Research article Special Issues

$ Z_{3} $-connectivity of graphs with independence number at most 3

  • Received: 28 August 2022 Revised: 01 November 2022 Accepted: 08 November 2022 Published: 16 November 2022
  • MSC : 05C21

  • It was conjectured by Jaeger et al. that all 5-edge-connected graphs are $ Z_3 $-connected. In this paper, we confirm this conjecture for all 5-edge-connected graphs with independence number at most 3.

    Citation: Chunyan Qin, Xiaoxia Zhang, Liangchen Li. $ Z_{3} $-connectivity of graphs with independence number at most 3[J]. AIMS Mathematics, 2023, 8(2): 3204-3209. doi: 10.3934/math.2023164

    Related Papers:

  • It was conjectured by Jaeger et al. that all 5-edge-connected graphs are $ Z_3 $-connected. In this paper, we confirm this conjecture for all 5-edge-connected graphs with independence number at most 3.



    加载中


    [1] B. A. Bondy, U. S. R. Murty, Graph Theory, London: Springer, 2008.
    [2] J. Chen, E. M. Eschen, H. J. Lai, Group connectivity of certain graphs, Ars Combinatoria, 89 (2008), 141–158.
    [3] M. DeVos, R. Xu, G. Yu, Nowhere-zero $Z_3$-flows through $Z_3$-connectivity, Discrete Math., 306 (2006), 26–30. https://doi.org/10.1016/j.disc.2005.10.019 doi: 10.1016/j.disc.2005.10.019
    [4] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties, J. Comb. Theory B, 56 (1992), 165–182. https://doi.org/10.1016/0095-8956(92)90016-Q doi: 10.1016/0095-8956(92)90016-Q
    [5] H. J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graph. Combinator., 16 (2000), 165–176. https://doi.org/10.1007/PL00021177 doi: 10.1007/PL00021177
    [6] J. Li, R. Luo, Y. Wang, Nowhere-zero 3-flow of graphs with small independence number, Discrete Math., 341 (2018), 42–50. https://doi.org/10.1016/j.disc.2017.06.022 doi: 10.1016/j.disc.2017.06.022
    [7] L. M. Lovász, C. Thomassen, Y. Wu, C. Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Comb. Theory B, 103 (2013), 587–598. https://doi.org/10.1016/j.jctb.2013.06.003 doi: 10.1016/j.jctb.2013.06.003
    [8] R. Luo, Z. Miao, R. Xu, Nowhere-zero 3-flows of graphs with independence number two, Graph. Combinator., 29 (2013), 1899–1907. https://doi.org/10.1007/s00373-012-1238-z doi: 10.1007/s00373-012-1238-z
    [9] R. Luo, R. Xu, J. Yin, G. Yu, Ore-condition and $Z_3$-connectivity, Eur. J. Comb., 29 (2008), 1587–1595. https://doi.org/10.1016/j.ejc.2007.11.014 doi: 10.1016/j.ejc.2007.11.014
    [10] W. T. Tutte, A contribution to the theory of chromatic polynomials, Can. J. Math., 6 (1954), 80–91. https://doi.org/10.4153/CJM-1954-010-9 doi: 10.4153/CJM-1954-010-9
    [11] W. T. Tutte, On the algebraic theory of graph colorings, J. Comb. Theory, 1 (1966), 15–50. https://doi.org/10.1016/S0021-9800(66)80004-2 doi: 10.1016/S0021-9800(66)80004-2
    [12] F. Yang, X. Li, L. Li, ${Z}_3$-connectivity with independent number 2, Graph. Combinator., 32 (2016), 419–429. https://doi.org/10.1007/s00373-015-1556-z doi: 10.1007/s00373-015-1556-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1290) PDF downloads(97) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog