In universal algebra, it is well-known that if $ S $ is an algebraic structure, then the kind of algebraic structure of $ S/\rho $ is similar to $ S $ where $ \rho $ is a congruence relation on $ S $. In this work, we study the notion of a full $ k $-ideal $ A $ of an $ n $-ary semiring $ S $ and construct a congruence relation $ \rho $ on $ S $ with respect to the full $ k $-ideal $ A $ in order to make the quotient $ n $-ary semiring $ S/\rho $ to be an $ n $-ary ring. Moreover, the notion of an $ h $-ideal of an $ n $-ary semiring was studied and connections between an $ h $-ideal and a $ k $-ideal of an $ n $-ary semiring were investigated.
Citation: Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee. On $ n $-ary ring congruences of $ n $-ary semirings[J]. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019
In universal algebra, it is well-known that if $ S $ is an algebraic structure, then the kind of algebraic structure of $ S/\rho $ is similar to $ S $ where $ \rho $ is a congruence relation on $ S $. In this work, we study the notion of a full $ k $-ideal $ A $ of an $ n $-ary semiring $ S $ and construct a congruence relation $ \rho $ on $ S $ with respect to the full $ k $-ideal $ A $ in order to make the quotient $ n $-ary semiring $ S/\rho $ to be an $ n $-ary ring. Moreover, the notion of an $ h $-ideal of an $ n $-ary semiring was studied and connections between an $ h $-ideal and a $ k $-ideal of an $ n $-ary semiring were investigated.
[1] | M. Adhikari, Basic algebraic topology and its applications, New Delhi: Springer, 2016. http://dx.doi.org/10.1007/978-81-322-2843-1 |
[2] | M. Adhikari, A. Adhikari, Basic modern algebra with applications, New Delhi: Springer, 2014. http://dx.doi.org/10.1007/978-81-322-1599-8 |
[3] | S. Alam, S. Rao, B. Davvaz, $(m, n)$-semirings and a generalized fault-tolerance algebra of systems, J. Appl. Math., 2013 (2013), 482391. http://dx.doi.org/10.1155/2013/482391 doi: 10.1155/2013/482391 |
[4] | D. Benson, Bialgebras: some foundations for distributed and concurrent computation, Fund. Inform., 12 (1989), 427–486. http://dx.doi.org/10.3233/FI-1989-12402 |
[5] | J. Conway, Regular algebra and finite machines, London: Chapman and Hall, 1971. |
[6] | G. Crombez, On $(n, m)$-rings, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 180. http://dx.doi.org/10.1007/BF02999695 doi: 10.1007/BF02999695 |
[7] | G. Crombez, J. Timm, On $(n, m)$-quotient rings, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 200–203. http://dx.doi.org/10.1007/BF02999696 doi: 10.1007/BF02999696 |
[8] | W. Dönte, Untersuchungen über einen veralgemeinerten Gruppenbegriff, Math. Z., 29 (1929), 1–19. http://dx.doi.org/10.1007/BF01180515 doi: 10.1007/BF01180515 |
[9] | W. Dudek, On the divisibility theory in $(m, n)$-rings, Demonstr. Math., 14 (1981), 19–32. http://dx.doi.org/10.1515/dema-1981-0103 doi: 10.1515/dema-1981-0103 |
[10] | W. Dudek, Idempotents in $n$-ary semigroups, SEA Bull. Math., 25 (2001), 97–104. http://dx.doi.org/10.1007/s10012-001-0097-y doi: 10.1007/s10012-001-0097-y |
[11] | S. Eilenberg, Automata, languages and machines, New York: Acedmic press, 1974. |
[12] | K. Glazek, A guide to literature on semirings and their applications in mathematics and information sciences with complete bibliography, Dodrecht: Springer, 2002. http://dx.doi.org/10.1007/978-94-015-9964-1 |
[13] | J. Golan, Semirings and their applications, Dodrecht: Springer, 1999. http://dx.doi.org/10.1007/978-94-015-9333-5 |
[14] | U. Hebisch, H. Weinert, Semirings: algebraic theory and applications in the computer science, Singapore: World Scientific, 1998. |
[15] | M. Henriksen, Ideals in semirings with commutative addition, Am. Math. Soc. Notices, 6 (1958), 321. |
[16] | K. Iizuka, On the Jacobson radial of a semiring, Tohoku Math. J., 11 (1959), 409–421. http://dx.doi.org/10.2748/tmj/1178244538 doi: 10.2748/tmj/1178244538 |
[17] | V. Khanna, Lattices and boolean algebra: first concepts, London: Vikas Publication, 2004. |
[18] | W. Kuich, A. Salomma, Semirings, automata, languages, Berlin: Springer Verlag, 1986. http://dx.doi.org/10.1007/978-3-642-69959-7 |
[19] | S. Rao, An algebra of fault tolerance, Journal of Algebra and Discrete Structures, 6 (2008), 161–180. http://dx.doi.org/arXiv:0907.3194 |
[20] | M. Sen, M. Adhikari, On $k$-ideals of semirings, International Journal of Mathematics and Mathematical Sciences, 15 (1992), 642431. http://dx.doi.org/10.1155/S0161171292000437 doi: 10.1155/S0161171292000437 |
[21] | M. Sen, S. Maity, K. Shum, Some aspects of semirings, SE Asian B. Math., 45 (2021), 919–930. |
[22] | F. Siosson, Cyclic and homogeneus $m$-Semigroups, Proc. Japan Acad., 39 (1963), 444–449. http://dx.doi.org/10.3792/pja/1195522996 doi: 10.3792/pja/1195522996 |
[23] | F. Siosson, Ideals in $(m+1)$-semigroups, Annali di Matematica, 68 (1965), 161–200. http://dx.doi.org/10.1007/BF02411024 doi: 10.1007/BF02411024 |
[24] | T. Sunitha, U. Nagi Reddy, G. Shobhalatha, A note on full $k$-ideals in ternary semirings, Indian Journal of Science and Technology, 14 (2021), 1786–1790. http://dx.doi.org/10.17485/IJST/v14i21.150 doi: 10.17485/IJST/v14i21.150 |
[25] | J. Timm, Kommutative $n$-Gruppen, Ph. D. Thesis, Universität Hamburg, 1967. |
[26] | H. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. https://dx.doi.org/10.1090/S0002-9904-1934-06003-8 doi: 10.1090/S0002-9904-1934-06003-8 |