Research article

On commutativity of quotient semirings through generalized derivations

  • Received: 10 March 2023 Revised: 16 June 2023 Accepted: 24 July 2023 Published: 06 September 2023
  • MSC : 16N60, 16U80, 16W25, 16Y60

  • This research article aims to study quotient MA-semirings determined by the prime ideals. Derivations are important tools to study algebraic structures. We establish some theorems on commutativity of quotient MA-semirings under certain differential identities. Results of this paper are extensions of many well known facts of this topic.

    Citation: Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid. On commutativity of quotient semirings through generalized derivations[J]. AIMS Mathematics, 2023, 8(11): 25729-25739. doi: 10.3934/math.20231312

    Related Papers:

  • This research article aims to study quotient MA-semirings determined by the prime ideals. Derivations are important tools to study algebraic structures. We establish some theorems on commutativity of quotient MA-semirings under certain differential identities. Results of this paper are extensions of many well known facts of this topic.



    加载中


    [1] M. A. Javed, M. Aslam, M. Hussain, On condition (A$_{2}$) of Bandlet and Petrich for inverse semirings, Int. Math. Forum, 7 (2012), 2903–2914.
    [2] H. J. Bandlet, M. Petrich, Subdirect products of rings and distrbutive lattics, Proc. Edinb. Math. Soc., 25 (1982), 135–171. https://doi.org/10.1017/S0013091500016643 doi: 10.1017/S0013091500016643
    [3] S. Sara, M. Aslam, M. A. Javed, On centralizer of semiprime inverse semiring, Discuss. Math. Gen. Algebra Appl., 36 (2016), 71–84.
    [4] Y. A. Khan, M. Aslam, L. Ali, Commutativity of inverse semirings through f(xy) = [x, f(y)], Thai J. Math., 2018 (2018), 288–300.
    [5] L. Ali, M. Aslam, M. I. Qureshi, Y. A. Khan, S. Rehman, G. Farid, Commutativity of MA-semirings with involution through generalized derivations, J. Math., 2020 (2020), 8867247. https://doi.org/10.1155/2020/8867247 doi: 10.1155/2020/8867247
    [6] L. Ali, M. Aslam, G. Farid, S. A. Khalek, On differential identities of Jordan ideals of semirings, AIMS Mathematics, 6 (2020), 6833–6844. http://doi.org/10.3934/math.2021400 doi: 10.3934/math.2021400
    [7] L. Ali, Y. A. Khan, A. A. Mousa, S. A. Khalek, G. Farid, Some differential identities of MA-semirings with involution, AIMS Mathematics, 6 (2020), 2304–2314. http://doi.org/2010.3934/math.2021139
    [8] S. E. Atani, The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Math., 43 (2008), 309–320. https://doi.org/10.3336/gm.43.2.06 doi: 10.3336/gm.43.2.06
    [9] S. E. Atani, R. E. Atani, Some remarks on partitioning semirings, An. St. Univ. Ovidius Constanta, 18 (2010), 49–62.
    [10] K. Iséki, Quasiideals in semirings without zero, Proc. Jpn. Acad., 34 (1958), 79–84. https://doi.org/10.3792/pja/1195524783 doi: 10.3792/pja/1195524783
    [11] M. K. Sen, M. R. Adhikari, On k-ideals of semirings, Int. J. Math. Math. Sci., 15 (1992), 642431. https://doi.org/10.1155/S0161171292000437 doi: 10.1155/S0161171292000437
    [12] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc., 41 (1973), 67–74.
    [13] H. E. Mir, A. Mamouni, L. Oukhtite, Commutativity with algebraic identities involving prime ideals, Commun. Korean Math. Soc., 35 (2020), 723–731. https://doi.org/10.4134/CKMS.c190338 doi: 10.4134/CKMS.c190338
    [14] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J., 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077 doi: 10.1017/S0017089500008077
    [15] J. Berger, I. N. Herstein, J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259–267.
    [16] H. E. Bell, W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 (1987), 92–101. https://doi.org/10.4153/CMB-1987-014-x doi: 10.4153/CMB-1987-014-x
    [17] D. A. Jordan, On the ideals of a Lie algebra of derivations, J. Lond. Math. Soc., s2–33 (1986), 33–39. https://doi.org/10.1112/jlms/s2-33.1.33 doi: 10.1112/jlms/s2-33.1.33
    [18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100.
    [19] N. Ur Rehman, H. M. Alnoghashi, Action of prime ideals on generalized derivations-I, arXiv, 2021. https://doi.org/10.48550/arXiv.2107.06769
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1213) PDF downloads(259) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog