}(w))}},\\ H& = &2^{-L\lambda}\Big\|\Big(2^{k\alpha_{\infty}}\Big(\sum\limits_{v = 1}^{\infty}\Big|T_{\varpi}(f_{1}^{v},f_{2}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big)_{k = 0}^{L}\Big\|_{\ell^{q_{\infty}}{(L^{p(\cdot)}(w))}}. \end{eqnarray*}

    Since to estimate G is essentially similar to estimate E , it is suffice to obtain that E and H are bounded in Herz-Morrey space with variable exponents. It is easy to see that

    E\lesssim\sum\limits_{i = i}^9E_i,\quad H\lesssim\sum\limits_{i = i}^9H_i,

    where

    \begin{eqnarray*} &E_1 = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^L2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^v,f_{2j}^v)\Big|^r\Big)^{\frac{1}{r}}\chi_k\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_2 = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^L2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^v,f_{2j}^v)\Big|^r\Big)^{\frac{1}{r}}\chi_k\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_3 = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^L2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k+2}^{\infty}T_{\varpi}(f_{1l}^v,f_{2j}^v)\Big|^r\Big)^{\frac{1}{r}}\chi_k\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_{4} = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_{5} = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_{6} = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k+2}^{\infty}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_{7} = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\mid\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_{8} = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ &E_{9} = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = k+2}^{\infty}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}},\\ \end{eqnarray*}
    \begin{eqnarray*} &H_{1} = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}},\\ &H_{2} = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q\infty}},\\ &H_{3} = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k+2}^{\infty}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}},\\ &H_{4} = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}},\\ &H_{5} = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}},\\ &H_{6} = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k+2}^{\infty}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q\infty}},\\ &H_{7}: = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}},\\ &H_{8}: = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}},\\ &H_{9}: = &2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = k+2}^{\infty}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}. \end{eqnarray*}

    We will use the following estimates. If l\leq k-1 , by Hölder's inequality, Lemma 1.4 and Definition 1.3, we have

    \begin{eqnarray} \Big\|2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i})} &\leq& C2^{-kn}\|\chi_{B_{k}}\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}w_{i}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}}\|\chi_{l}w_{i}^{-1}\|_{L^{p_{i}^{\prime}(\cdot)}}\\ &\leq& C2^{-kn}|B_{k}|\|\chi_{B_{k}}\|_{L^{p_{i}^{\prime}(\cdot)}(w_{i}^{-1})}^{-1}\|\chi_{B_{l}}\|_{L^{p_{i}^{\prime}(\cdot)}(w_{i}^{-1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\\ &\leq& C2^{(l-k)n\delta_{2i}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}. \end{eqnarray} (3.1)

    If l = k , then

    \begin{eqnarray} \Big\|2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i}} &\leq&C2^{-kn}\|\chi_{B_{k}}\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}w_{i}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}}\|\chi_{l}w_{i}^{-1}\|_{L^{p_{i}^{\prime}(\cdot)}}\\ &\leq&C2^{-kn}\|\chi_{B_{k}}\|_{L^{p_{i}(\cdot)}(w_{i})}\|\chi_{B_{l}}\|_{L^{p_{i}^{\prime}(\cdot)}(w_{i}^{-1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\\ &\leq&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}. \end{eqnarray} (3.2)

    If l\ge k+1 , then

    \begin{eqnarray} \Big\|2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i})} &\leq&C2^{-kn}\|\chi_{B_{k}}\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}w_{i}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}}\|\chi_{l}w_{i}^{-1}\|_{L^{p_{i}^{\prime}(\cdot)}}\\ &\leq&C2^{-kn}\|\chi_{B_{k}}\|_{L^{p_{i}(\cdot)}(w_{i})}\|\chi_{B_{l}}\|_{L^{p_{i}(\cdot)}(w_{i})}\|\chi_{B_{l}}\|_{L^{p_{i}(\cdot)}(w_{i})}^{-1}\\ &&\times\|\chi_{B_{l}}\|_{L^{p_{i}^{\prime}(\cdot)}(w_{i}^{-1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\\ &\leq&C2^{(l-k)n\Big(1-\delta_{1i}\Big)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|f_{i}^{v}|^{r_{i}})^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}. \end{eqnarray} (3.3)

    Reverse the order of f_{1} and f_{2} , it is obviously that the estimates of E_{2} , E_{3} and E_{6} are similar to those of E_{4} , E_{7} and E_{8} , respectively. Thus We just need to estimate E_{1} E_{3}, E_{5}, E_{6} and E_{9} .

    For E_{1} , since l , j\leq k-2 , then for i = 1, 2,

    |x-y_{i}|\geq|x|-|y_{i}| > 2^{k-1}-2^{\min\{l,j\}}\geq2^{k-2},\quad x\in D_{k},\ y_{1}\in D_{l},\ y_{2}\in D_{j}.

    Therefore, for x\in D_{k} , we have

    |K(x,y_{1},y_{2})|\leq C(|x-y_{1}|+|x-y_{2}|)^{-2n}\leq C2^{-2kn}.

    Thus, for any x\in D_{k}\; \; \rm{and} \; \; l, j\leq k-2 , we have

    \begin{eqnarray*} |T(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-2kn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Hence, together with the Hölder's and Minkowski's inequality, we have

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = -\infty}^{k-2}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2})^{r})^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2})^{r_{2}})^{\frac{1}{r_{2}}}\chi_{k}\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.4)

    Since

    \frac{1}{q_(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{1}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}})^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\times\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}})^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)})^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}})^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)})^{\frac{1}{q_{2}(0)}}\\ & = &E_{1,1}\times E_{1,2}. \end{eqnarray*}

    For convenience's sake, we write

    \begin{eqnarray*} E_{1,i} = \sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}}\times\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{i}(0)q_{i}(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}(y_{i})|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big\}^{\frac{1}{q_{i}(0)}}. \end{eqnarray*}

    For n\delta_{i2}-\alpha_{i}(0) > 0 , by (3.1) and Lemma 2.4 we have

    \begin{eqnarray*} E_{1,i}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}}\Big\{\sum\limits_{k = -\infty}^{L}2^{k\alpha_{i}(0)q_{i}(0)}\Big.Big.\times\Big(\sum\limits_{l = -\infty}^{k-2}2^{(l-k)n\delta_{i2}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big)^{q_{i}(0)}\Big\}^{\frac{1}{q_{i}(0)}}\\ & = &\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}} \times\Big\{\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{l = -\infty}^{k-2}2^{l\alpha_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)\Big(n\delta_{i2}-\alpha_{i}(0)\Big)}\Big)^{q_{i}(0)}\Big\}^{\frac{1}{q_{i}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{L-2}2^{l\alpha_{i}(0)q_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}, \end{eqnarray*}

    where we write 2^{-|k-l|(n\delta_{i2}-\alpha_{i}(0))} = 2^{-|k-l|\varepsilon_{i}} for \varepsilon_{i} = n\delta_{i2}-\alpha_{i}(0) > 0 , then we have

    E_{1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate E_{2} , since l\leq k-2 , k-1\leq j\leq k+1, then we have

    |x-y_{2}|\geq|x-y_{1}|\geq|x|-|y_{1}|\geq2^{k-2},\quad x\in D_{k},\ y_{1}\in D_{l},\ y_{2}\in D_{j}.

    Therefore, for x\in D_{k} , we have

    |K(x,y_{1},y_{2})|\leq C(|x-y_{1}|+|x-y_{2}|)^{-2n}\leq C2^{-2kn}.

    Thus, for any x\in D_{k}, l\leq k-2, k-1\leq j\leq k+1 , we have

    \begin{eqnarray*} |T(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-2kn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Combining the Hölder's with and Minkowski's inequality, hence we obtain

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k-1}^{k+1}T_{\varpi}(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.5)

    Since

    \frac{1}{q(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2}\Big)\Big|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{2,1}\times E_{2,2}. \end{eqnarray*}

    It is obvious that

    E_{2,1} = E_{1,1}\lesssim\|(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}})^{\frac{1}{r_{1}}}\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Now we turn to estimate E_{2, 2}. By (3.1)–(3.3), we have

    \begin{eqnarray*} E_{2,2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k-1}^{k+1}2^{(j-k)n}\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L+1}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}, \end{eqnarray*}

    where we use 2^{-n\delta_{22}} < 1 and 2^{(j-k)n(1-\delta_{12})} < 2^{(j-k)n} < 2^{2n}, j\in\{k-1, k, k+1\} for (3.1) and (3.3) respectively. Thus, we obtain

    E_{2}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate E_{3} , since l\leq k-2 and j\geq k+2 , we have

    |x-y_{1}|\geq|x|-|y_{1}|\geq2^{k-2},\quad|x-y_{2}|\geq|y_{2}|-|x| > 2^{j-2},\quad x\in D_{k},\; y_{1}\in D_{l},\; y_{2}\in D_{j}.

    Therefore, for any x\in D_{k}, l\leq k-2, j\geq k+2, we get

    \begin{eqnarray*} |T_{\varpi}(f_{1l},f_{2j})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-kn}2^{-jn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Thus, by Hölder's inequality and Minkowski's inequality, we have

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = -\infty}^{k-2}\sum\limits_{j = k+2}^{\infty}T(f_{1l}^{v},f_{2j}^{v})|^{r})^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.6)

    Since

    \frac{1}{q(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{3}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}})^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{3,1}\times E_{3,2}. \end{eqnarray*}

    It is obvious that

    E_{3,1} = E_{1,1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Since n\delta_{21}+\alpha_{2}(0) > 0 , by (3.3), we obtain

    \begin{eqnarray*} E_{3,2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big. \Big.\times\Big(\sum\limits_{j = k+2}^{\infty}2^{(k-j)n\delta_{21}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{j = k+2}^{L}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)(n\delta_{21}+\alpha_{2}(0))}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &&+\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k\alpha_{2}(0)}\sum\limits_{j = L+1}^{0}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)n\delta_{21}}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &&+\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k\alpha_{2}(0)}\sum\limits_{j = 1}^{\infty}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)n\delta_{21}}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &I_{1}+I_{2}+I_{3}. \end{eqnarray*}

    First, we consider I_{1} . By Lemma 2.4, we have

    \begin{eqnarray*} I_{1}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}\Big(\sum\limits_{j = k+2}^{L}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)(n\delta_{21}+\alpha_{2}(0))}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{j = -\infty}^{L+2}2^{j\alpha_{2}(0)q_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)(w_{2})}}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}\Big(w_{2}\Big)}, \end{eqnarray*}

    where we write 2^{-|k-j|(n\delta_{21}+\alpha_{2}(0))} = 2^{-|k-j|\eta_{2}} for \eta_{2} = n\delta_{21}+\alpha_{2}(0) > 0 . Next, we consider I_{2} . Since n\delta_{21}+\alpha_{2}(0)-\lambda_{2} > 0 , we obtain

    \begin{eqnarray*} I_{2}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\sum\limits_{j = L+1}^{0}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &&\times2^{-j(n\delta_{21}+\alpha_{2}(0))}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}} \times2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\sum\limits_{j = L+1}^{0}2^{-j(n\delta_{21}+\alpha_{2}(0)-\lambda_{2})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}\sup\limits_{j\leq0}2^{-j\lambda_{2}}2^{j\alpha_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{L\Big(-n\delta_{21}-\alpha_{2}(0)\Big)}\Big(\sum\limits_{k = -\infty}^{L}2^{k\Big(n\delta_{21}+\alpha_{2}(0)\Big)q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.\\ \end{eqnarray*}

    Then, we consider I_{3} . Since \delta_{21}+\alpha_{2}(0)-\lambda_{2} > 0 , we obtain

    \begin{eqnarray*} I_{3}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\Big.\Big. \times\sum\limits_{j = 1}^{\infty}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{-j(n\delta_{21}+\alpha_{2\infty})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}\sup\limits_{j\geq1}2^{-j\lambda_{2}}2^{j\alpha_{\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2}(0))}\sum\limits_{j = 1}^{\infty}2^{-j(n\delta_{21}+\alpha_{2\infty}-\lambda_{2})}\Big)^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k(n\delta_{21}+\alpha_{2}(0))q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{L\Big(-\lambda_{2}+n\delta_{21}+\alpha_{2}(0)\Big)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    Thus, we have

    E_{3}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate E_{5} , using Hölder's inequality and Lemma 2.8, we have

    \begin{eqnarray*} E_{5}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k-1}^{k+1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|T_{\varpi}(f_{1l},f_{2j})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big(\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\Big.\Big. \times\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    To estimate E_{6} , since k-1\leq l\leq k+1 and j\geq k+2 , we obtain

    |x-y_{1}| > 2^{k-2},\quad|x-y_{2}| > 2^{j-2},\quad x\in D_{k},\; y_{1}\in D_{l},\; y_{2}\in D_{j}.

    Thus, for any x\in D_{k}, k-1\leq l\leq k+1 and j\geq k+2 , we obtain

    \begin{eqnarray*} |T(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-kn}2^{-jn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Therefore, by Hölder's inequality and Minkowski's inequality, we obtain

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k+2}^{\infty}T(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.7)

    Since

    \frac{1}{q_(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{6}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}}(\cdot)(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{6,1}\times E_{6,2}. \end{eqnarray*}

    By the interchange of f_{1} and f_{2} , we find the estimateof E_{6, 1} and E_{2, 2} are similar, and E_{6, 2} = E_{3, 2} . To estimate E_{9} , since l, j\geq k+2 , we get

    |x-y_{i}| > 2^{k-2},\quad x\in D_{k},\; y_{1}\in D_{l},\; y_{2}\in D_{j}.

    Therefore, for any x\in D_{k}, \ l, j\geq k+2 , we have

    \begin{eqnarray*} |T_{\varpi}(f_{1l}^{v},f_{2j}^{v})(x)|&\lesssim&\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\frac{|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|}{(|x-y_{1}|+|x-y_{2}|)^{2n}}\mathrm{d}y_{1}\mathrm{d}y_{2}\\ &\lesssim&2^{-ln}2^{-jn}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})||f_{2j}^{v}(y_{2})|\mathrm{d}y_{1}\mathrm{d}y_{2}. \end{eqnarray*}

    Thus, by Hölder's inequality and Minkowski's inequality, we have

    \begin{eqnarray} &&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|\sum\limits_{l = k+2}^{\infty}\sum\limits_{j = k+2}^{\infty}T(f_{1l}^{v},f_{2j}^{v})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{l = k+2}^{\infty}2^{-\ln}\int_{\mathbb{R}^{n}}|f_{1l}^{v}(y_{1})|\mathrm{d}y_{1}\Big)^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big(\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}|f_{2j}^{v}(y_{2})|\mathrm{d}y_{2}\Big)^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\\ &\lesssim&\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}. \end{eqnarray} (3.8)

    Since

    \frac{1}{q_(0)} = \frac{1}{q_{1}(0)}+\frac{1}{q_{2}(0)}\; \; \; \text{and}\; \; \; \lambda = \lambda_{1}+\lambda_{2},

    by Hölder's inequality, we have

    \begin{eqnarray*} E_{9}&\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda}\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha(0)q(0)}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}})^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q(0)}\Big.\\ &&\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q(0)}\Big)^{\frac{1}{q(0)}}\\ &\lesssim&\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{1}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{1}(0)q_{1}(0)}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1}(0)}\Big)^{\frac{1}{q_{1}(0)}}\\ &&\times\sup\limits_{L\leq0,L\in\mathbb{Z}}2^{-L\lambda_{2}} \times\Big(\sum\limits_{k = -\infty}^{L}2^{k\alpha_{2}(0)q_{2}(0)}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2}(0)}\Big)^{\frac{1}{q_{2}(0)}}\\ & = &E_{9,1}\times E_{9,2}. \end{eqnarray*}

    Obviously, the estimates of E_{9, i} are similar to those of E_{3, 2}(i = 1, 2) .

    All estimates for E_{i} i = 1, 2, \cdots, 9 considered, we have

    E\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    Finally, we estimate H . By the interchange of f_{1} and f_{2} , we see that the estimates of H_{2}, H_{3} and H_{6} are similar to those of H_{4}, H_{7} and H_{8} , respectively. Thus we just need to estimate H_{1} H_{3} , H_{5}, H_{6} and H_{9} .

    For the subsequent proof process, we need following further preparation. If l < 0 , by Lemma 1.3, we have

    \begin{eqnarray} \Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})} & = &2^{-l\alpha_{i}(0)}\Big(2^{l\alpha_{i}(0)q_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&2^{-l\alpha_{i}(0)}\Big(\sum\limits_{t = -\infty}^{l}2^{t\alpha_{i}(0)q_{i}(0)}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{t}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&2^{l(\lambda-\alpha_{i}(0))}2^{-l\lambda}\Big(\sum\limits_{t = -\infty}^{l}\Big\|2^{t\alpha_{i}(0)}\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{t}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i}(0)}\Big)^{\frac{1}{q_{i}(0)}}\\ &\lesssim&2^{l(\lambda-\alpha_{i}(0))}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}. \end{eqnarray} (3.9)

    To estimate H_{1} , since

    l,j\leq k-2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.4) and Hölder's inequality, we have

    \begin{eqnarray*} H_{1}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{1,1}\times H_{1,2}, \end{eqnarray*}

    where

    H_{1,i} = 2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{il}(y_{i})|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\mathrm{d}y_{i}\chi_{k}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}.

    By (3.1), we obtain

    \begin{eqnarray*} H_{1,i}&\lesssim&2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{k-2}2^{(l-k)n\delta_{i2}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &\lesssim&2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big.\Big.\\ &&+\sum\limits_{l = 0}^{k}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\&\lesssim&2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&+2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = 0}^{k}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ & = &I_{4}+I_{5}. \end{eqnarray*}

    If q_{i\infty}\geq1 , since n\delta_{i2}-\alpha_{i\infty} > 0 and n\delta_{i2}-\alpha_{i}(0) > 0 , by the Minkowski's inequality and (3.9), we obtain

    \begin{eqnarray*} I_{4}& = &2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&\lesssim2^{-L\lambda_{i}}\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\{\sum\limits_{k = 0}^{L}\Big(2^{k\alpha_{i\infty}}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&\lesssim2^{-L\lambda_{i}}\sum\limits_{l = -\infty}^{-1}2^{ln\delta_{i2}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}\Big\{\sum\limits_{k = 0}^{L}2^{-k\Big(n\delta_{i2}-\alpha_{i\infty}\Big)q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &&\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}2^{-L\lambda_{i}}\sum\limits_{l = -\infty}^{-1}2^{l\Big(n\delta_{i2}+\lambda_{i}-\alpha_{i}(0)\Big)}\\ &&\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}. \end{eqnarray*}

    If q_{i\infty} < 1 , since n\delta_{i2}-\alpha_{i\infty} > 0 and n\delta_{i2}-\alpha_{i}(0) > 0 , by (3.9), we have

    \begin{eqnarray*} I_{4}&\lesssim&2^{-L\lambda_{i}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{(l-k)n\delta_{i2}q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ & = &2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{ln\delta_{i2}q_{i\infty}}\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}2^{-kn\delta_{i2}q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ & = &2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{\ln\delta_{i2}q_{i\infty}}\sum\limits_{k = 0}^{L}2^{-k\Big(n\delta_{i2}-\alpha_{i\infty}\Big)q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}2^{\ln\delta_{i2}q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}2^{-L\lambda_{i}}\Big(\sum\limits_{l = -\infty}^{-1}2^{l\Big(n\delta_{i2}+\lambda_{i}-\alpha_{i}(0)\Big)q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}(w_{i})}. \end{eqnarray*}

    We consider I_{5} . Since n\delta_{i2}-\alpha_{i\infty} > 0 , by Lemma 2.4, we have

    \begin{eqnarray*} I_{5}& = &2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}2^{k\alpha_{i\infty}q_{i\infty}}\Big(\sum\limits_{l = 0}^{k}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)n\delta_{i2}}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ & = &2^{-L\lambda_{i}}\Big\{\sum\limits_{k = 0}^{L}\Big(\sum\limits_{l = 0}^{k}2^{l\alpha_{i\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}2^{(l-k)(n\delta_{i2}-\alpha_{i\infty})}\Big)^{q_{i\infty}}\Big\}^{\frac{1}{q_{i\infty}}}\\ &\lesssim&2^{-L\lambda_{i}}\Big(\sum\limits_{l = 0}^{k}2^{l\alpha_{i\infty}q_{i\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\chi_{l}\Big\|_{L^{p_{i}(\cdot)}(w_{i})}^{q_{i\infty}}\Big)^{\frac{1}{q_{i\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{i}^{v}|^{r_{i}}\Big)^{\frac{1}{r_{i}}}\Big\|_{M\dot{K}_{p_{i}(\cdot),\lambda_{i}}^{\alpha_{i}(\cdot),q_{i}(\cdot)}\Big(w_{i}\Big)}, \end{eqnarray*}

    where we write 2^{-|k-l|(n\delta_{i2}-\alpha_{i\infty})}\lesssim2^{-|k-l|\eta_{i}} for \eta_{i} = n\delta_{i2}-\alpha_{i\infty} .

    Thus, we get

    H_{1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate H_{2} , since

    l\leq k-2,\ \ \ \ k-1\leq j\leq k+1,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.6) and Hölder's inequality, we have

    \begin{eqnarray*} H_{2}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}\Big(y_{1}\Big)|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r}\Big)^{\frac{1}{r}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{2,1}\times H_{2,2}. \end{eqnarray*}

    It isobvious that

    H_{2,1} = H_{1,1}\lesssim\|(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}})^{\frac{1}{r_{1}}}\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Now we estimate H_{2, 2} . Combining (3.1)–(3.3), we have

    \begin{eqnarray*} H_{2,2}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\sum\limits_{j = k-1}^{k+1}2^{(j-k)n}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = -1}^{L+1}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}, \end{eqnarray*}

    where we use 2^{-n\delta_{22}} < 1 and 2^{(j-k)n(1-\delta_{21})} < 2^{(j-k)n} for (3.6) and (3.8), respectively. Thus, we obtain

    H_{2}\lesssim\|(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}})^{\frac{1}{r_{1}}}\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate H_{3} , since

    l\leq k-2,\ \ \ \ j\geq k+2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , together (3.6) with the Hölder's inequality, we have

    \begin{eqnarray*} H_{3}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\rho_{\infty}}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = -\infty}^{k-2}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{3,1}\times H_{3,2}. \end{eqnarray*}

    It is easy to see that

    H_{3,1} = H_{1,1}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}.

    Since n\delta_{21}+\alpha_{2\infty} > 0 , by (3.3), we obtain

    \begin{eqnarray*} H_{3,2}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big(\sum\limits_{j = k+2}^{\infty}2^{(k-j)n\delta_{21}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(\sum\limits_{j = k+2}^{L+2}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)\Big(n\delta_{21}+\alpha_{2\infty}\Big)}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &&+2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(2^{k\alpha_{2\infty}}\sum\limits_{j = L+3}^{\infty}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)n\delta_{21}}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &I_{6}+I_{7}. \end{eqnarray*}

    For I_{6} , by Lemma 2.4, we obtain

    \begin{eqnarray*} I_{6}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(\sum\limits_{j = k+2}^{L+2}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}2^{(k-j)\Big(n\delta_{21}+\alpha_{2\infty}\Big)}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{j = 0}^{L+2}2^{j\alpha_{2\infty}q_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)(w_{2})}}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha(\cdot),q_{2}(\cdot)}\Big(w_{2}\Big)}, \end{eqnarray*}

    where we write 2^{-|k-j|(n\delta_{21}+\alpha_{2\infty})} = 2^{-|k-j|\vartheta_{2}} for \vartheta_{2} = n\delta_{21}+\alpha_{2\infty} > 0.

    For I_{7} , since n\delta_{21}+\alpha_{2\infty}-\lambda_{2} > 0, we have

    \begin{eqnarray*} I_{7}&\lesssim&2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2\infty})}\sum\limits_{j = L+3}^{\infty}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})} \times2^{-j(n\delta_{21}+\alpha_{2\infty})}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2}\infty}}\\ &\lesssim&\sup\limits_{j\geq1}2^{-j\lambda_{2}}2^{j\alpha_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{j}\Big\|_{L^{p_{2}(\cdot)}(w_{2})} \times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}\Big(2^{k(n\delta_{21}+\alpha_{2\infty})}\sum\limits_{j = L+3}^{\infty}2^{-j(n\delta_{21}+\alpha_{2\infty}-\lambda_{2})}\Big)^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}2^{-L\lambda_{2}+\Big(n\delta_{21}+\alpha_{2\infty}\Big)L-L\Big(n\delta_{21}+\alpha_{2\infty}-\lambda_{2}\Big)}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    Thus, we get

    H_{3}\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    To estimate {H}_{5} , using Hölder's inequality and Lemma 2.8, we have

    \begin{eqnarray*} H_{5}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\sum\limits_{l = k-1}^{k+1}\sum\limits_{j = k-1}^{k+1}\Big\|\Big(\sum\limits_{v = 1}^{\infty}\Big|T(f_{1l},f_{2j})\Big|^{r}\Big)^{\frac{1}{r}}\chi_{k}\Big\|_{L^{p(\cdot)}(w)}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big(\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|\|_{L^{p_{1}(\cdot)}(w_{1})} \Big.\Big.\times\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}\Big)^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ &\lesssim&\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),q_{1}(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}. \end{eqnarray*}

    To estimate H_{6} , since

    k-1\leq l\leq k+1,\ \ \ \ j\geq k+2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.7) and Hölder's sinequality, we have

    \begin{eqnarray*} H_{6}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = k-1}^{k+1}2^{-kn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{6,1}\times H_{6,2}. \end{eqnarray*}

    By the interchange of f_{1} and f_{2} , we see that that of H_{6, 1} is similar to the estimate of H_{2, 2} and H_{6, 2} = H_{3, 2}.

    To estimate H_{9} , since

    l,j\geq k+2,\ \ \ \ \frac{1}{q_{\infty}} = \frac{1}{q_{1\infty}}+\frac{1}{q_{2\infty}}

    and \lambda = \lambda_{1}+\lambda_{2} , by (3.8) and Hölder's inequality, we have

    \begin{eqnarray*} H_{9}&\lesssim&2^{-L\lambda}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{\infty}q_{\infty}}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{\infty}}\Big.\\ &&\Big.\times\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{\infty}}\Big)^{\frac{1}{q_{\infty}}}\\ &\lesssim&2^{-L\lambda_{1}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{1\infty}q_{1\infty}}\Big\|\sum\limits_{l = k+2}^{\infty}2^{-ln}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{1l}^{v}(y_{1})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\mathrm{d}y_{1}\chi_{k}\Big\|_{L^{p_{1}(\cdot)}(w_{1})}^{q_{1\infty}}\Big)^{\frac{1}{q_{1\infty}}}\\ &&\times2^{-L\lambda_{2}}\Big(\sum\limits_{k = 0}^{L}2^{k\alpha_{2\infty}q_{2\infty}}\Big\|\sum\limits_{j = k+2}^{\infty}2^{-jn}\int_{\mathbb{R}^{n}}\Big(\sum\limits_{v = 1}^{\infty}|f_{2j}^{v}(y_{2})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\mathrm{d}y_{2}\chi_{k}\Big\|_{L^{p_{2}(\cdot)}(w_{2})}^{q_{2\infty}}\Big)^{\frac{1}{q_{2\infty}}}\\ & = &H_{9,1}\times H_{9,2}. \end{eqnarray*}

    Obviously, the estimates of H_{9, i} are similar to those of H_{3, 2} for i = 1, 2 , respectively.

    Taking all estimates for H_{i} together, i = 1, 2, \cdots, 9 , we obtain

    H\lesssim\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{1}^{v}|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{M\dot{K}_{p_{1}(\cdot),\lambda_{1}}^{\alpha_{1}(\cdot),(\cdot)}(w_{1})}\Big\|\Big(\sum\limits_{v = 1}^{\infty}|f_{2}^{v}|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{M\dot{K}_{p_{2}(\cdot),\lambda_{2}}^{\alpha_{2}(\cdot),q_{2}(\cdot)}(w_{2})}.

    This completes the proof.

    On the basis of vector valued bilinear Calderón-Zygmund operators with kernels of Dini's type are bounded on variable Lebesgue spaces, with the help of properties of the \varpi(t) and space decomposition methods for variable exponents Herz-Morrey spaces. We establish the weighted boundedness result of vector valued bilinear \varpi(t) -type Calderón-Zygmund operators in variable exponents Herz-Morrey spaces, this is a new and meaningful result.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the Doctoral Scientific Research Foundation of Northwest Normal University (202003101203), Young Teachers Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2021-03) and Open Foundation of Hubei Key Laboratory of Applied Mathematics (Hubei University) (HBAM202205).

    The authors declare that there are no conflicts of interest.



    [1] K. Yabuta, Generalizations of Calderón-Zygmund operators, Stud. Math., 82 (1985), 17–31. https://doi.org/10.4064/SM-82-1-17-31 doi: 10.4064/SM-82-1-17-31
    [2] D. Maldonado, V. Naibo, Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 15 (2009), 218–261. https://doi.org/10.1007/s00041-008-9029-x doi: 10.1007/s00041-008-9029-x
    [3] G. Lu, P. Zhang, Multilinear Calderón-Zygmund operators with kernels of Dini's type and applications, Nonlinear Anal., 107 (2014), 92–117. https://doi.org/10.1016/j.na.2014.05.005 doi: 10.1016/j.na.2014.05.005
    [4] A. Nekvinda, Hardy-Littlewood maximal operator on L^{p(x)}(\mathbb{R}^{n}), Math. Inequal. Appl., 7 (2004), 255–265.
    [5] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
    [6] A. Almeida, P. Hästö, Besov spaces with variable smoothness and integrability, J. Funct. Anal., 258 (2010), 1628–1655. https://doi.org/10.1016/j.jfa.2009.09.012 doi: 10.1016/j.jfa.2009.09.012
    [7] M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
    [8] S. Wang, J. Xu, Boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents, Chin. Ann. Math. Ser. B, 42 (2021), 693–720. https://doi.org/10.1007/s11401-021-0286-1 doi: 10.1007/s11401-021-0286-1
    [9] C. Pérez, R. Trujillo-González, Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math. J., 55 (2003), 109–129. https://doi.org/10.2748/TMJ/1113247449 doi: 10.2748/TMJ/1113247449
    [10] A. Huang, J. Xu, Multilinear singular integral and commutators in variable exponent Lebesgue space, Appl. Math., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
    [11] Y. Sawano, Theory of Besov spaces, Springer Verlag, 2018. https://doi.org/10.1007/978-981-13-0836-9
    [12] D. Cruz-Uribe, J. M. Martell, C. Pérez, Extrapolation from A_{\infty} weights and applications, J. Funct. Anal., 213 (2004), 412–439. https://doi.org/10.1016/j.jfa.2003.09.002 doi: 10.1016/j.jfa.2003.09.002
    [13] D. Cruz-Uribe, L. A. D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/TRAN/6730 doi: 10.1090/TRAN/6730
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1464) PDF downloads(66) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog