Research article

Nonnegative periodicity on high-order proportional delayed cellular neural networks involving $ D $ operator

  • Received: 28 September 2020 Accepted: 03 December 2020 Published: 11 December 2020
  • MSC : 34C25, 34K13, 34K25

  • This paper aims to deal with the dynamic behaviors of nonnegative periodic solutions for one kind of high-order proportional delayed cellular neural networks involving $ D $ operator. By utilizing Lyapunov functional approach, combined with some dynamic inequalities, we establish a new assertion to guarantee the existence and global exponential stability of nonnegative periodic solutions for the addressed networks. The obtained results supplement and improve some existing ones. In addition, the correctness of the analytical results are verified by numerical simulations.

    Citation: Xiaojin Guo, Chuangxia Huang, Jinde Cao. Nonnegative periodicity on high-order proportional delayed cellular neural networks involving $ D $ operator[J]. AIMS Mathematics, 2021, 6(3): 2228-2243. doi: 10.3934/math.2021135

    Related Papers:

  • This paper aims to deal with the dynamic behaviors of nonnegative periodic solutions for one kind of high-order proportional delayed cellular neural networks involving $ D $ operator. By utilizing Lyapunov functional approach, combined with some dynamic inequalities, we establish a new assertion to guarantee the existence and global exponential stability of nonnegative periodic solutions for the addressed networks. The obtained results supplement and improve some existing ones. In addition, the correctness of the analytical results are verified by numerical simulations.



    加载中


    [1] C. Huang, X. Yang, J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Math. Comput. Simulation, 171 (2020), 201–206. doi: 10.1016/j.matcom.2019.09.023. doi: 10.1016/j.matcom.2019.09.023
    [2] C. Huang, X. Long, L. Huang, S. Fu, Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canad. Math. Bull., 63 (2020), 405–422. doi: 10.4153/S0008439519000511. doi: 10.4153/S0008439519000511
    [3] G. Yang, Exponential stability of positive recurrent neural networks with multi-proportional delays, Neural Process. Lett., 49 (2019), 67–78. doi: 10.1007/s11063-018-9802-z. doi: 10.1007/s11063-018-9802-z
    [4] J. Cao, F. Wen, The impact of the cross-shareholding network on extreme price movements: Evidence from China, J. Risk, 22 (2019), 79–102.
    [5] C. Huang, Y. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differ. Equ., 271 (2021), 186–215. doi: 10.1016/j.jde.2020.08.008. doi: 10.1016/j.jde.2020.08.008
    [6] C. Huang, H. Zhang, J. Cao, H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950091. doi: 10.1142/S0218127419500913
    [7] C. Huang, H. Zhang, L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal., 18 (2019), 3337–3349. doi: 10.3934/cpaa.2019150
    [8] C. Huang, L. Yang, J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Math., 5 (2020), 3378–3390. doi: 10.3934/math.2020218. doi: 10.3934/math.2020218
    [9] X. Long, Novel stability criteria on a patch structure Nicholson's blowflies model with multiple pairs of time-varying delays, AIMS Math., 5 (2020), 7387–7401. doi: 10.3934/math.2020473. doi: 10.3934/math.2020473
    [10] C. Huang, X. Long, J. Cao, Stability of anti-periodic recurrent neural networks with multi-proportional delays, Math. Methods Appl. Sci., 43 (2020), 6093–6102. doi: 10.1002/mma.6350. doi: 10.1002/mma.6350
    [11] Z. Ye, C. Hu, L. He, G. Ouyang, F. Wen, The dynamic time-frequency relationship between international oil prices and investor sentiment in China: A wavelet coherence analysis, Energy J, 41 (2020). doi: 10.5547/01956574.41.5.fwen.
    [12] C. Huang, S. Wen, L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47–52. doi: 10.1016/j.neucom.2019.05.022
    [13] H. Yang, Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator, AIMS Math., 6 (2021), 1865–1879. doi: 10.3934/math.2021113. doi: 10.3934/math.2021113
    [14] Y. Xu, Exponential stability of pseudo almost periodic solutions for neutral type cellular neural networks with D operator, Neural Process. Lett., 46 (2017), 329–342. doi: 10.1007/s11063-017-9584-8
    [15] W. Wang, Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays, Fuzzy Sets and Systems, 338 (2018), 40–49. doi: 10.1016/j.fss.2017.04.005
    [16] C. Huang, R. Su, J. Cao, S. Xiao, Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Math. Comput. Simulation, 171 (2020), 127–135. doi: 10.1016/j.matcom.2019.06.001. doi: 10.1016/j.matcom.2019.06.001
    [17] S. Xiao, Global exponential convergence of HCNNs with neutral type proportional delays and D operator, Neural Process. Lett., 49 (2019), 347–356. doi: 10.1007/s11063-018-9817-5
    [18] Y. Xu, J. Zhong, Convergence of neutral type proportional-delayed HCNNs with D operators, Int. J. Biomath., 11 (2019), 1–9.
    [19] J. Wang, X. Chen, L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 469 (2019), 405–427.
    [20] H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Providence, Rhode Island: Amer. Math. Soc., 1995.
    [21] J. Wang, C. Huang, L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 33 (2019), 162–178.
    [22] X. Liu, W. Yu, L. Wang, Stability analysis for continuous time positive systems with time-varying delays, IEEE Trans. Automat. Control, 55 (2010), 1024–1028. doi: 10.1109/TAC.2010.2041982
    [23] I. Zaidi, M. Chaabane, F. Tadeo, A. Benzaouia, Static state feedback controller and observer design for interval positive systems with time delay, IEEE Trans. Circuits Syst. Ⅱ., 62 (2015), 506–510.
    [24] L. Hien, On global exponential stability of positive neural networks with time-varying delay, Neural Networks, 87 (2017), 22–26. doi: 10.1016/j.neunet.2016.11.004
    [25] H. Zhang, Global Large Smooth Solutions for 3-D Hall-magnetohydrodynamics, Discrete Contin. Dyn. Syst., 39 (2019), 6669–6682.
    [26] M. Benhadri, T. Caraballo, H. Zeghdoudi, Existence of periodic positive solutions to nonlinear Lotka-Volterra competition systems, Opuscula Math., 40 (2020), 341–360. doi: 10.7494/OpMath.2020.40.3.341. doi: 10.7494/OpMath.2020.40.3.341
    [27] Z. Cai, J. Huang, L. Huang, Periodic orbit analysis for the delayed Filippov system, Proc. Amer. Math. Soc., 146 (2018), 4667–4682.
    [28] T. Chen, L. Huang, P. Yu, Bifurcation of limit cycles at infinity in piecewise polynomial systems, Nonlinear Anal. Real., 41 (2018), 82–106. doi: 10.1016/j.nonrwa.2017.10.003
    [29] W. Wang, F. Liu, W. Chen, Exponential stability of pseudo almost periodic delayed Nicholson-type system with patch structure, Math. Methods Appl. Sci., 42 (2019), 592–604. doi: 10.1002/mma.5364
    [30] W. Wang, W. Chen, Mean-square exponential stability of stochastic inertial neural networks, Internat. J. Control, (2020). doi: 10.1080/00207179.2020.1834145.
    [31] C. Huang, L. Yang, B. Liu, New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method, Neural Process. Lett., 50 (2019), 595–606. doi: 10.1007/s11063-019-10055-3
    [32] Q. Cao, X. Guo, Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays, AIMS Math., 5 (2020), 5402–5421. doi: 10.3934/math.2020347. doi: 10.3934/math.2020347
    [33] C. Huang, B. Liu, New studies on dynamic analysis of inertial neural networks involving non-reduced order method, Neurocomputing, 325 (2019), 283–287. doi: 10.1016/j.neucom.2018.09.065
    [34] K. Zhu, Y. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on timedependent spaces, Bound. Value Probl., 2020 (2020). doi: 10.1186/s13661-020-01392-7. doi: 10.1186/s13661-020-01392-7
    [35] Y. Tan, C. Huang, B. Sun, T. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, J. Math. Anal. Appl., 458 (2018), 1115–1130. doi: 10.1016/j.jmaa.2017.09.045
    [36] Y. Xu, Q. Cao, X. Guo, Stability on a patch structure Nicholsons blowflies system involving distinctive delays, Appl. Math. Lett., 105 (2020), 106340. doi: 10.1016/j.aml.2020.106340. doi: 10.1016/j.aml.2020.106340
    [37] Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal., Real World Appl., 31 (2016), 23–37. doi: 10.1016/j.nonrwa.2016.01.004
    [38] C. Qian, Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, J. Inequal. Appl., 2020 (2020). doi: 10.1186/s13660-019-2275-4. doi: 10.1186/s13660-019-2275-4
    [39] L. Li, W. Wang, L. Huang, J. Wu, Some weak flocking models and its application to target tracking, J. Math. Anal. Appl., 480 (2019), 123404. doi: 10.1016/j.jmaa.2019.123404. doi: 10.1016/j.jmaa.2019.123404
    [40] J. Li, J. Ying, D. Xie, On the analysis and application of an ion size-modified Poisson-Boltzmann equation, Nonlinear Anal., Real World Appl., 47 (2019), 188–203. doi: 10.1016/j.nonrwa.2018.10.011
    [41] Y. Jiang, X. Xu, A monotone finite volume method for time fractional Fokker-Planck equations, Sci. China Math., 62 (2019), 783–794. doi: 10.1007/s11425-017-9179-x
    [42] B. Li, F. Wang, K. Zhao, Large time dynamics of 2d semi-dissipative boussinesq equations, Nonlinearity, 33 (2020), 2481–2501. doi: 10.1088/1361-6544/ab74b1. doi: 10.1088/1361-6544/ab74b1
    [43] L. Li, Q. Jin, B. Yao, Regularity of fuzzy convergence spaces, Open Math., 16 (2018), 1455–1465. doi: 10.1515/math-2018-0118
    [44] Z. Gao, L. Fang, The invariance principle for random sums of a double random sequence, Bull. Korean Math. Soc., 50 (2013), 1539–1554. doi: 10.4134/BKMS.2013.50.5.1539
    [45] M. Shi, J. Guo, X. Fang, C. Huang, Global exponential stability of delayed inertial competitive neural networks, Adv. Differ. Equ., 2020 (2020). doi: 10.1186/s13662-019-2476-7. doi: 10.1186/s13662-019-2476-7
    [46] Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces, 2016 (2016), 1–12. doi: 10.1155/2016/5340489. doi: 10.1155/2016/5340489
    [47] C. Huang, H. Yang, J. Cao, Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with $D$ operator, Discrete Contin. Dyn. Syst. Ser. S, 2020 (2020). doi: 10.3934/dcdss.2020372. doi: 10.3934/dcdss.2020372
    [48] C. Huang, X. Zhao, J. Cao, Fuad E. Alsaadi, Global dynamics of neoclassical growth model with multiple pairs of variable delays, Nonlinearity, 33 (2020), 6819–6834. doi: 10.1088/1361-6544/abab4e. doi: 10.1088/1361-6544/abab4e
    [49] R. Wei, J. Cao, C. Huang, Lagrange exponential stability of quaternion-valued memristive neural networks with time delays, Math. Methods Appl. Sci., 43 (2020), 7269–7291. doi: 10.1002/mma.6463. doi: 10.1002/mma.6463
    [50] Y. Liu, J. Wu, Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations, Adv. Differ. Equ., 379 (2015). doi: 10.1186/s13662-015-0708-z.
    [51] C. Huang, J. Wang, L. Huang, Asymptotically almost periodicity of delayed Nicholson-type system involving patch structure, Electron. J. Differ. Equ., 2020 (2020), 1–17. Available from: https://ejde.math.txstate.edu/Volumes/2020/61/huang.pdf
    [52] J. Zhang, C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Adv. Difference Equ., 120 (2020). doi: 10.1186/s13662-020-02566-4.
    [53] H. Hu, X. Yuan, L. Huang, C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729–5749. doi: 10.3934/mbe.2019286
    [54] W. Tang, J. Zhang, Symmetric integrators based on continuous-stage Runge-Kutta-Nystrom methods for reversible systems, Appl. Math. Comput., 361 (2019), 1–12. doi: 10.1016/j.cam.2019.04.010
    [55] M. Iswarya, R. Raja, G. Rajchakit, et al, Existence, Uniqueness and Exponential Stability of Periodic Solution for Discrete-Time Delayed BAM Neural Networks Based on Coincidence Degree Theory and Graph Theoretic Method, Mathematics, 7 (2019), 1055.
    [56] X. Long, S. Gong, New results on stability of Nicholsons blowflies equation with multiple pairs of time-varying delays, Appl. Math. Lett. 2020 (2020), 106027. doi: /10.1016/j.aml.2019.106027. doi: 10.1016/j.aml.2019.106027
    [57] Y. Zhang, Right triangle and parallelogram pairs with a common area and a common perimeter, J. Number Theory, 164 (2016), 179–190. doi: 10.1016/j.jnt.2015.12.015
    [58] J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost Periodicity in Impulsive Fractional-Order Reaction-Diffusion Neural Networks With Time-Varying Delays, IEEE Trans. Cybernet., 2020 (2020), 1–11. doi: 10.1109/TCYB.2020.2967625. doi: 10.1109/TCYB.2020.2967625
    [59] J. Cao, R. Manivannan, K. T. Chong, X. Lv, Extended Dissipativity Performance of High-Speed Train Including Actuator Faults and Probabilistic Time-Delays Under Resilient Reliable Control, IEEE Trans. Syst., Man, Cybernet: Syst, 2019 (2019), 1–12. doi: 10.1109/TSMC.2019.2930997. doi: 10.1109/TSMC.2019.2930997
    [60] Y. Cao, R. Sriraman, N. Shyamsundarraj, R. Samidurai, Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays, Math. Comput. Simulation, 171 (2020). doi: 10.1016/j.matcom.2019.05.011.
    [61] Y. Cao, R. Samidurai, R. Sriraman, Stability and Dissipativity Analysis for Neutral Type Stochastic Markovian Jump Static Neural Networks with Time Delays, J. Artificial Intelligence. Soft Computing Res., 9 (2019), 189–204. doi: 10.2478/jaiscr-2019-0003.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1283) PDF downloads(36) Cited by(4)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog