Our purpose in this paper is to initiate and study the notions of fuzzy subnear-semirings and fuzzy soft subnear-semirings. We study few of their elementary properties by providing suitable examples. Moreover, we present the characterizations of zero symmetric near-semirings (seminearrings) through their fuzzy ideals and fuzzy soft ideals. Fuzzy soft anti-homomorphism of fuzzy soft near-semirings and fuzzy soft R-homomorphisms of fuzzy soft R-subsemigroups are also introduced and discussed.
Citation: Abdelghani Taouti, Waheed Ahmad Khan. Fuzzy subnear-semirings and fuzzy soft subnear-semirings[J]. AIMS Mathematics, 2021, 6(3): 2268-2286. doi: 10.3934/math.2021137
Our purpose in this paper is to initiate and study the notions of fuzzy subnear-semirings and fuzzy soft subnear-semirings. We study few of their elementary properties by providing suitable examples. Moreover, we present the characterizations of zero symmetric near-semirings (seminearrings) through their fuzzy ideals and fuzzy soft ideals. Fuzzy soft anti-homomorphism of fuzzy soft near-semirings and fuzzy soft R-homomorphisms of fuzzy soft R-subsemigroups are also introduced and discussed.
[1] | S. Abou Zaid, On fuzzy subnear-rings and ideals, Fuzzy Set. Syst., 44 (1991), 139–146. |
[2] | B. Ahmad, A. Kharal, On Fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6. |
[3] | U. Acar, B. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458–3463. |
[4] | J. Ahsan, K. Saifullah, M. Farid Khan, Fuzzy semirings, Fuzzy Set. Syst., 60 (1993), 309–320. |
[5] | J. Ahsan, Seminear-rings characterized by their $\mathit{S}$-ideals $I$, Proc. Japan Acad. Ser. A, Math. Sci., 71 (1995), 101–103. |
[6] | J. Ahsan, Seminear-rings characterized by their $\mathit{S}$-ideals $II$, Proc. Japan Acad. Ser. A, Math. Sci., 71 (1995), 111–113. |
[7] | A. Aygünoglu, H. Aygün, Introduction to fuzzy soft groups, Comput. Math. Appl., 58 (2009), 1279–1286. doi: 10.1016/j.camwa.2009.07.047 |
[8] | N. Çağman, S. Enginoğlu, F. Çitak, Fuzzy soft set theory and its applications, Iran. J. Fuzzy Syst., 8 (2011), 137–147. |
[9] | I. Chajda, H. Langer, Near-semirings and semirings with involution, Miskolc Math. Notes, 17 (2016), 801–810. |
[10] | A. Dey, M. Pal, Generalised multi-fuzzy soft set and its application in decision making, Pac. Sci. Rev. A: Nat. Sci. Eng., 17 (2015), 23–28. |
[11] | V. N. Dixit, R. Kumar, N. Ajmal, On fuzzy rings, Fuzzy Set. Syst., 49 (1992), 205–213. doi: 10.1016/0165-0114(92)90325-X |
[12] | F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621–2628. doi: 10.1016/j.camwa.2008.05.011 |
[13] | W. L. Gau, D. J. Buehrer, Vague sets, IEEE Trans. Syst., Man Cybern., 23 (1993), 610–614. doi: 10.1109/21.229476 |
[14] | Z. Haiyan, J. Jingjing, Fuzzy soft relation and its application in decision making, 7th International Conference on Modelling, Identification and Control (ICMIC), IEEE, 2015. |
[15] | W. G. V. Hoorn, B. Van Rootselaar, Fundamental notions in the theory of seminearrings, Compositio Math., 18 (1967), 65–78. |
[16] | E. İnan, M. A. Öztürk, Fuzzy soft rings and fuzzy soft ideals, Neural Comput. Appl., 21 (2012), 1–8. |
[17] | C. Jenila, P. Dheena, Ideal theory in near-semirings and its applications to automata, Adv. Math.: Sci. J., 9 (2020), 4293–4302. doi: 10.37418/amsj.9.6.112 |
[18] | W. A. Khan, A. Rehman, A. Taouti, Soft near-semirings, AIMS Math., 5 (2020), 6464–6478. doi: 10.3934/math.2020417 |
[19] | K. Koppula, K. B. Srinivas, K. S. Prasad, On prime strong ideals of a seminearring, Mat. Vesnik, 72 (2020), 243–256. |
[20] | K. V. Krishna, Near-semirings, theory and application, Ph.D thesis, IIT Delhi, New Delhi, India, 2005. |
[21] | K. V. Krishna, N. Chatterjee, A necessary condition to test the minimality of generalized linear sequential machines using the theory of near-semirings, Algebra Discrete Math., 4 (2005), 30–45. |
[22] | A. Z. Khameneh, A. Kilman, Multi-attribute decision-making based on soft set theory: A systematic review, Soft Comput., 23 (2019), 6899–6920. doi: 10.1007/s00500-018-3330-7 |
[23] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[24] | P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. doi: 10.1016/S0898-1221(02)00216-X |
[25] | P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Comput. Math. Appl., 59 (2010), 1425–1432. |
[26] | D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. |
[27] | M. A. Öztürk, E. İnan, Fuzzy soft subnear-rings and $(\in, \in \vee q)$-fuzzy soft subnear-rings, Comput. Math. Appl., 63 (2012), 617–628. |
[28] | Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356. |
[29] | M. M. K. Rao, B. Venkateswarlu, Fuzzy soft $k$-ideals over semirings and fuzzy soft semiring homomorphism, J. Hyperstructures, 4 (2015), 93–116. |
[30] | B. V. Rootselaar, Algebraische kennzeichnung freier wortarithmetiken, Compos. Math., 15 (1963), 156–168. |
[31] | A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412–418. doi: 10.1016/j.cam.2006.04.008 |
[32] | A. Sezgin, A. O. Atagün, E. Aygün, A note on soft near-rings and idealistic soft near-rings, Filomat, 25 (2011), 53–68. |
[33] | B. P. Varol, A. Aygunöglu, H. Aygün, On fuzzy soft rings, J. Hyperstructures, 1 (2012), 1–15. |
[34] | H. J. Weinert, Semi-nearrings, semi-nearfields and their semigroup-theoretical background, Semigroup Forum, 24 (1982), 231–254. doi: 10.1007/BF02572770 |
[35] | L. A. Zadeh, Fuzzy sets, Infor. Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X |