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1. Introduction

A semiring which is a common generalization of rings and distributive lattices was introduced first
by Vandiver [26] in 1934. This algebraic structure appears in a natural manner in some applications
to the theory of automata, formal languages, optimization theory and other branches of applied
mathematics (for example, see [4, 5, 11–14, 18]). In algebraic structure point of view, we are able
to study the concept of an n-ary semiring as a generalization of a semiring because a semiring is a
special kind of an n-ary semiring where n = 2 and so every results on an n-ary semiring is also true on
a semiring but not conversely.

In modern algebra, it is well-known that the kernel of a ring homomorphism is an ideal [2] and also
true for a semiring homomorphism. Conversely, each ideal of a ring can be considered as the kernel
of a ring homomorphism. Notwithstanding, this condition is not generally true in case of an ideal of
a semiring [1]. However, this condition can be true if we replace the ideal by a special ideal which is
called a k-ideal defined by Henriksen [15]. A more restrict class of ideals of a semiring which is called
an h-ideal was introduced by Iizuka [16].

To generalize the algebraic system of an algebra from a binary operation to an n-ary operation,
Dörnte [8] first defined the notion of an n-ary group in 1928. Later, Timm [25] studied an n-ary group
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with commutative property. As a generalization of a semigroup and an n-ary group, the notion of an
n-ary semigroup was introduced by Siosson [22, 23]. Some properties of idempotent elements of an
n-ary semigroup were studied by Dudek [10]. The concepts of homomorphism, quotient structures,
and some ideal theoretic were studied by Crombez and Timm [6, 7]. Later, in 1981, Dudek [9] studied
the divisibility property of an (m, n)-ring. As a generalization of a semiring and an (m, n)-ring, Alam,
Rao and Davvaz [3, 19] introduced the notion of an (m, n)-semiring.

In 1992, Sen and Adhikari [20] studied the notion of a full k-ideal which is a k-ideal containing the
set of all additively idempotent elements of a semiring and use it to construct a congruence relation in
order to make the quotient semiring to be a ring. More results of full k-ideals of a semiring were also
investigated by Sen and Maity [21] in 2021. As a similar way of Sen and Adhikari [20], Sunitha, Nagi
Reddy, and Shobhalatha [24] studied full k-ideals of ternary semirings.

It is well-known that if we have a congruence relation ρ on an n-ary semiring S , then we can
immediately obtain that S/ρ is also an n-ary semiring. It is interesting that what is the kind of a
congruence relation ρ affecting S/ρ to be an n-ary ring. In this work, we study the notions of k-ideals
and h-ideals of n-ary semirings and also investigate their connections. Finally, we use a full k-ideal to
construct a congruence relation in order to make the quotient n-ary semiring to be an n-ary ring.

2. Preliminaries

Let N be the set of all natural numbers and i, j, n ∈ N. An algebra 〈S ; f 〉 consisting of a nonempty
set S together with an n-ary operation f : S n → S is called an n-ary groupoid [8]. For 1 ≤ i < j ≤ n,
the sequence yi, yi+1, yi+2, . . . , y j of elements of S is denoted by y j

i . If j < i, then we denote it to be the

empty symbol. If x1 = x2 = · · · = xi−1 = x where x1, x2, . . . , xi−1, x ∈ S , we write
(i−1)
x instead of xi−1

1 .
So, the term

f (x, x, . . . , x︸     ︷︷     ︸
i−1 terms

, yi, yi+1, . . . , y j, z j+1, z j+2, . . . , zn)

where z j+1, z j+2, . . . , zn ∈ S can be simply represented by

f (
(i−1)
x , y j

i , z
n
j+1).

Similarly, for 1 ≤ i < j ≤ n, we also denote the sequence Ai, Ai+1, Ai+2, . . . , A j of nonempty subsets
of S by A j

i . If A1 = A2 = · · · = Ak = A, where 1 < k ≤ n and A1, A2, . . . , Ak, A are nonempty subsets

of S , then we write
(k)
A instead of Ak

1.
Let x2n−1

1 ∈ S . The associative law [10] for the n-ary operation f on S is defined by for all 1 ≤ i <
j ≤ n,

f (xi−1
1 , f (xn+i−1

i ), x2n−1
n+i ) = f (x j−1

1 , f (xn+ j−1
j ), x2n−1

n+ j ).

If this law holds for all elements x2n−1
1 ∈ S , an n-ary groupoid 〈S ; f 〉 is called an n-ary semigroup.

An n-ary semiring is an algebra 〈S ; +, f 〉 type (2, n) for which 〈S ; +〉 is a semigroup, 〈S ; f 〉 is an
n-ary semigroup and for all xn

1, a, b ∈ S , 1 ≤ i ≤ n,

f (xi−1
1 , a + b, xn

i+1) = f (xi−1
1 , a, xn

i+1) + f (xi−1
1 , b, xn

i+1).

Indeed, an n-ary semiring is a (2, n)-semiring [3]. An n-ary semiring 〈S ; +, f 〉 is said to be additively
commutative if a + b = b + a for all a, b ∈ S .
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In this work, we simply write S instead of an additively commutative n-ary semiring 〈S ; +, f 〉.
For any nonempty subsets A, B, An

1 of an n-ary semiring S , we denote

A + B = {a + b ∈ S | a ∈ A, b ∈ B}

and

f (An
1) = { f (an

1) ∈ S | ai ∈ Ai, 1 ≤ i ≤ n}.

A nonempty subset T of an n-ary semiring S is called a subalgebra of S if T +T ⊆ T and f (
(n)
T ) ⊆ T .

Definition 1. [3] Let 1 ≤ i ≤ n. A nonempty subset A of an n-ary semiring S is called an i-ideal of S

if A + A ⊆ A and f (
(i−1)
S , A,

(n−i)
S ) ⊆ A. If A is an i-ideal of S for all 1 ≤ i ≤ n, then A is called an ideal

of S .

An element a of an n-ary semiring S is called additively regular if a = a + b + a for some b ∈ S . If
in addition, the element b is unique and satisfies b = b + a + b, then b is called the additively inverse of
a in S and will be denoted by the notation a′. Particularly, if every element of S is additively regular,
then S is called an additively regular n-ary semiring. Furthermore, if every additively regular element
of S has the unique additively inverse, then S is called an additively inverse n-ary semiring.

Let S be an additively inverse n-ary semiring. It is obvious that x = (x′)′ and (x + y)′ = x′ + y′ for
all x, y ∈ S .

Lemma 1. Let S be an additively inverse n-ary semiring. Then for any xn
1 ∈ S , ( f (xn

1))′ =

f (xi−1
1 , x′i , x

n
i+1), for all 1 ≤ i ≤ n.

Proof. Let xn
1 ∈ S and 1 ≤ i ≤ n. Since

f (xn
1) + f (xi−1

1 , x′i , x
n
i+1) + f (xn

1) = f (xi−1
1 , xi + x′i + xi, xn

i+1) = f (xi−1
1 , xi, xn

i+1) = f (xn
1)

and

f (xi−1
1 , x′i , x

n
i+1) + f (xn

1) + f (xi−1
1 , x′i , x

n
i+1) = f (xi−1

1 , x′i + xi + x′i , x
n
i+1) = f (xi−1

1 , x′i , x
n
i+1),

we obtain that

( f (xn
1))′ = f (xi−1

1 , x′i , x
n
i+1).

�

An element x of an n-ary semiring S is called additively idempotent if x + x = x. We define the set
of all additively idempotent elements of S by E+ = {x ∈ S | x + x = x}. It is not difficult to verify that
E+ is an ideal of S .

A partially ordered set (L,≺) is said to be a lattice if every pair of elements a, b of L has both greatest
lower bound and least upper bound. If every subset A of a lattice L has both greatest lower bound and
least upper bound, then L is called a complete lattice. It is not difficult to show that a partially ordered
set (L,≺) has the greatest element and every subset of L has the greatest lower bound if and only if L
is a complete lattice.

A lattice L is called modular [17] if L satisfies the following law; for all a, b ∈ L, a ≤ b implies
a∨ (x∧ b) = (a∨ x)∧ b, for every x ∈ L, where x∨ y and x∧ y is the least upper bound and the greatest
lower bound of x, y ∈ L, respectively.
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Lemma 2. [17] A lattice L is modular if and only if for any a, b, c ∈ L, a ∧ b = a ∧ c, a ∨ b = a ∨ c,
and b ≤ c implies b = c.

3. k-ideals and h-ideals of n-ary semirings

In this section, we introduce the notions of k-ideals and h-ideals of n-ary semirings and study some
of their properties.

Definition 2. A nonempty subset A of an n-ary semiring S is called a k-ideal of S if A + A ⊆ A,

f (
(i−1)
S , A,

(n−i)
S ) ⊆ A for all 1 ≤ i ≤ n and the following condition is satisfied: for any x ∈ S , x + a = b

for some a, b ∈ A implies x ∈ A. If A is a k-ideal of S and E+ ⊆ A, then A is said to be a full k-ideal.

According to Definition 2, it is clear that every k-ideal of an n-ary semiring is an ideal. However,
the converse is not generally true as the following example shows.

Example 1. Define an n-ary operation f on N by f (an
1) = a1 · a2 · a3 · · · an for any an

1 ∈ N. Then
〈N; max, f 〉 is an n-ary semiring. We have that 2N is an ideal of 〈N; max, f 〉 but not a k-ideal because
max{1, 2} = 2 but 1 < 2N.

The following example is an example of a k-ideal of an n-ary semiring which is not a full k-ideal.

Example 2. Define an n-ary operation f on N by f (an
1) = min{a1, a2, a3 . . . , an} for any an

1 ∈ N. Then
〈N; max, f 〉 is an n-ary semiring and E+ = N. It is easy to obtain that the set Im = {1, 2, 3, . . . ,m} is a
k-ideal of 〈N; max, f 〉 but not a full k-ideal because E+ * Im.

The following example is an example of a k-ideal of a finite n-ary semiring which is not a full
k-ideal.

Example 3. Let S = {a, b}. Then 〈P(S );∪, f 〉 is an n-ary semiring where P(S ) is the power set of S
and f is the n-ary operation on P(S ) defined by f (An

1) =
⋂n

i=1 Ai for any Ai ∈ P(S ). It is easy to show
that {∅, {a}} is a k-ideal of 〈P(S );∪, f 〉 but not full because E+ = P(S ) * {∅, {a}}.

We give an example of a proper full k-ideal of an n-ary semiring as follows.

Example 4. Consider the n-ary semiring 〈N ∪ {0}; +, f 〉 where + is the usual addition and f is the
n-ary operation defined in Example 1. We have that the set of all additively idempotent elements of
〈N ∪ {0}; +, f 〉 is {0} and 2N ∪ {0} is a full k-ideal.

Remark 1. Let {A}i∈I be a family of full k-ideals of an n-ary semiring S . Then
⋂

i∈I Ai is a full k-ideal
as well if it is not empty.

Remark 2. Every k-ideal of an additively inverse n-ary semiring S is an additively inverse subalgebra
of S .

Proof. Let K be a k-ideal of S . Clearly, K is a subalgebra of S . Let a ∈ K. Then (a + a′) + a = a ∈ K
and so a + a′ ∈ K. This implies that a′ ∈ K. Hence, K is additively inverse. �

The k-closure of a nonempty subset A of an n-ary semiring S is defined by

[A]k = {x ∈ S | x + a = b for some a, b ∈ A}.
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It is easy to prove that for any ∅ , A ⊆ S , A ⊆ [A]k if A + A ⊆ A. Furthermore, if A is closed under the
addition, then [A]k is also closed. Now, we give some necessary properties of k-closure of nonempty
subsets of an n-ary semiring as follows.

Lemma 3. Let A, B, and An
1 be nonempty subsets of an n-ary semiring S . Then the following statements

hold:

(1) if A + A ⊆ A, then [A]k = [[A]k]k;
(2) if A ⊆ B, then [A]k ⊆ [B]k;
(3) [A]k + [B]k ⊆ [A + B]k;
(4) if An

1 are closed under the addition, then f (Ai−1
i , [Ai]k, An

i+1) ⊆ [ f (An
1)]k for all 1 ≤ i ≤ n.

Proof. (1) Let ∅ , A ⊆ S be such that A + A ⊆ A. Obviously, [A]k ⊆ [[A]k]k. If x ∈ [[A]k]k, then
x + y = z for some y, z ∈ [A]k such that y + a1 = b1 and z + a2 = b2 for some a1, a2, b1, b2 ∈ A. Then

x + y + a1 + a2 = z + a1 + a2 = z + a2 + a1 = b2 + a1. (3.1)

We have y + a1 + a2 = b1 + a2 ∈ A + A ⊆ A and b2 + a1 ∈ A + A ⊆ A. Using (3.1), we get x ∈ [A]k and
so [[A]k]k ⊆ [A]k.

(2)–(4) are straightforward. �

Lemma 4. If A is an ideal of an n-ary semiring S , then [A]k is a k-ideal of S .

Proof. Let A be an ideal of S . It is clear that [A]k is closed under the addition. Using A being an ideal

of S and Lemma 3(2) and (4), we obtain that f (
(i−1)
S , [A]k,

(n−i)
S ) ⊆ [ f (

(i−1)
S , A,

(n−i)
S )]k ⊆ [A]k. If x ∈ S is

such that x+a = b for some a, b ∈ [A]k, then by Lemma 3(1), we get x ∈ [[A]k]k = [A]k. Therefore, [A]k

is a k-ideal of S . �

The following corollary is directly obtained by Lemma 4.

Corollary 1. Let S be an n-ary semiring. The following statements hold:

(1) an ideal A of S is a k-ideal if and only if A = [A]k;
(2) [E+]k is a full k-ideal of S .

Lemma 5. Let A and B be two full k-ideals of an additively inverse n-ary semiring S . Then [A + B]k is
a full k-ideal of S such that A ⊆ [A + B]k and B ⊆ [A + B]k.

Proof. Clearly, A + B is closed under the addition. It holds that

f (
(i−1)
S , A + B,

(n−i)
S ) ⊆ f (

(i−1)
S , A,

(n−i)
S ) + f (

(i−1)
S , B,

(n−i)
S ) ⊆ A + B

for all 1 ≤ i ≤ n. Now, A + B is an ideal of S . Using Lemma 4, we immediately get that [A + B]k is a
k-ideal. Since E+ ⊆ A and E+ ⊆ B, E+ = E+ + E+ ⊆ A + B ⊆ [A + B]k. Hence, [A + B]k is a full k-ideal
of S .

Let a ∈ A. Then

a = a + a′ + a = a + (a′ + a) ∈ A + E+ ⊆ A + B ⊆ [A + B]k.

Hence, A ⊆ [A + B]k. Similarly, we are able to get that B ⊆ [A + B]k. �
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Theorem 1. Let K(S ) be the set of all full k-ideals of an additively inverse n-ary semiring S . Then
K(S ) is a complete lattice which is also modular.

Proof. We have that K(S ) is a partially ordered set with respect to usual set inclusion. Let A, B ∈ K(S ).
By Remark 1 and Lemma 5, we obtain that A ∩ B ∈ K(S ) and [A + B]k ∈ K(S ), respectively. Define
A ∧ B = A ∩ B and A ∨ B = [A + B]k. Obviously, A ∩ B is the greatest lower bound of A and B. Let
C ∈ K(S ) such that A ⊆ C and B ⊆ C. Then A + B ⊆ C + C ⊆ C. By Remark 3(2) and Corollary 1(1),
we get [A + B]k ⊆ [C]k = C. Hence, [A + B]k is the least upper bound of A and B. Now, K(S ) is a
lattice. Clearly, S is the greatest element of K(S ). Let {Ci}i∈I be a family of elements in K(S ). By
Remark 1, we get that

⋂
{Ci}i∈I ∈ K(S ). These imply that K(S ) is a complete lattice.

Finally, let A, B,C ∈ K(S ) such that

A ∧ B = A ∧C and A ∨ B = A ∨C and B ⊆ C.

Let x ∈ C. Then x ∈ C ⊆ A∨C = A∨ B = [A + B]k. It follows that there exist a1, a2 ∈ A and b1, b2 ∈ B
such that x + a1 + b1 = a2 + b2. Then

x + a1 + a′1 + b1 = x + a1 + b1 + a′1 = a2 + b2 + a′1 = a2 + a′1 + b2. (3.2)

Now, x ∈ C, a1 + a′1 ∈ E+ ⊆ C and b1, b2 ∈ B ⊆ C. Using (3.2), a2 + a′1 ∈ [C]k = C. At this point,
a1 +a′1, a2 +a′1 ∈ A∩C = A∧C = A∧B = A∩B ⊆ B. It follows that a1 +a′1 +b1 ∈ B and a2 +a′1 +b2 ∈ B.
Using (3.2) again, we obtain that x ∈ [B]k = B and so C ⊆ B. Hence, B = C. By Lemma 2, K(S ) is a
modular lattice. �

Now, we introduce a more restricted class of k-ideals of an n-ary semiring as follows.

Definition 3. A nonempty subset A of an n-ary semiring S is called an h-ideal of S if A + A ⊆ A,

f (
(i−1)
S , A,

(n−i)
S ) ⊆ A for all 1 ≤ i ≤ n and the following condition is satisfied: for any x ∈ S , x + a + s =

b + s for some a, b ∈ A and s ∈ S implies x ∈ A.

It is unnecessary to define a full h-ideal of an n-ary semiring because every h-ideal is immediately
full, i.e., if A is an h-ideal of S and x ∈ E+, then for any a ∈ A, x + a + x = a + x implies x ∈ A.

It is obvious that every h-ideal of an n-ary semiring is a k-ideal. In general, the converse is not true
as it is shown by the following example.

Example 5. Let S = {a, b, c}.
Define an n-ary operation f on the power set P(S ) of S by f (An

1) =
⋂n

i=1 Ai for any An
1 ∈ P(S ).

Then 〈P(S );∪, f 〉 is an n-ary semiring. We have that T = {∅, {a}, {b}, {a, b}} is a k-ideal of 〈P(S );∪, f 〉.
However, T is not an h-ideal because {c} ∪ {a, b} ∪ {a, c} = S = {b} ∪ {a, c} where {a, b}, {b} ∈ T
but {c} < T .

Remark 3. Let {A}i∈I be a family of h-ideals of an n-ary semiring S . Then
⋂

i∈I Ai is an h-ideal as well
if it is not empty.

Remark 4. Every h-ideal of an additively inverse n-ary semiring S is an additively inverse subalgebra
of S .
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Proof. Let H be an h-ideal of S . Clearly, H is a subalgebra of S . Let a ∈ H. Then (a+a′)+a+ s = a+ s
for all s ∈ S . So, a + a′ ∈ H. This means that a′ + a = b for some b ∈ H and thus a′ + a + t = b + t for
any t ∈ S . This implies that a′ ∈ H. Hence, H is additively inverse. �

The h-closure of a nonempty subset A of an n-ary semiring S is defined by

[A]h = {x ∈ S | x + a + s = b + s for some a, b ∈ A and s ∈ S }.

It is obvious that [A]k ⊆ [A]h for any ∅ , A ⊆ S . Moreover, it is not difficult to verify that for
any ∅ , A ⊆ S , A ⊆ [A]h if A + A ⊆ A. Furthermore, if A is closed under the addition, then [A]h is
also closed. Now, we give some necessary properties of h-closure of nonempty subsets on an n-ary
semiring as follows.

Lemma 6. Let A, B and An
1 be nonempty subsets of an n-ary semiring S . Then the following statements

hold:

(1) if A + A ⊆ A, then [A]h = [[A]h]h;
(2) if A ⊆ B, then [A]h ⊆ [B]h;
(3) [A]h + [B]h ⊆ [A + B]h;
(4) if An

1 are closed under the addition, then f (Ai−1
i , [Ai]h, An

i+1) ⊆ [ f (An
1)]h for all 1 ≤ i ≤ n.

Proof. (1) Let ∅ , A ⊆ S be such that A + A ⊆ A. Obviously, [A]h ⊆ [[A]h]h. If x ∈ [[A]h]h, then
x + y + s = z + s for some y, z ∈ [A]h and s ∈ S where y + a1 + u = b1 + u and z + a2 + v = b2 + v for
some a1, a2, b1, b2 ∈ A and u, v ∈ S . Then

x + y + s + a1 + u + a2 + v = x + (y + a1 + u) + a2 + s + v

= x + b1 + u + a2 + s + v

= x + b1 + a2 + u + s + v (3.3)
x + y + s + a1 + u + a2 + v = z + s + a1 + u + a2 + v

= a1 + (z + a2 + v) + s + u

= a1 + b2 + v + s + u. (3.4)

Using (3.3) and (3.4), we get that x + (b1 + a2) + u + s + v = (a1 + b2) + u + s + v where b1 + a2, a1 + b2 ∈

A + A ⊆ A and u + s + v ∈ S implies x ∈ [A]h and so [[A]h]h ⊆ [A]h.
(2)–(4) are straightforward. �

Lemma 7. If A is an ideal of an n-ary semiring S , then [A]h is an h-ideal of S .

Proof. Let A be an ideal of S . Clearly, [A]h is closed under the addition. Using A being an ideal of S

and Lemma 6(2) and (4), we obtain that f (
(i−1)
S , [A]h,

(n−i)
S ) ⊆ [ f (

(i−1)
S , A,

(n−i)
S )]h ⊆ [A]h. If x ∈ S is such

that x + a + s = b + s for some a, b ∈ [A]h and s ∈ S , then by Lemma 6(1), we get x ∈ [[A]h]h = [A]h.
Therefore, [A]h is an h-ideal of S . �

The following corollary is directly obtained by Lemma 7.

Corollary 2. Let S be an n-ary semiring. The following statements hold:

(1) an ideal A of S is an h-ideal if and only if A = [A]h;
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(2) [E+]h is an h-ideal of S .

Lemma 8. Let A and B be two h-ideals of an additively inverse n-ary semiring S . Then [A + B]h is an
h-ideal of S such that A ⊆ [A + B]h and B ⊆ [A + B]h.

Proof. Since f (
(i−1)
S , A + B,

(n−i)
S ) ⊆ f (

(i−1)
S , A,

(n−i)
S ) + f (

(i−1)
S , B,

(n−i)
S ) ⊆ A + B for all 1 ≤ i ≤ n and A + B

is closed under the addition, we get A + B is an ideal of S . Using Lemma 7, we obtain that [A + B]h

is an h-ideal. Let a ∈ A. Then a = a + a′ + a = a + (a′ + a) ∈ A + E+ ⊆ A + B ⊆ [A + B]h. Hence,
A ⊆ [A + B]h. Similarly, we are able to get that B ⊆ [A + B]h. �

Theorem 2. Let H(S ) be the set of all h-ideals of an additively inverse n-ary semiring S . Then H(S )
is a complete lattice which is also modular.

Proof. We have that H(S ) is a partially ordered set with respect to the usual set inclusion. Let A, B ∈
H(S ). By Remark 3 and Lemma 8, we obtain that A ∩ B ∈ H(S ) and [A + B]h ∈ H(S ), respectively.
Define A ∧ B = A ∩ B and A ∨ B = [A + B]h. Obviously, A ∩ B is the greatest lower bound of A and
B. Let C ∈ H(S ) such that A ⊆ C and B ⊆ C. Then A + B ⊆ C + C ⊆ C. By Remark 6(2) and
Corollary 2(1), we get [A + B]h ⊆ [C]h = C. Hence, [A + B]h is the least upper bound of A and B.
Now, H(S ) is a lattice. Clearly, S is the greatest element of H(S ). Let {Ci}i∈I be a family of elements
of H(S ). By Remark 3, we obtain that

⋂
{Ci} ∈ H(S ). These imply that H(S ) is a complete lattice.

Finally, let A, B,C ∈ H(S ) such that

A ∧ B = A ∧C and A ∨ B = A ∨C and B ⊆ C.

Let x ∈ C. Then x ∈ C ⊆ A ∨ C = A ∨ B = [A + B]h. It follows that there exist a1, a2 ∈ A, b1, b2 ∈ B
and s ∈ S such that x + a1 + b1 + s = a2 + b2 + s. Then

x + a1 + a′1 + b1 + s = x + a1 + b1 + s + a′1
= a2 + b2 + s + a′1
= a2 + a′1 + b2 + s. (3.5)

Since, x ∈ C, a1+a′1 ∈ E+ ⊆ C and b1 ∈ B ⊆ C, we have x+a1+a′1+b1 ∈ C. Using (3.5) and b2 ∈ B ⊆ C,
we get a2 + a′1 ∈ [C]h = C. At this point, a1 + a′1, a2 + a′1 ∈ A ∩ C = A ∧ C = A ∧ B = A ∩ B ⊆ B. It
follows that a1 + a′1 + b1 ∈ B and a2 + a′1 + b2 ∈ B. Using (3.5) again, we obtain that x ∈ [B]h = B and
so C ⊆ B. Hence, B = C. By Lemma 2, H(S ) is a modular lattice. �

4. n-ary ring congruences

In this section, we characterize an n-ary ring congruence with respect to a full k-ideal of an
additively inverse n-ary semiring.

Definition 4. A binary relation ρ on an n-ary semigroup 〈S ; f 〉 is said to be a congruence if ρ is an
equivalence relation and satisfies the following property; for any an

1, bn
1 ∈ S ,

(a1, b1), (a2, b2), . . . , (an, bn) ∈ ρ implies ( f (an
1), f (bn

1)) ∈ ρ.
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Lemma 9. An equivalence relation ρ on an n-ary semigroup 〈S ; f 〉 is a congruence if and only if for
any a, b, xn

1 ∈ S ,
(a, b) ∈ ρ implies ( f (xi−1

1 , a, xn
i+1), f (xi−1

1 , b, xn
i+1)) ∈ ρ

for each 1 ≤ i ≤ n.

An equivalence relation ρ on an n-ary semiring 〈S ; +, f 〉 is a congruence if ρ is a congruence on
〈S ; +〉 and 〈S ; f 〉.

Definition 5. An n-ary semiring 〈S ; +, f 〉 is called an n-ary ring if 〈S ; +〉 is a group. In other words,
the following conditions are satisfied;

(1) there exists 0 ∈ S such that x + 0 = x = 0 + x for all x ∈ S ;
(2) for each x ∈ S , there is y ∈ S such that x + y = 0 = y + x.

If 〈S ; +, f 〉 is an n-ary ring, then the element y in the condition 2 is usually denoted by −x.

Definition 6. A congruence ρ on an n-ary semiring S is called an n-ary ring congruence if the quotient
n-ary semiring S/ρ := {[a]ρ | a ∈ S } is an n-ary ring.

Theorem 3. Let A be a full k-ideal of an additively inverse n-ary semiring S . Then the relation
ρA = {(a, b) ∈ S × S | a + b′ ∈ A} is an n-ary ring congruence such that −[a]ρA = [a′]ρA .

Proof. Let A be a full k-ideal of S .
Firstly, we show that ρ is an equivalence relation on S . Let a, b, c ∈ S . Since a + a′ ∈ E+ ⊆ A, ρA

is reflexive. If a + b′ ∈ A, then by Remark 2, we get b + a′ = (b′)′ + a′ = (a + b′)′ ∈ A and so ρA is
symmetric. Assume that a + b′ ∈ A and b + c′ ∈ A. Then a + c′ + b + b′ ∈ A. Since b + b′ ∈ E+ ⊆ A,
a + c′ ∈ [A]k = A. So, ρA is transitive. Now, ρA is an equivalence relation.

Secondly, let a, b, c, xn
1 ∈ S . Assume that (a, b) ∈ ρA. Then a + b′ ∈ A and so

(a + c) + (b + c)′ = a + c + c′ + b′

= (a + b′) + (c + c′)
∈ A + E+ ⊆ A + A ⊆ A.

Hence, (a + c, b + c) ∈ ρA. Using Lemma 1, we obtain that for each 1 ≤ i ≤ n,

f (xi−1
1 , a, xn

i+1) + ( f (xi−1
1 , b, xn

i+1))′ = f (xi−1
1 , a, xn

i+1) + f (xi−1
1 , b′, xn

i+1)
= f (xi−1

1 , a + b′, xn
i+1)

∈ f (
(i−1)
S , A,

(n−i)
S ) ⊆ A.

Hence, ( f (xi−1
1 , a, xn

i+1), f (xi−1
1 , b, xn

i+1)) ∈ ρA. Therefore, we obtain that ρA is a congruence on S .
Finally, we show that S/ρA is an n-ary ring together with the operations ⊕ and F on S/ρA defined

by
[a]ρA ⊕ [b]ρA = [a + b]ρA and F([a1]ρA , [a2]ρA , . . . , [an]ρA) = [ f (an

1)]ρA

for any a, b, an
1 ∈ S . It is immediately to obtain that 〈S/ρA;⊕, F〉 is a quotient n-ary semiring

of 〈S ; +, f 〉. Let e ∈ E+ and x ∈ S . Then (e + x) + x′ = e + (x + x′) ∈ E+ + E+ = E+ ⊆ A and
so (e + x, x) ∈ ρA. It follows that

[e]ρA ⊕ [x]ρA = [e + x]ρA = [x]ρA .
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Since e + (x + x′)′ = e + x′ + x ∈ A, (e, x + x′) ∈ ρA. It turns out that

[x]ρA ⊕ [x′]ρA = [x + x′]ρA = [e]ρA .

Therefore, S/ρA is an n-ary ring. �

Theorem 4. Let ρ be a congruence on an additively inverse n-ary semiring S such that S/ρ is an n-ary
ring and −[a]ρ = [a′]ρ. Then there exists a full k-ideal A of S such that ρA = ρ.

Proof. Let A = {a ∈ S | (a, e) ∈ ρ for some e ∈ E+}. Using the reflexivity of ρ, we get E+ ⊆ A , ∅.
Let a, b ∈ A. Then there exist e, f ∈ E+ such that (a, e) ∈ ρ and (b, f ) ∈ ρ. Then (a + b, e + f ) ∈ ρ

and e + f ∈ E+. Hence, a + b ∈ A and thus A + A ⊆ A. Let x ∈ f (
(i−1)
S , A,

(n−i)
S ) for each 1 ≤

i ≤ n. Then x = f (xi−1
1 , c, xn

i+1) for some xn
1 ∈ S and c ∈ A such that (c, g) ∈ ρ for some g ∈ E+.

It follows that (x, f (xi−1
1 , g, xn

i+1)) = ( f (xi−1
1 , c, xn

i+1), f (xi−1
1 , g, xn

i+1)) ∈ ρ. Since E+ is an ideal of S ,

f (xi−1
1 , g, xn

i+1) + f (xi−1
1 , g, xn

i+1) = f (xi−1
1 , g + g, xn

i+1) ∈ f (
(i−1)
S , E+,

(n−i)
S ) ⊆ E+. So, x ∈ A leads to

f (
(i−1)
S , A,

(n−i)
S ) ⊆ A. Now, A is an ideal of S .

Let x ∈ [A]k. Then x + a = b for some a, b ∈ A where (a, e) ∈ ρ and (b, f ) ∈ ρ for some e, f ∈ E+.
However, [ f ]ρ and [e]ρ are additively idempotent in the ring S/ρ. This obtains that [e]ρ = [ f ]ρ is the
zero element of S/ρ. It follows that [ f ]ρ = [b]ρ = [x + a]ρ = [x]ρ ⊕ [a]ρ = [x]ρ ⊕ [e]ρ = [x]ρ. Thus,
x ∈ A and so [A]k = A. By Corollary 1(1), A is a full k-ideal of S .

Finally, we show that ρ = ρA. Let (a, b) ∈ ρ. Then (a + b′, b + b′) ∈ ρ. Since b + b′ ∈ E+, a + b′ ∈ A
and thus (a, b) ∈ ρA. Hence, ρ ⊆ ρA. If (a, b) ∈ ρA, then a + b′ ∈ A. Thus, (a + b′, e) ∈ ρ for some
e ∈ E+. We have that [b]ρ = [e]ρ ⊕ [b]ρ = [a + b′]ρ ⊕ [b]ρ = [a]ρ ⊕ [b′]ρ ⊕ [b]ρ = [a]ρ ⊕ [b + b′]ρ = [a]ρ,
since b + b′ ∈ E+. This shows that (a, b) ∈ ρ and so ρA ⊆ ρ. Therefore, ρ = ρA. �

The concepts of full k-ideals and h-ideals of an additively inverse n-ary semiring are coincidence as
the following remark.

Remark 5. If S is an additively inverse n-ary semiring, then full k-ideals and h-ideals coincide in S .

Proof. Since every h-ideal is a full k-ideal, we show that every full k-ideal is an h-ideal. Let A be
a full k-ideal. Then S/ρA is an n-ary ring and A is its zero element by Theorem 3. Let x ∈ S and
x + a + s = b + s for some a, b ∈ A and s ∈ S . Then [x]ρ + [a]ρ + [s]ρ = [b]ρ + [s]ρ. It follows that
[x]ρ + 0 + [s]ρ = 0 + [s]ρ where 0 is the zero of S/ρA. Hence, [x]ρ + [s]ρ = [s]ρ and so [x]ρ = 0. It turns
out that x ∈ A. Therefore, A is an h-ideal. �

5. Discussion and conclusions

In algebraic structure point of view, we are able to say that an n-ary semiring is a generalization of
a semiring and a ternary semiring, and any results on an n-ary semiring are also true on a semiring and
a ternary semiring because a semiring is an n-ary semiring where n = 2 and a ternary semiring is an
n-ary semiring where n = 3.

The notions of a k-ideal and a full k-ideal of an n-ary semiring were defined in Section 3. There is
a k-ideal which is not full as it is shown by Example 2. However, every h-ideal of an n-ary semiring
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is immediately full. Moreover, h-ideals and full k-ideals are coincidence in an additively inverse n-ary
semiring and the set of all of them forms a complete lattice and also a modular lattice.

A group (ring) congruence is such a congruence relation on a semigroup (semiring) that the quotient
semigroup (semiring) is a group (ring). Similarly, an n-ary ring congruence is such a congruence
relation on an n-ary semiring that the quotient n-ary semiring is an n-ary ring. Constructing a relation
with respect to a full k-ideal of an additively inverse n-ary semiring is a way to obtain an n-ary ring
congruence. Indeed, if A is a full k-ideal of an additively inverse n-ary semiring S , then the relation
ρA = {(a, b) ∈ S × S | a + b′ ∈ A} is an n-ary ring congruence where b′ is the additively inverse of b.
Conversely, if ρ is an n-ary ring congruence on an additively inverse n-ary semiring S , then there exists
a such full k-ideal A of S that ρ = ρA.
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