Research article Special Issues

Normalized solution for a kind of coupled Kirchhoff systems

  • Received: 22 November 2024 Revised: 04 January 2025 Accepted: 15 January 2025 Published: 10 February 2025
  • In this paper, we investigate the existence of a normalized solution for the following Kirchhoff system in the entire space $ \mathbb{R}^N $ ($ N\geq3 $):

    $ \begin{align*} \begin{cases}-\left(1+\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u = \lambda_1u+\mu_1|u|^{p-2}u+\beta r_1|u|^{r_1-2}u|v|^{r_2}, \\ -\left(1+\int_{ \mathbb{R}^N}|\nabla v|^2dx\right)\Delta v = \lambda_2v+\mu_2|v|^{q-2}v+\beta r_2|u|^{r_1}|v|^{r_2-2}v, \end{cases}\;\;\;\;\;\;\;\;\;\;\;\;({\rm{P}}) \end{align*} $

    under the constraints $ \int_{ \mathbb{R}^N }|u|^2dx = m_1 \ \mbox{and} \ \int_{ \mathbb{R}^N }|v|^2dx = m_2 $, where $ m_1, m_2 > 0 $ are prescribed. The parameters $ \mu_1, \mu_2, \beta > 0 $, $ 2\leq p, q < 2+\frac{8}{N} $, $ r_1, r_2 > 1, $ and satisfy $ {r_1}+{r_2} = 2^* = \frac{2N}{N-2} $. The frequencies $ \lambda_1, \lambda_2 $ appear as Lagrange multipliers. With the help of the Pohožaev manifold and the minimization of the energy functional over a combination of the mass constraints and the closed balls, we obtain a positive ground state solution to (P). We mainly extend the results of Yang (Normalized ground state solutions for Kirchhoff-type systems) concerning the above problem from a single critical to a coupled critical nonlinearity.

    Citation: Shiyong Zhang, Qiongfen Zhang. Normalized solution for a kind of coupled Kirchhoff systems[J]. Electronic Research Archive, 2025, 33(2): 600-612. doi: 10.3934/era.2025028

    Related Papers:

  • In this paper, we investigate the existence of a normalized solution for the following Kirchhoff system in the entire space $ \mathbb{R}^N $ ($ N\geq3 $):

    $ \begin{align*} \begin{cases}-\left(1+\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u = \lambda_1u+\mu_1|u|^{p-2}u+\beta r_1|u|^{r_1-2}u|v|^{r_2}, \\ -\left(1+\int_{ \mathbb{R}^N}|\nabla v|^2dx\right)\Delta v = \lambda_2v+\mu_2|v|^{q-2}v+\beta r_2|u|^{r_1}|v|^{r_2-2}v, \end{cases}\;\;\;\;\;\;\;\;\;\;\;\;({\rm{P}}) \end{align*} $

    under the constraints $ \int_{ \mathbb{R}^N }|u|^2dx = m_1 \ \mbox{and} \ \int_{ \mathbb{R}^N }|v|^2dx = m_2 $, where $ m_1, m_2 > 0 $ are prescribed. The parameters $ \mu_1, \mu_2, \beta > 0 $, $ 2\leq p, q < 2+\frac{8}{N} $, $ r_1, r_2 > 1, $ and satisfy $ {r_1}+{r_2} = 2^* = \frac{2N}{N-2} $. The frequencies $ \lambda_1, \lambda_2 $ appear as Lagrange multipliers. With the help of the Pohožaev manifold and the minimization of the energy functional over a combination of the mass constraints and the closed balls, we obtain a positive ground state solution to (P). We mainly extend the results of Yang (Normalized ground state solutions for Kirchhoff-type systems) concerning the above problem from a single critical to a coupled critical nonlinearity.



    加载中


    [1] G. Kirchhoff, Mechanik, Teubner, Leipzigl, 1883.
    [2] W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1–135. https://doi.org/10.3934/krm.2013.6.1 doi: 10.3934/krm.2013.6.1
    [3] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
    [4] B. D. Esry, C. H. Greene, J. P. Burke Jr, J. L. John, Hartree-fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594–3597. https://doi.org/10.1103/PhysRevLett.78.3594 doi: 10.1103/PhysRevLett.78.3594
    [5] Z. Yang, Normalized ground state solutions for Kirchhoff type systems, J. Math. Phys., 62 (2021), 031504. https://doi.org/10.1063/5.0028551 doi: 10.1063/5.0028551
    [6] X. Cao, J. Xu, J. Wang, The existence of solutions with prescribed $L^2$-norm for Kirchhoff type system, J. Math. Phys., 58 (2017), 041502. https://doi.org/10.1063/1.4982037 doi: 10.1063/1.4982037
    [7] G. Che, H. Chen, Existence and asymptotic behavior of positive ground state solutions for coupled nonlinear fractional Kirchhoff-type systems, Comput. Math. Appl., 77 (2019), 173–188. https://doi.org/10.1016/j.camwa.2018.09.020 doi: 10.1016/j.camwa.2018.09.020
    [8] D. Lü, S. Peng, Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type systems, J. Differ. Equations, 263 (2017), 8947–8978. https://doi.org/10.1016/j.jde.2017.08.062 doi: 10.1016/j.jde.2017.08.062
    [9] Y. Jalilian, Existence and multiplicity of solutions for a coupled system of Kirchhoff type equations, Acta Math. Sci., 40 (2020), 1831–1848. https://doi.org/10.1007/s10473-020-0614-7 doi: 10.1007/s10473-020-0614-7
    [10] G. Che, H. Chen, Existence and multiplicity of systems of Kirchhoff-type equations with general potentials, Math. Methods Appl. Sci., 40 (2017), 775–785. https://doi.org/10.1002/mma.4007 doi: 10.1002/mma.4007
    [11] H. Li, W. Zou, Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities, J. Fixed Point Theory Appl., 23 (2021), 43. https://doi.org/10.1007/s11784-021-00878-w doi: 10.1007/s11784-021-00878-w
    [12] T. Bartsch, H. Li, W. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calculus Var. Partial Differ. Equations, 62 (2023), 9. https://doi.org/10.1007/s00526-022-02355-9 doi: 10.1007/s00526-022-02355-9
    [13] M. Liu, X. Fang, Normalized solutions for the Schrödinger systems with mass supercritical and double Sobolev critical growth, Z. Angew. Math. Phys., 73 (2022), 108. https://doi.org/10.1007/s00033-022-01757-1 doi: 10.1007/s00033-022-01757-1
    [14] T. Bartsch, L. Jeanjean, Normalized solutions for nonlinear Schrödinger systems, Proc. R. Soc. Edinburgh Sect. A: Math., 148 (2018), 225–242. https://doi.org/10.1017/s0308210517000087 doi: 10.1017/s0308210517000087
    [15] L. Jeanjean, S. Lu, A mass supercritical problem revisited, Calculus Var. Partial Differ. Equations, 59 (2020), 174. https://doi.org/10.1007/s00526-020-01828-z doi: 10.1007/s00526-020-01828-z
    [16] N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 14 (2014), 115–136. https://doi.org/10.1515/ans-2014-0104 doi: 10.1515/ans-2014-0104
    [17] T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Rhode Island, 2003. https://doi.org/10.1090/cln/010
    [18] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993. https://doi.org/10.1017/CBO9780511551703
    [19] X. Luo, Q. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in $ \mathbb{R}^3$, Nonlinear Anal. Real World Appl., 33 (2017), 19–32. https://doi.org/10.1016/j.nonrwa.2016.06.001 doi: 10.1016/j.nonrwa.2016.06.001
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(208) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog