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1. Introduction

Graphs considered in this paper are finite, loopless and mutilple edges are allowed. Terminologies
and notations not defined here can be found in [1].

Let Γ be a graph. For vertex subsets U,W ⊆ V(Γ), denote by eΓ(U,W) the number of edges with
one end in U and the other in W. For convenience, we write eΓ(U) and eΓ(x) for eΓ(U,V(Γ) \ U) and
eΓ({x}), respectively. For a graph Γ, let α(Γ) denote the independence number of Γ.

Let D be an orientation of Γ. Let d = xy be an edge in Γ directed from x to y. Then we call x
and y the tail and head of d, respectively. For a vertex x ∈ V(Γ), denote ET (x) = {e|x is tail of e } and
EH(x) = {e|x is head of e}.

Let Zk be the cyclic group with order k and Z∗k = Zk \ {0}. Denote M(Γ,Zk) = {g|g : E(Γ)→ Zk} and
M∗(Γ,Zk) = {g|g : E(Γ)→ Z∗k }. Given a mapping g ∈ M(Γ,Zk), for each vertex x ∈ V(Γ), define

∂g(x) =
∑

e∈ET (x)

g(e) −
∑

e∈EH(x)

g(e).

The value ∂g(x) is said to be the outflow at x of g.
Suppose that Γ is a graph and β is a mapping from V(Γ) to Zk. If

∑
x∈V(Γ) β(x) = 0, then β is said to

be a zero-sum mapping. Set O(Γ,Zk) = {β|β is zero-sum}. Given a mapping β of O(Γ,Zk), a mapping
g ∈ M∗(Γ,Zk) is called nowhere-zero (Zk, β)-flow if ∂g = β under some orientation of Γ. When β = 0,
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it is called a nowhere-zero Zk-flow. If there is a nowhere-zero (Zk, β)-flow in Γ for each β ∈ O(Γ,Zk),
then Γ is called Zk-connected.

Given a graph Γ, let e = xy be an edge of Γ. Define contraction: remove edge e and identify x and y
to be one vertex. Suppose that K is a subgraph of Γ. Use Γ/K to denote the resulting graph contracting
all edges of K. A graph Γ is called Zk-reduced if Γ does not contain nontrivial Zk-connected subgraph.
A Zk-reduced graph Γ∗ is called a Zk-reduction of Γ if we can get Γ∗ by contracting each nontrivial
Zk-connected subgraph in Γ. Obviously the Zk-reduction of a Zk-reduced graph is itself.

Tutte [10, 11] introduced integer flow problem and Jaeger et al. [4] generalized this concept and
proposed group connectivity. Jaeger et al. [4] also gave the following conjecture, which is still widely
open.

Conjecture 1.1. A graph is Z3-connected if it is 5-edge-connected.

This conjecture has aroused the interest of scholars and many families of Z3-connected graphs have
been discovered. Luo et al. [8] proved that a bridgeless graph Γ admits a nowhere-zero 3-flow if
α(Γ) ≤ 2 and Γ is not reduced to K4 or not one of the 5 specified graphs. Yang et al. [12] studied the
Z3-connectivity of 3-edge-connected graphs with independence number at most 2.

Recently, Li et al. [6] extended the result of Luo et al. [8] and researched the existence of nowhere-
zero 3-flows in the graphs whose independence number is at most 4. Since the 4-edge-connected graph
Γ with |V(Γ)| = 12 and α(Γ) = 3 constructed by Jaeger et al. [4] is not Z3-connected, we investigate the
Z3-connectivity of graphs with edge-connectivity 5 and independence number at most 3. We prove the
following theorem.

Theorem 1.2. Let Γ be a 5-edge-connected graph with independence number at most 3. Then Γ is
Z3-connected.

2. Preliminaries

In this section, we will introduce some lemmas and theorems that will be needed in the proof of our
main theorem.

Lemma 2.1. [2] Let k and n be positive integers. Then we have the following:
(1) if n ≥ 5, then Kn and K−n are Z3-connected.
(2) Cn is Zk-connected if and only if k > n.
(3) W2k is Z3-connected and W2k+1 is not Z3-connected.

Lemma 2.2. [5] Suppose that Γ have a subgraph K and x is a vertex in V(Γ) \V(K) with eΓ(x,V(K)) ≥
2. If K is Z3-connected, then the subgraph induced by V(K) ∪ {x} is Z3-connected.

Lemma 2.3. [2, 3] Suppose that K is a subgraph of Γ. Then Γ is Z3-connected if both Γ and Γ/K are
Z3-connected.

Lemma 2.4. [12] Suppose that Γ is a 2-connected simple graph. If δ(Γ) ≥ 4 and α(Γ) ≤ 2, then Γ is
Z3-connected.

Let v, v1, v2 ∈ V(Γ) and vv1, vv2 ∈ E(Γ). Removing edges vv1, vv2 and adding new edge v1v2 in Γ,
the resulting graph is denoted by Γ[vv1,vv2]. Obviously Γ[vv1,vv2] = Γ ∪ {v1v2} − {vv1, vv2}.
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Lemma 2.5. [2] Suppose that Γ is a graph and v ∈ V(Γ) with dΓ(v) ≥ 4. Then Γ is Z3-connected if
Γ[vv1,vv2] is Z3-connected, where v1, v2 are two neighbors of v.

Lemma 2.6. [6] Suppose that K is a Z3-reduced graph with α(K) ≤ 3. Then the order of K is at most
14. Furthermore, K is 5-edge-connected and contains a K4 if |V(K)| = 14.

Lemma 2.7. [6] Suppose that Γ is a Z3-reduction of a connected graph. If |V(Γ)| ≤ 15 and δ(Γ) > 4,
then Γ is essentially 8-edge-connected and 5-edge-connected.

Lemma 2.8. [6] Suppose that W2k+1 is a proper subgraph of the graph Γ and U,W are two subsets of
V(W2k+1) with U ∪W = V(W2k+1). Denote by Γ[U,W] the graph obtained from Γ by contracting U and
W into u and w, respectively, and then deleting the loops and replacing the edges between u and w by
one edge uw. Then Γ is Z3-connected if Γ[U,W] is Z3-connected.

A simple graph Γ is said to satisfy the Ore-condition if for every pair of nonadjacent vertices x and
y in Γ, dΓ(x) + dΓ(y) ≥ |V(Γ)|.

Theorem 2.9. [9] Suppose that Γ is a simple graph satisfying Ore-condition. If |V(Γ)| > 6, then Γ is
Z3-connected.

Theorem 2.10. [7] A graph is Z3-connected if it is 6-edge-connected.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 will be given in this section.

Proof of Theorem 1.2. Suppose that Γ is a 5-edged-connected graph with α(Γ) ≤ 3. Suppose that K
is Z3-reduction of Γ. If K = K1, then we have done. Thus in the following, we assume that K , K1.
Hence K is not Z3-connected and is a 5-edged-connected graph with α(K) ≤ 3.

Claim 1. K is simple. Thus δ(K) ≥ 5 and α(K) = 3.

Proof of Claim 1. By the definition of the reduction, it is clear that K is simple and δ(K) ≥ 5. If α(K) ≤
2, then by Lemma 2.4 we get that K is Z3-connected. That contradicts our assumption. Therefore
α(K) = 3.

Claim 2. 11 ≤ |V(K)| ≤ 14 and K contains a triangle as subgraph.

Proof of Claim 2. If |V(K)| ≤ 10, then K satisfies conditions of Theorem 2.9 since δ(K) ≥ 5. Then
K is Z3-connnected, a contradiction. Thus |V(K)| ≥ 11. By Lemmas 2.6 and 2.7, we get that K is a
5-edge-connected graph with |V(K)| ≤ 14. Hence 11 ≤ |V(K)| ≤ 14.

Take an arbitrary vertex, say w, of the graph K and denote NK(w) = {w1,w2, . . . ,wt}. where t =

dK(w) ≥ 5. Since α(K) = 3, K[N(w)] has at least two edges. Thus K contains a triangle.

Claim 3. |V(K)| ≥ 12.

Proof of Claim 3. Suppose to the contrary that |V(K)| ≤ 11. Then by Claim 2, |V(K)| = 11.
We first assume that K contains a K4 with vertex set {u1, u2,w1,w2}. Let U = {u1, u2} and W =

{w1,w2}. Clearly dK[U,W](v1) + dK[U,W](v2) ≥ |V(K[U,W])|, where v1, v2 are arbitrary nonadjacent vertices in
K[U,W]. By Theorem 2.9, K[U,W] is Z3-connected. Thus, it follows that K is Z3-connected from Lemma
2.8. It contradicts our assumption.
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Next we assume that K contains no K4. Let S = uvwu be a triangle in the graph K with dK(u) ≥ 6.
Since eK(S ) ≥ 10, there are two vertices z1, z2 which are adjacent to two of u, v,w in K. Suppose that
z1w, z1v ∈ E(K). It follows that the graph K[z1w,z1v] has a 2-cycle wvw. The resulting graph by repeatedly
contracting 2-cycles in K[z1w,z1v] is a K1, which is Z3-connected. Then from Lemmas 2.3 and 2.5 K is
Z3-connected. Then we get a contradiction. Therefore |V(K)| ≥ 12.

Claim 4. If |V(K)| ∈ {12, 13}, then K doesn’t contain a K4 or K−4 .

Proof of Claim 4. Suppose to the contrary that K contains a K4 or K−4 . We first assume that H is a K4

of K. Let U and W be a partition of V(H) with |U | = |W |. Thus |V(K[U,W])| ≤ 11 and δ(K[U,W]) ≥ 5.
By Claims 2 and 3, K[U,W] is not a reduced graph. Thus K[U,W] must contain a nontrivial Z3-connected
graph. Then the resulting graph obtained by contracting this subgraph and repeatedly contracting 2-
cycles generated in the processing is a K1, which is Z3-connected. By Lemmas 2.3 and 2.8, K is
Z3-connected. This contradiction proves that K doesn’t contain a K4.

Now we assume that J is a K−4 of K. Let V(J) = {v1, v2, u1, u2} and E(J) = {v1v2, v1u1, v1u2,

v2u1, v2u2}. We claim that |N(v1) ∩ N(v2)| ≤ 3. Since K doesn’t contain a K4, every two vertices of
N(v1)∩N(v2) are nonadjacent. If v1 and v2 have at least 4 common neighbors, then N(v1)∩N(v2) is an
independent set with at least 4 vertices. It contradicts α(K) ≤ 3. Thus, |N(v1) ∩ N(v2)| = 2, or 3. We
consider these two cases in the following.

Case 1. N(v1) ∩ N(v2) = {u1, u2, u3}.

Let us consider the graph K[v1u3,v2u3]. Note that K[v1u3,v2u3] contains the 2-cycle v1v2v1. Since a 2-
cycle is Z3-connected from Lemma 2.1, K[v1u3,v2u3] contains a maximal Z3-connected graph, say W, that
contains v1v2v1. Let K∗ = K[v1u3,v2u3]/W and W be contracted to the new vertex v∗. We can get that
V(J) ⊆ V(W), eK∗(u3,V(J)) = 0 and dK∗(u3) ≥ 3. Thus, we have |V(K∗)| ≤ 10.

When |V(K∗)| = 10, then we have |V(K)| = 13, dK∗(v∗) ≥ 8 and V(W) = V(J). Since eK∗(u3,V(J)) =

0, we have dK∗(v∗) = 8. Set N(v∗) = {z1, z2, . . . , z8}. Then V(K∗) = N[v∗] ∪ {u3}. If dK∗(u3) ≥ 5,
then K∗ satisfies Ore-condition. Therefore from Theorem 2.9, K∗ is Z3-connected. It contradicts our
assumption. Thus dK∗(u3) ≤ 4. Suppose that none of M = {z1, z2, z3, z4} is adjacent to u3. By our
assumption, there are i, j ∈ {1, 2, 3, 4} such that ziz j < E(K∗). This implies that zi and z j have at least
two common neighbors in N(v∗). Therefore we obtain a W4 with center at v∗. It contradicts that W is
maximal.

When |V(K∗)| = 9, we have |V(K)| = 12 or 13. In the former case, dK∗(v∗) ≥ 8 and V(W) = V(Γ).
Since eH∗(u3,V(J)) = 0, there exists a vertex which has two neighbors in V(W). That contradicts that
K∗ is simple. The proof of the case when |V(K)| = 13 is similar to that of the case when |V(K)| = 12.

When |V(K∗)| ≤ 8, the graph K∗ satisfies Ore-condition. Therefore K∗ is Z3-connected by Theorem
2.9. It follows that K is a Z3-connected graph by Lemma 2.5. It contradicts our assumption.

Case 2. N(v1) ∩ N(v2) = {u1, u2}.

If vi and u j have a common neighbor z < {v1, v2} for i, j ∈ {1, 2}, then we can prove K is Z3-connected
by a similar proof of the above case. This implies that vi and u j have only one common neighbor. Set
Y = N(v1) ∪ N(v2) \ V(J) = {z1, z2, . . . , zt}. Since δ(K) ≥ 5, we have t ≥ 4. Since K contains no K4,
there are two nonadjacent vertices, say zi, z j. It follows that {zi, z j, u1, u2} is an independent set. That
contradicts α(K) ≤ 3.

By Case 1 and Case 2, we get that if |V(K)| ∈ {12, 13}, then K doesn’t contain a K4 or K−4 .
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Claim 5. |V(K)| = 14.
Proof of Claim 5. Since 12 ≤ |V(K)| ≤ 14, by Claim 4, we only need to show that if K does not
contains a K−4 with |V(K)| ∈ {12, 13}, then K is Z3-connected. Since the proofs of |V(K)| = 12 and
|V(K)| = 13 are similar, we only prove the case when |V(K)| = 13.

Let Q = v1v2v3v1 be a triangle of K with d(v1) ≥ 6. It follows that the degree of v2, v3 is 5 and the
degree of v1 is 6 by our assumption and Theorem 2.10. Now we suppose that the intersection of N(v1)
and N(v2) is {v3}. Then N(v1)\V(Q) = {v11, v12, v13, v14} and N(vi)\V(Q) = {vi1, vi2, vi3}, where i = 2, 3.
Since K contains no K−4 and α(K) = 3, the graph induced by N(vi) contains only isolated edges.
Suppose that v11v12, v13v14, v21v22, v31v32 ∈ E(K). Similarly, we get e(vi j,N(v1)) ≤ 2, where i = 2, 3; j =

1, 2, 3. It follows that e(v23,N(v3)) ≥ 2, e(v33,N(v2)) ≥ 2, e(v2 j,N(v3)) ≥ 1, and e(v3 j,N(v2)) ≥ 1,
where j = 1, 2. Since K does not contain a K−4 , we may assume v23v33, v23v32, v33v22 ∈ E(K). If
v21v31 ∈ E(K), then v21v31v32v23v33v22v21 is a 6-cycle. Otherwise, v21v32, v22v31 ∈ E(K). Therefore,
we get a 4-cycle v21v32v31v22v21. Contracting the 2-cycle v2v3v2 in K[v1v2,v1v3], the resulting graph is
denoted by K∗. Suppose that the cycle is contracted into new vertex v∗. Note that vi j ∈ N(v∗), where
i = 2, 3, j = 1, 2, 3. Thus, K∗ contains a 6-wheel or 4-wheel, which is Z3-connected. Contracting the
wheel and repeatedly contracting 2-cycles in K∗, the resulting graph must be a K1. It follows that K
is Z3-connected from Lemmas 2.3 and 2.5. We also get a contradiction. This completes the proof of
Claim 5.

The final step. By Claim 5, |V(K)| = 14. Thus K contains a K4 by Lemma 2.6. Let V(K4) =

{u1, u2,w1,w2} and let U = {u1, u2} and W = {w1,w2}. In this case, we consider the graph K[U,W]. Note
that the order of K[U,W] is 12. If K[U,W] contains a Z3-connected subgraph, then the resulting graph
obtained by contacting it and repeatedly contracting 2-cycles is a K1. We know that K[U,W] is a Z3-
connected subgraph by Lemmas 2.3 and 2.5. Otherwise, K[U,W] is a reduced graph. Thus, K[U,W] is also
Z3-connected by Claims 4 and 5. By Lemma 2.8, K is Z3-connected, a contradiction. This completes
our proof.

4. Conclusions

Jaeger et al. [4] constructed a 4-edge-connected graph Γ with α(Γ) = 3, which is not Z3-connected.
They further conjectured that each 5-edge-connected graph is Z3-connected. If this conjecure is correct,
then so is Tutte’s 3-Flow Conjecture. The article confirm this conjecture for all 5-edge-connected
graphs with independence number at most 3.
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