Research article

Fuzzy subnear-semirings and fuzzy soft subnear-semirings

  • Received: 09 October 2020 Accepted: 07 December 2020 Published: 14 December 2020
  • MSC : 16Y30, 16Y99, 03G25

  • Our purpose in this paper is to initiate and study the notions of fuzzy subnear-semirings and fuzzy soft subnear-semirings. We study few of their elementary properties by providing suitable examples. Moreover, we present the characterizations of zero symmetric near-semirings (seminearrings) through their fuzzy ideals and fuzzy soft ideals. Fuzzy soft anti-homomorphism of fuzzy soft near-semirings and fuzzy soft R-homomorphisms of fuzzy soft R-subsemigroups are also introduced and discussed.

    Citation: Abdelghani Taouti, Waheed Ahmad Khan. Fuzzy subnear-semirings and fuzzy soft subnear-semirings[J]. AIMS Mathematics, 2021, 6(3): 2268-2286. doi: 10.3934/math.2021137

    Related Papers:

  • Our purpose in this paper is to initiate and study the notions of fuzzy subnear-semirings and fuzzy soft subnear-semirings. We study few of their elementary properties by providing suitable examples. Moreover, we present the characterizations of zero symmetric near-semirings (seminearrings) through their fuzzy ideals and fuzzy soft ideals. Fuzzy soft anti-homomorphism of fuzzy soft near-semirings and fuzzy soft R-homomorphisms of fuzzy soft R-subsemigroups are also introduced and discussed.



    加载中


    [1] S. Abou Zaid, On fuzzy subnear-rings and ideals, Fuzzy Set. Syst., 44 (1991), 139–146.
    [2] B. Ahmad, A. Kharal, On Fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6.
    [3] U. Acar, B. Koyuncu, B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010), 3458–3463.
    [4] J. Ahsan, K. Saifullah, M. Farid Khan, Fuzzy semirings, Fuzzy Set. Syst., 60 (1993), 309–320.
    [5] J. Ahsan, Seminear-rings characterized by their $\mathit{S}$-ideals $I$, Proc. Japan Acad. Ser. A, Math. Sci., 71 (1995), 101–103.
    [6] J. Ahsan, Seminear-rings characterized by their $\mathit{S}$-ideals $II$, Proc. Japan Acad. Ser. A, Math. Sci., 71 (1995), 111–113.
    [7] A. Aygünoglu, H. Aygün, Introduction to fuzzy soft groups, Comput. Math. Appl., 58 (2009), 1279–1286. doi: 10.1016/j.camwa.2009.07.047
    [8] N. Çağman, S. Enginoğlu, F. Çitak, Fuzzy soft set theory and its applications, Iran. J. Fuzzy Syst., 8 (2011), 137–147.
    [9] I. Chajda, H. Langer, Near-semirings and semirings with involution, Miskolc Math. Notes, 17 (2016), 801–810.
    [10] A. Dey, M. Pal, Generalised multi-fuzzy soft set and its application in decision making, Pac. Sci. Rev. A: Nat. Sci. Eng., 17 (2015), 23–28.
    [11] V. N. Dixit, R. Kumar, N. Ajmal, On fuzzy rings, Fuzzy Set. Syst., 49 (1992), 205–213. doi: 10.1016/0165-0114(92)90325-X
    [12] F. Feng, Y. B. Jun, X. Zhao, Soft semirings, Comput. Math. Appl., 56 (2008), 2621–2628. doi: 10.1016/j.camwa.2008.05.011
    [13] W. L. Gau, D. J. Buehrer, Vague sets, IEEE Trans. Syst., Man Cybern., 23 (1993), 610–614. doi: 10.1109/21.229476
    [14] Z. Haiyan, J. Jingjing, Fuzzy soft relation and its application in decision making, 7th International Conference on Modelling, Identification and Control (ICMIC), IEEE, 2015.
    [15] W. G. V. Hoorn, B. Van Rootselaar, Fundamental notions in the theory of seminearrings, Compositio Math., 18 (1967), 65–78.
    [16] E. İnan, M. A. Öztürk, Fuzzy soft rings and fuzzy soft ideals, Neural Comput. Appl., 21 (2012), 1–8.
    [17] C. Jenila, P. Dheena, Ideal theory in near-semirings and its applications to automata, Adv. Math.: Sci. J., 9 (2020), 4293–4302. doi: 10.37418/amsj.9.6.112
    [18] W. A. Khan, A. Rehman, A. Taouti, Soft near-semirings, AIMS Math., 5 (2020), 6464–6478. doi: 10.3934/math.2020417
    [19] K. Koppula, K. B. Srinivas, K. S. Prasad, On prime strong ideals of a seminearring, Mat. Vesnik, 72 (2020), 243–256.
    [20] K. V. Krishna, Near-semirings, theory and application, Ph.D thesis, IIT Delhi, New Delhi, India, 2005.
    [21] K. V. Krishna, N. Chatterjee, A necessary condition to test the minimality of generalized linear sequential machines using the theory of near-semirings, Algebra Discrete Math., 4 (2005), 30–45.
    [22] A. Z. Khameneh, A. Kilman, Multi-attribute decision-making based on soft set theory: A systematic review, Soft Comput., 23 (2019), 6899–6920. doi: 10.1007/s00500-018-3330-7
    [23] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602.
    [24] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. doi: 10.1016/S0898-1221(02)00216-X
    [25] P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Comput. Math. Appl., 59 (2010), 1425–1432.
    [26] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31.
    [27] M. A. Öztürk, E. İnan, Fuzzy soft subnear-rings and $(\in, \in \vee q)$-fuzzy soft subnear-rings, Comput. Math. Appl., 63 (2012), 617–628.
    [28] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356.
    [29] M. M. K. Rao, B. Venkateswarlu, Fuzzy soft $k$-ideals over semirings and fuzzy soft semiring homomorphism, J. Hyperstructures, 4 (2015), 93–116.
    [30] B. V. Rootselaar, Algebraische kennzeichnung freier wortarithmetiken, Compos. Math., 15 (1963), 156–168.
    [31] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412–418. doi: 10.1016/j.cam.2006.04.008
    [32] A. Sezgin, A. O. Atagün, E. Aygün, A note on soft near-rings and idealistic soft near-rings, Filomat, 25 (2011), 53–68.
    [33] B. P. Varol, A. Aygunöglu, H. Aygün, On fuzzy soft rings, J. Hyperstructures, 1 (2012), 1–15.
    [34] H. J. Weinert, Semi-nearrings, semi-nearfields and their semigroup-theoretical background, Semigroup Forum, 24 (1982), 231–254. doi: 10.1007/BF02572770
    [35] L. A. Zadeh, Fuzzy sets, Infor. Control, 8 (1965), 338–353. doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1715) PDF downloads(89) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog