This paper investigates the finite-time control problem of $ p $-norm stochastic nonlinear systems subject to output constraint. Combining a tan-type barrier Lyapunov function (BLF) with the adding a power integrator technique, a fuzzy state-feedback controller is constructed. Then, an output-feedback controller design scheme is developed by the constructed state-feedback controller and a reduce-order observer. Finally, both the rigorous analysis and the simulation results demonstrate that the designed output-feedback controller not only guarantees that the output constraint is not violated, but also ensures that the system is semi-global finite-time stable in probability (SGFSP).
Citation: Liandi Fang, Li Ma, Shihong Ding. Finite-time fuzzy output-feedback control for $ p $-norm stochastic nonlinear systems with output constraints[J]. AIMS Mathematics, 2021, 6(3): 2244-2267. doi: 10.3934/math.2021136
This paper investigates the finite-time control problem of $ p $-norm stochastic nonlinear systems subject to output constraint. Combining a tan-type barrier Lyapunov function (BLF) with the adding a power integrator technique, a fuzzy state-feedback controller is constructed. Then, an output-feedback controller design scheme is developed by the constructed state-feedback controller and a reduce-order observer. Finally, both the rigorous analysis and the simulation results demonstrate that the designed output-feedback controller not only guarantees that the output constraint is not violated, but also ensures that the system is semi-global finite-time stable in probability (SGFSP).
[1] | S. Y. Khoo, J. L. Yin, Z. Man, X. Yu, Finite-time stabilization of stochastic nonlinear systems in strict-feedback form, Automatica, 47 (2013), 1403–1410. |
[2] | S. H. Ding, W. H. Chen, K. Q. Mei, D. Murray-Smith, Disturbance observer design for nonlinear systems represented by input-output models, IEEE Trans. Ind. Electron, 67 (2020), 1222–1232. |
[3] | X. D. Li, X. Y. Yang, T. W. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130–146. |
[4] | H. Shen, M. S. Chen, Z. G. Wu, J. D. Cao, J. H. Park, Reliable event-triggered asynchronous passive control for semi-Markov jump fuzzy systems and its application, IEEE T. Fuzzy Syst., 28 (2020), 1708–1722. |
[5] | S. H. Ding, A. Levant, S. H. Li, Simple homogeneous sliding-mode controller, Automatica, 67 (2016), 22–32. doi: 10.1016/j.automatica.2016.01.017 |
[6] | X. Y. Yang, X. D. Li, Q. Xi, P. Y. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515. doi: 10.3934/mbe.2018069 |
[7] | S. H. Ding, S. H. Li, Second-order sliding mode controller design subject to mismatched term, Automatica, 77 (2017), 388–392. doi: 10.1016/j.automatica.2016.07.038 |
[8] | K. Q. Mei, S. H. Ding, Second-order sliding mode controller design subject to an upper-triangular structure, IEEE T. Syst. Man Cybern. Syst., (2018), 1–11. |
[9] | S. C. Tong, Y. M. Li, Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems, Sci. China Inform. Sci., 57 (2014), 1–14. |
[10] | J. T. Hu, G. X. Sui, X. X. Lv, X. D. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal. Model. Control, 23 (2018), 904–920. doi: 10.15388/NA.2018.6.6 |
[11] | X. D. Zhao, X. Y. Wang, L. Ma, G. D. Zong, Fuzzy approximation based asymptotic tracking control for a class of uncertain switched nonlinear systems, IEEE T. Fuzzy Syst., 28 (2020), 632–644. doi: 10.1109/TFUZZ.2019.2912138 |
[12] | F. Wang, B. Chen, Y. Sun, Y. Gao, C. Lin, Finite-time fuzzy control of stochastic nonlinear systems, IEEE T. Syst. Man Cybern., 50 (2020), 2617–2626. |
[13] | L. Liu, W. Zheng, S. H. Ding, An adaptive SOSM controller design by using a sliding-mode-based filter and its application to buck converter, IEEE T. Circ. Syst. I., 67 (2020), 2409–2418. |
[14] | H. Y. Li, Y. Wu, M. Chen, Adaptive fault-tolerant tracking control for discrete-time multi-agent systems via reinforcement learning algorithm, IEEE T. Syst. Man Cybern., (2020), 1–12. |
[15] | Q. Zhou, W. Wang, H. Liang, M. Basin, B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization, IEEE T. Fuzzy Syst., (2019), 1–1. |
[16] | Z. F. Li, T. S. Li, G. Feng, R. Zhao, Q. H. Shan, Neural network-based adaptive control for purefeedback stochastic nonlinear systems with time-varying delays and dead-zone input, IEEE T. Syst. Man Cybern. Syst., 50 (2020), 5317–5329. doi: 10.1109/TSMC.2018.2872421 |
[17] | S. Sui, C. L. P. Chen, S. C. Tong, Fuzzy adaptive finite-time control design for non-triangular stochastic nonlinear systems, IEEE T. Fuzzy Syst., 27 (2019), 172–184. doi: 10.1109/TFUZZ.2018.2882167 |
[18] | B. Niu, Y. J. Liu, W. L. Zhou, H. T. Li, P. Y. Duan, J. Q. Li, Multiple Lyapunov functions for adaptive neural tracking control of switched nonlinear nonlower-triangular systems, IEEE T. Cybernetics, 50 (2020), 1877–1886. doi: 10.1109/TCYB.2019.2906372 |
[19] | Y. M. Li, S. C. Tong, T. S. Li, Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones, IEEE T. Fuzzy Syst., 23 (2015), 1228–1241. doi: 10.1109/TFUZZ.2014.2348017 |
[20] | X. D. Li, J. H. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14–22. |
[21] | J. H. Park, H. Shen, X. H. Chang, T. H. Lee, Recent advances in control and filtering of dynamic systems with constrained signals, Switzerland: Springer, 2019. |
[22] | L. D. Fang, L. Ma, S. H. Ding, J. H. Park, Finite-time stabilization of high-order stochastic nonlinear systems with asymmetric output constraints, IEEE T. Syst. Man Cybern. Syst., (2020), 1–13. |
[23] | C. C. Chen, A unified approach to finite-time stabilization of high-order nonlinear systems with and without an output constraint, Int. J. Robust Nonlin. Control, 29 (2019), 393–407. doi: 10.1002/rnc.4393 |
[24] | S. H. Ding, J. H. Park, C. C. Chen, Second-order sliding mode controller design with output constraint, Automatica, 112 (2020), 108704. doi: 10.1016/j.automatica.2019.108704 |
[25] | L. B. Wu, J. H. Park, Adaptive fault-tolerant control of uncertain switched nonaffine nonlinear systems with actuator faults and time delays, IEEE T. Syst., Man, Cybern., Syst., 50 (2020), 3470–3480. doi: 10.1109/TSMC.2019.2894750 |
[26] | X. Jin, Adaptive fault tolerant tracking control for a class of stochastic nonlinear systems with output constraint and actuator faults, Syst. Control Lett., 107 (2017), 100–109. doi: 10.1016/j.sysconle.2017.07.007 |
[27] | S. H. Ding, K. Q. Mei, S. H. Li, A new second-order sliding mode and its application to nonlinear constrained systems, IEEE T. Automat. Contr., 64 (2019), 2545–2552. doi: 10.1109/TAC.2018.2867163 |
[28] | Y. M. Li, S. C. Tong, Adaptive fuzzy output constrained control design for multi-input multioutput stochastic nonstrict-feedback nonlinear systems, IEEE T. Syst. Man Cybern., 47 (2017), 4086– 4095. |
[29] | B. Niu, W. Ding, H. Li, X. Xie, A novel neural-network-based adaptive control scheme for outputconstrained stochastic switched nonlinear systems, IEEE T. Syst. Man Cybern. Syst., 49 (2017), 418–432. |
[30] | S. Yin, H. Yu, R. Shahnazi, A. Haghani, Fuzzy adaptive tracking control of constrained nonlinear switched stochastic pure-feedback systems, IEEE T. Syst. Man Cybern., 47 (2017), 579–588. |
[31] | Q. K. Hou, S. H. Ding, X. H. Yu, Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer, IEEE T. Energy Conver., (2020), 1–1. |
[32] | D. Yang, X. D. Li, J. L. Qiu, Output tracking control of delayed switched systems via statedependent switching and dynamic output feedback, Nonlinear Anal. Hybri. Syst., 32 (2019), 294–305. doi: 10.1016/j.nahs.2019.01.006 |
[33] | H. Wang, Q. Zhu, Finite-time stabilization of high-order stochastic nonlinear systems in strictfeedback form, Automatica, 54 (2015), 284–291. doi: 10.1016/j.automatica.2015.02.016 |
[34] | W. T. Zha, J. Y. Zhai, S. M. Fei, Output feedback control for a class of stochastic high-order nonlinear systems with time-varying delays, Int. J. Robust Nonlin. Control, 24 (2015), 2243–2260. |
[35] | H. Wang, Q. Zhu, Global stabilization of stochastic nonlinear systems via C1 and C∞ controllers, IEEE T. Automat. Contr., 62 (2017), 5880–5887. doi: 10.1109/TAC.2016.2644379 |
[36] | W. Q. Li, X. J. Xie, S. Y. Zhang, Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions, SIAM J. Control Optim., 49 (2011), 1262–1282. doi: 10.1137/100798259 |
[37] | M. Jiang, X. Xie, K. Zhang, Finite-time stabilization of stochastic high-order nonlinear systems with FT-SISS inverse dynamics, IEEE T. Automat. Contr., 64 (2019), 313–320. doi: 10.1109/TAC.2018.2827993 |
[38] | W. J. Si, X. D. Dong, F. F. Yang, Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics, Neural Netw., 99 (2018), 123–133. doi: 10.1016/j.neunet.2017.12.013 |
[39] | N. Duan, H. F. Min, Decentralized adaptive NN state-feedback control for large-scale stochastic high-order nonlinear systems, Neurocomputing, 173 (2016), 1412–1421. doi: 10.1016/j.neucom.2015.09.013 |
[40] | X. D. Zhao, X. Y. Wang, G. D. Zong, X. L. Zheng, Adaptive neural tracking control for switched high-order stochastic nonlinear systems, IEEE T. Syst. Man Cybern., 47 (2017), 3088–3099. |
[41] | L. D. Fang, L. Ma, S. H. Ding, D. A. Zhao, Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint, Appl. Math. Comput., 358 (2019), 63–79. |
[42] | C. C. Chen, Z. Y. Sun, A unified approach to finite-time stabilization of high-order nonlinear systems with an asymmetric output constraint, Automatica, 111 (2020), 108581. doi: 10.1016/j.automatica.2019.108581 |
[43] | L. D. Fang, L. Ma, S. H. Ding, D. A. Zhao, Robust finit-time stabilization of a class of high-order stochastic nonlinear systems subject to output constraint and disturbances, Int. J. Robust Nonlin. Control, 29 (2019), 5550–5573. doi: 10.1002/rnc.4685 |
[44] | C. C. Chen, Z. Y. Sun, Output feedback finite-time stabilization for high-order planar systems with an output constraint, Automatica, 114 (2020), 108843. doi: 10.1016/j.automatica.2020.108843 |
[45] | Y. Wu, X. J. Xie, Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation, IEEE T. Fuzzy Syst., 28 (2020), 1652–1663. doi: 10.1109/TFUZZ.2019.2920808 |
[46] | L. D. Fang, S. H. Ding, J. H. Park, L. Ma, Adaptive fuzzy control for stochastic high-order nonlinear systems with output constraints, IEEE T. Fuzzy Syst., (2020), 1–1. |
[47] | W. Sun, S. F. Su, G. W. Dong, W. W. Bai, Reduced adaptive fuzzy tracking control for highorder stochastic nonstrict feedback nonlinear system with full-state constraints, IEEE T. Syst. Man Cybern. Syst., (2019), 1–11. |
[48] | L. D. Fang, H. S. Ding, J. H. Park, L. Ma, Adaptive Fuzzy Control for Nontriangular Stochastic High-Order Nonlinear Systems Subject to Asymmetric Output Constraints, IEEE T. Cybernetics, (2020), 1–12. |
[49] | L. X. Wang, Adaptive fuzzy systems and control, Englewood Cliffs, NJ: PTR Prentice Hall, 1994. |