Research article

On $ n $-ary ring congruences of $ n $-ary semirings

  • Received: 30 June 2022 Revised: 09 August 2022 Accepted: 14 August 2022 Published: 18 August 2022
  • MSC : 06F25, 16Y60

  • In universal algebra, it is well-known that if $ S $ is an algebraic structure, then the kind of algebraic structure of $ S/\rho $ is similar to $ S $ where $ \rho $ is a congruence relation on $ S $. In this work, we study the notion of a full $ k $-ideal $ A $ of an $ n $-ary semiring $ S $ and construct a congruence relation $ \rho $ on $ S $ with respect to the full $ k $-ideal $ A $ in order to make the quotient $ n $-ary semiring $ S/\rho $ to be an $ n $-ary ring. Moreover, the notion of an $ h $-ideal of an $ n $-ary semiring was studied and connections between an $ h $-ideal and a $ k $-ideal of an $ n $-ary semiring were investigated.

    Citation: Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee. On $ n $-ary ring congruences of $ n $-ary semirings[J]. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019

    Related Papers:

  • In universal algebra, it is well-known that if $ S $ is an algebraic structure, then the kind of algebraic structure of $ S/\rho $ is similar to $ S $ where $ \rho $ is a congruence relation on $ S $. In this work, we study the notion of a full $ k $-ideal $ A $ of an $ n $-ary semiring $ S $ and construct a congruence relation $ \rho $ on $ S $ with respect to the full $ k $-ideal $ A $ in order to make the quotient $ n $-ary semiring $ S/\rho $ to be an $ n $-ary ring. Moreover, the notion of an $ h $-ideal of an $ n $-ary semiring was studied and connections between an $ h $-ideal and a $ k $-ideal of an $ n $-ary semiring were investigated.



    加载中


    [1] M. Adhikari, Basic algebraic topology and its applications, New Delhi: Springer, 2016. http://dx.doi.org/10.1007/978-81-322-2843-1
    [2] M. Adhikari, A. Adhikari, Basic modern algebra with applications, New Delhi: Springer, 2014. http://dx.doi.org/10.1007/978-81-322-1599-8
    [3] S. Alam, S. Rao, B. Davvaz, $(m, n)$-semirings and a generalized fault-tolerance algebra of systems, J. Appl. Math., 2013 (2013), 482391. http://dx.doi.org/10.1155/2013/482391 doi: 10.1155/2013/482391
    [4] D. Benson, Bialgebras: some foundations for distributed and concurrent computation, Fund. Inform., 12 (1989), 427–486. http://dx.doi.org/10.3233/FI-1989-12402
    [5] J. Conway, Regular algebra and finite machines, London: Chapman and Hall, 1971.
    [6] G. Crombez, On $(n, m)$-rings, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 180. http://dx.doi.org/10.1007/BF02999695 doi: 10.1007/BF02999695
    [7] G. Crombez, J. Timm, On $(n, m)$-quotient rings, Abh. Math. Sem. Univ. Hamburg, 37 (1972), 200–203. http://dx.doi.org/10.1007/BF02999696 doi: 10.1007/BF02999696
    [8] W. Dönte, Untersuchungen über einen veralgemeinerten Gruppenbegriff, Math. Z., 29 (1929), 1–19. http://dx.doi.org/10.1007/BF01180515 doi: 10.1007/BF01180515
    [9] W. Dudek, On the divisibility theory in $(m, n)$-rings, Demonstr. Math., 14 (1981), 19–32. http://dx.doi.org/10.1515/dema-1981-0103 doi: 10.1515/dema-1981-0103
    [10] W. Dudek, Idempotents in $n$-ary semigroups, SEA Bull. Math., 25 (2001), 97–104. http://dx.doi.org/10.1007/s10012-001-0097-y doi: 10.1007/s10012-001-0097-y
    [11] S. Eilenberg, Automata, languages and machines, New York: Acedmic press, 1974.
    [12] K. Glazek, A guide to literature on semirings and their applications in mathematics and information sciences with complete bibliography, Dodrecht: Springer, 2002. http://dx.doi.org/10.1007/978-94-015-9964-1
    [13] J. Golan, Semirings and their applications, Dodrecht: Springer, 1999. http://dx.doi.org/10.1007/978-94-015-9333-5
    [14] U. Hebisch, H. Weinert, Semirings: algebraic theory and applications in the computer science, Singapore: World Scientific, 1998.
    [15] M. Henriksen, Ideals in semirings with commutative addition, Am. Math. Soc. Notices, 6 (1958), 321.
    [16] K. Iizuka, On the Jacobson radial of a semiring, Tohoku Math. J., 11 (1959), 409–421. http://dx.doi.org/10.2748/tmj/1178244538 doi: 10.2748/tmj/1178244538
    [17] V. Khanna, Lattices and boolean algebra: first concepts, London: Vikas Publication, 2004.
    [18] W. Kuich, A. Salomma, Semirings, automata, languages, Berlin: Springer Verlag, 1986. http://dx.doi.org/10.1007/978-3-642-69959-7
    [19] S. Rao, An algebra of fault tolerance, Journal of Algebra and Discrete Structures, 6 (2008), 161–180. http://dx.doi.org/arXiv:0907.3194
    [20] M. Sen, M. Adhikari, On $k$-ideals of semirings, International Journal of Mathematics and Mathematical Sciences, 15 (1992), 642431. http://dx.doi.org/10.1155/S0161171292000437 doi: 10.1155/S0161171292000437
    [21] M. Sen, S. Maity, K. Shum, Some aspects of semirings, SE Asian B. Math., 45 (2021), 919–930.
    [22] F. Siosson, Cyclic and homogeneus $m$-Semigroups, Proc. Japan Acad., 39 (1963), 444–449. http://dx.doi.org/10.3792/pja/1195522996 doi: 10.3792/pja/1195522996
    [23] F. Siosson, Ideals in $(m+1)$-semigroups, Annali di Matematica, 68 (1965), 161–200. http://dx.doi.org/10.1007/BF02411024 doi: 10.1007/BF02411024
    [24] T. Sunitha, U. Nagi Reddy, G. Shobhalatha, A note on full $k$-ideals in ternary semirings, Indian Journal of Science and Technology, 14 (2021), 1786–1790. http://dx.doi.org/10.17485/IJST/v14i21.150 doi: 10.17485/IJST/v14i21.150
    [25] J. Timm, Kommutative $n$-Gruppen, Ph. D. Thesis, Universität Hamburg, 1967.
    [26] H. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. https://dx.doi.org/10.1090/S0002-9904-1934-06003-8 doi: 10.1090/S0002-9904-1934-06003-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(982) PDF downloads(75) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog