Configure a coupled fixed point result on a nonempty set engaging a partial order and induced with a quasi-metric in the sense of Kunzi [
Citation: Pulak Konar, Sumit Chandok, Samir Kumar Bhandari, Manuel De la Sen. An interesting approach to the existence of coupled fixed point[J]. AIMS Mathematics, 2021, 6(3): 2217-2227. doi: 10.3934/math.2021134
Configure a coupled fixed point result on a nonempty set engaging a partial order and induced with a quasi-metric in the sense of Kunzi [
[1] | M. Abbas, A. R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl. Math. Comp., 217 (2011), 6328–6336. doi: 10.1016/j.amc.2011.01.006 |
[2] | R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109–116. |
[3] | R. P. Agarwal, E. Karapinar, D. O'Regan, A. F. Roldan-Lopez-de-Hierro, Fixed Point Theory in Metric Type Spaces, Springer, 2015. |
[4] | H. Aydi, B. Damjanovic, B. Samet, W. Shatanawi, Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces, Math. Comp. Model., 54 (2011), 2443–2450. doi: 10.1016/j.mcm.2011.05.059 |
[5] | S. Banach, Sur les operations dans les ensembles abstraits et leurs applications aux equations integrales, Fund. Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[6] | A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative calculus its applications, J. Math. Anal. Appl., 337 (2008), 36–48. doi: 10.1016/j.jmaa.2007.03.081 |
[7] | T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlin. Anal., 65 (2006), 1379–1393. doi: 10.1016/j.na.2005.10.017 |
[8] | S. Chandok, S. Manro, Existence of fixed points in quasi metric spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 266–275. |
[9] | B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comp. Modelling., 54 (2011), 73–79. doi: 10.1016/j.mcm.2011.01.036 |
[10] | X. He, M. Song, D. Chen, Common fixed points for weak commutative mappings on a multiplicative metric space, Fixed Point Theory Appl., 2014, 10.1186/1687-1812-2014-48. |
[11] | Y. Kimura, W. Takahashi, Weak convergence to common fixed points of countable nonexpansive mappings and its applications, J. Korean Math. Soc., 38 (2001), 1275–1284. |
[12] | H. P. A. Kunzi, Nonsymmetric topology, In: Proc. Colloquium on topology, 1993, Szekszard, Hungary, Colloq. Math. Soc. Janos Bolyai Math. Studies., 4 (1995), 303–338 |
[13] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlin. Convex Anal., 7 (2006), 289–297. |
[14] | Z. Mustafa, H. Aydi, E. Karapinar, Generalized Meir-Keeler type contractions on G-metric spaces, Appl. Math. Comput., 219 (2013), 10441–10447. |
[15] | M. Özavşar, A. C. Çevikel Fixed points of multiplicative contraction mappings on multiplicative metric spaces, arXiv: 1205.5131v1 [matn.GN] (2012). |
[16] | J. O. Olaleru, G. A. Okeke, H. Akewe, Coupled fixed point theorems of integral type mappings in cone metric spaces, Kragujevac J. Math., 36 (2012), 215–224. |
[17] | H. Raj, A. Singh, Coupled fixed point theorem in G-metric spaces, Internat. J. Math., Archive-5 (2014), 34–37. |
[18] | W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ−maps in G-metric spaces, Fixed Point Theory Appl., 2010 (2010), 9p (Article ID 181650). |
[19] | R. Shrivastava, S. S. Yadav, R. N. Yadava, Coupled fixed point theorem in orderd metric spaces, Int. J Eng. Res. Dev., 5(2012), 54–57. |
[20] | T. Suzuki, Subrahmanyam's fixed point theorem, Nonlin. Anal., 71 (2009), 1678–1683. doi: 10.1016/j.na.2009.01.004 |
[21] | W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and its Applications, Yokohama Publishers, 2000. |