Citation: Sami Ul Haq, Saeed Ullah Jan, Syed Inayat Ali Shah, Ilyas Khan, Jagdev Singh. Heat and mass transfer of fractional second grade fluid with slippage and ramped wall temperature using Caputo-Fabrizio fractional derivative approach[J]. AIMS Mathematics, 2020, 5(4): 3056-3088. doi: 10.3934/math.2020198
[1] | B. D. Coleman and W. Noll, An approximation theorem for functionals, with applications in continuum mechanics, Arch. Ration. Mech. Anal., 6 (1960), 355-370. doi: 10.1007/BF00276168 |
[2] | M. E. Erdoğan and C. E. Imrak, On some unsteady flows of a non-Newtonian fluid, App. Math. Mod., 31 (2007), 170-180. doi: 10.1016/j.apm.2005.08.019 |
[3] | A. J. Chamkha, Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium, Int. J. Eng. Sci., 35 (1997), 975-986. doi: 10.1016/S0020-7225(96)00122-X |
[4] | T. Kimura, M. Takeuchi, N. Nagai, et al. Heat transfer in an inclined enclosure with an inner rotating plate, Heat Transfer-Asian Research: Co-sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME, 30 (2001), 331-340. |
[5] | C. J. Toki, An analytical solution for the unsteady free convection flow near an inclined plate in a rotating system, Differential Equations and Control Proc., 3 (2009), 35-43. |
[6] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010. |
[7] | M. A. Imran, N. A. Shah, M. Aleem, et al. Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo-Fabrizio fractional derivatives: A comparison, Eur. Phys. J. Plus., 132 (2017), 340-358. doi: 10.1140/epjp/i2017-11606-6 |
[8] | C. H. R. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30 (1991), 151-158. doi: 10.1007/BF01134604 |
[9] | A. Gemant, XLV. On fractional differentials, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25 (1938), 540-549. doi: 10.1080/14786443808562036 |
[10] | L. I. Palade, P. Attane, R. R. Huilgol, et al. Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models, Int. J. Eng. Sci., 37 (1999), 315-329. doi: 10.1016/S0020-7225(98)00080-9 |
[11] | D. Vieru, C. Fetecau and C. Fetecau, Time-fractional free convection flow near a vertical plate with Newtonian heating and mass diffusion, Therm. Sci., 19 (2015), 85-98. doi: 10.2298/TSCI15S1S85V |
[12] | A. A. Zafar and C. Fetecau, Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel, Alexandria Eng. J., 55 (2016), 2789-2796. doi: 10.1016/j.aej.2016.07.022 |
[13] | N. A. Shah, A. A. Zafar and C. Fetecau, Free convection flows over a vertical plate that applies shear stress to a fractional viscous fluid, Alexandria Eng. J., 57 (2017), 2529-2540. doi: 10.1016/j.aej.2017.08.023 |
[14] | M. A. Imran, I. Khan, M. Ahmad, et al. Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives, J. Mol. Liq., 229 (2017), 67-75. doi: 10.1016/j.molliq.2016.11.095 |
[15] | M. Nazar, M. Ahmad, M. A. Imran, et al. Double convection of heat and mass transfer flow of MHD generalized second grade fluid over an exponentially accelerated infinite vertical plate with heat absorption, J. Math. Anal., 8 (2017), 28-44. |
[16] | S. U. Haq, I. Khan, F. Ali, et al. Free convection flow of a second-grade fluid with ramped wall temperature, Heat Transf. Res., 45 (2014), 579-588. doi: 10.1615/HeatTransRes.2014007241 |
[17] | S. U. Haq, S. Ahmad, D. Vieru, et al. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature, PLoS One, 9 (2014), e88766. |
[18] | S. Gupta, D. Kumar and J. Singh, Analytical study for MHD flow of Williamson nanofluid with the effects of variable thickness, nonlinear thermal radiation and improved Fourier's and Fick's laws, SN Appl. Sci., 2 (2020), 438. |
[19] | S. Gupta, D. Kumar and J. Singh, MHD three dimensional boundary layer flow and heat transfer of Water driven Copper and Alumina nanoparticles induced by convective conditions, Int. J. Modern Phys. B, 33 (2019), 1950307. |
[20] | S. Gupta, D. Kumar and J. Singh, MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation, Int. J. Heat Mass Tran., 118 (2018), 378-387. doi: 10.1016/j.ijheatmasstransfer.2017.11.007 |
[21] | J. Losada and J. J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-92. |
[22] | Y. Cenesiz, D. Baleanu, A. Kurt, et al. New exact solutions of Burger's type equations with conformable derivative, WAVE RANDOM COMPLEX, 27 (2017), 103-116. doi: 10.1080/17455030.2016.1205237 |
[23] | Q. Al-Mdallal, K. A. Abro and I. Khan, Analytical Solutions of Fractional Walter's B Fluid with Applications, Complexity, 2018 (2018), 1-10. doi: 10.1155/2018/8131329 |
[24] | T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ-NY, 2017 (2017), 313. |
[25] | T. Abdeljawad, Q. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017. |
[26] | A. Shaikh, A. Tassaddiq, K. S. Nisar, et al. Analysis of differential equations involving CaputoFabrizio fractional operator and its applications to reaction-diffusion equations, Adv. Differ. EquNY, 2019 (2019), 178. |
[27] | A. Atangana, The Caputo-Fabrizio fractional derivative applied to a singular perturbation problem, Int. J. Math. Mod. Num. Opt., 9 (2019), 241-253. |
[28] | M. Yavuz and N. Ozdemir, Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel, Discrete Cont. Dyn-S, 13 (2020), 995-1006. |
[29] | D. Kumar, J. Singh, K. Tanwar, et al. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws, Int. J. Heat Mass Tran., 138 (2019), 1222-1227. doi: 10.1016/j.ijheatmasstransfer.2019.04.094 |
[30] | D. Kumar, J. Singh, M. A. Qurashi, et al. A new fractional SIRS-SI malaria disease model with application of vaccines, anti-malarial drugs, and spraying, Adv. Differ. Equ., 2019 (2019), 278. |
[31] | D. Kumar, J. Singh and D. Baleanu, A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses, Nonlinear Dyn., 1 (2018), 307-317. doi: 10.1007/s11071-017-3870-x |
[32] | J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with MittagLeffler law, Math. Model. Nat. Phenom., 14 (2019), 303. doi: 10.1051/mmnp/2018068 |
[33] | S. Bhatter, A. Mathur, D. Kumar, et al. A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Phys. A, 537 (2020), 122578. doi: 10.1016/j.physa.2019.122578 |
[34] | J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29 (2019), 013137. doi: 10.1063/1.5080691 |
[35] | D. Kumar, J. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Meth. Appl. Sci., 43 (2019), 443-457. doi: 10.1002/mma.5903 |
[36] | M. A. Abd EL-NABY, E. M. E. Elbarbary and N. Y. Abdelazem, Finite difference solution of radiation effects on MHD unsteady free-convection flow over vertical plate with variable surface temperature, J. Appl. Math., 2003 (2003), 65-86. doi: 10.1155/S1110757X0320509X |
[37] | M. E. Erdogan, On unsteady motions of a second-order fluid over a plane wall, Int. J. NonLin. Mech., 38 (2003), 1045-1051. doi: 10.1016/S0020-7462(02)00051-3 |
[38] | B. I. Henry, T. A. M. Langlands and P. Straka, An introduction to fractional diffusion, Complex Physical, Biophysical and Econophysical Systems, (2010), 37-89. |
[39] | J. Hristov, Transient heat diffusion with a non-singular fading memory, Therm. Sci., 20 (2016), 757-762. doi: 10.2298/TSCI160112019H |
[40] | J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Front. Fract. Calc., 1 (2017), 270-342. |
[41] | M. Caputo and M. Fabrizio, A new Definition of Fractional Derivative without Singular Kernel, Prog. Fract. Differ. Appl., 2 (2015), 73-85. |
[42] | S. Aman, Q. Al-Mdallal and I. Khan, Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium, J. King Saud Univ. Sci., 2018. |
[43] | A. Kurt, Y. Cenesiz, O. Tasbozan, On the Solution of Burgers Equation with the New Fractional Derivative, Open Phys., 13 (2015), 355-360. doi: 10.1515/phys-2015-0045 |