In this paper, we investigate the existence of a normalized solution for the following Kirchhoff system in the entire space $ \mathbb{R}^N $ ($ N\geq3 $):
$ \begin{align*} \begin{cases}-\left(1+\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u = \lambda_1u+\mu_1|u|^{p-2}u+\beta r_1|u|^{r_1-2}u|v|^{r_2}, \\ -\left(1+\int_{ \mathbb{R}^N}|\nabla v|^2dx\right)\Delta v = \lambda_2v+\mu_2|v|^{q-2}v+\beta r_2|u|^{r_1}|v|^{r_2-2}v, \end{cases}\;\;\;\;\;\;\;\;\;\;\;\;({\rm{P}}) \end{align*} $
under the constraints $ \int_{ \mathbb{R}^N }|u|^2dx = m_1 \ \mbox{and} \ \int_{ \mathbb{R}^N }|v|^2dx = m_2 $, where $ m_1, m_2 > 0 $ are prescribed. The parameters $ \mu_1, \mu_2, \beta > 0 $, $ 2\leq p, q < 2+\frac{8}{N} $, $ r_1, r_2 > 1, $ and satisfy $ {r_1}+{r_2} = 2^* = \frac{2N}{N-2} $. The frequencies $ \lambda_1, \lambda_2 $ appear as Lagrange multipliers. With the help of the Pohožaev manifold and the minimization of the energy functional over a combination of the mass constraints and the closed balls, we obtain a positive ground state solution to (P). We mainly extend the results of Yang (Normalized ground state solutions for Kirchhoff-type systems) concerning the above problem from a single critical to a coupled critical nonlinearity.
Citation: Shiyong Zhang, Qiongfen Zhang. Normalized solution for a kind of coupled Kirchhoff systems[J]. Electronic Research Archive, 2025, 33(2): 600-612. doi: 10.3934/era.2025028
In this paper, we investigate the existence of a normalized solution for the following Kirchhoff system in the entire space $ \mathbb{R}^N $ ($ N\geq3 $):
$ \begin{align*} \begin{cases}-\left(1+\int_{ \mathbb{R}^N}|\nabla u|^2dx\right)\Delta u = \lambda_1u+\mu_1|u|^{p-2}u+\beta r_1|u|^{r_1-2}u|v|^{r_2}, \\ -\left(1+\int_{ \mathbb{R}^N}|\nabla v|^2dx\right)\Delta v = \lambda_2v+\mu_2|v|^{q-2}v+\beta r_2|u|^{r_1}|v|^{r_2-2}v, \end{cases}\;\;\;\;\;\;\;\;\;\;\;\;({\rm{P}}) \end{align*} $
under the constraints $ \int_{ \mathbb{R}^N }|u|^2dx = m_1 \ \mbox{and} \ \int_{ \mathbb{R}^N }|v|^2dx = m_2 $, where $ m_1, m_2 > 0 $ are prescribed. The parameters $ \mu_1, \mu_2, \beta > 0 $, $ 2\leq p, q < 2+\frac{8}{N} $, $ r_1, r_2 > 1, $ and satisfy $ {r_1}+{r_2} = 2^* = \frac{2N}{N-2} $. The frequencies $ \lambda_1, \lambda_2 $ appear as Lagrange multipliers. With the help of the Pohožaev manifold and the minimization of the energy functional over a combination of the mass constraints and the closed balls, we obtain a positive ground state solution to (P). We mainly extend the results of Yang (Normalized ground state solutions for Kirchhoff-type systems) concerning the above problem from a single critical to a coupled critical nonlinearity.
[1] | G. Kirchhoff, Mechanik, Teubner, Leipzigl, 1883. |
[2] |
W. Bao, Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1–135. https://doi.org/10.3934/krm.2013.6.1 doi: 10.3934/krm.2013.6.1
![]() |
[3] |
N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equations, 269 (2020), 6941–6987. https://doi.org/10.1016/j.jde.2020.05.016 doi: 10.1016/j.jde.2020.05.016
![]() |
[4] |
B. D. Esry, C. H. Greene, J. P. Burke Jr, J. L. John, Hartree-fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594–3597. https://doi.org/10.1103/PhysRevLett.78.3594 doi: 10.1103/PhysRevLett.78.3594
![]() |
[5] |
Z. Yang, Normalized ground state solutions for Kirchhoff type systems, J. Math. Phys., 62 (2021), 031504. https://doi.org/10.1063/5.0028551 doi: 10.1063/5.0028551
![]() |
[6] |
X. Cao, J. Xu, J. Wang, The existence of solutions with prescribed $L^2$-norm for Kirchhoff type system, J. Math. Phys., 58 (2017), 041502. https://doi.org/10.1063/1.4982037 doi: 10.1063/1.4982037
![]() |
[7] |
G. Che, H. Chen, Existence and asymptotic behavior of positive ground state solutions for coupled nonlinear fractional Kirchhoff-type systems, Comput. Math. Appl., 77 (2019), 173–188. https://doi.org/10.1016/j.camwa.2018.09.020 doi: 10.1016/j.camwa.2018.09.020
![]() |
[8] |
D. Lü, S. Peng, Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type systems, J. Differ. Equations, 263 (2017), 8947–8978. https://doi.org/10.1016/j.jde.2017.08.062 doi: 10.1016/j.jde.2017.08.062
![]() |
[9] |
Y. Jalilian, Existence and multiplicity of solutions for a coupled system of Kirchhoff type equations, Acta Math. Sci., 40 (2020), 1831–1848. https://doi.org/10.1007/s10473-020-0614-7 doi: 10.1007/s10473-020-0614-7
![]() |
[10] |
G. Che, H. Chen, Existence and multiplicity of systems of Kirchhoff-type equations with general potentials, Math. Methods Appl. Sci., 40 (2017), 775–785. https://doi.org/10.1002/mma.4007 doi: 10.1002/mma.4007
![]() |
[11] |
H. Li, W. Zou, Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities, J. Fixed Point Theory Appl., 23 (2021), 43. https://doi.org/10.1007/s11784-021-00878-w doi: 10.1007/s11784-021-00878-w
![]() |
[12] |
T. Bartsch, H. Li, W. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calculus Var. Partial Differ. Equations, 62 (2023), 9. https://doi.org/10.1007/s00526-022-02355-9 doi: 10.1007/s00526-022-02355-9
![]() |
[13] |
M. Liu, X. Fang, Normalized solutions for the Schrödinger systems with mass supercritical and double Sobolev critical growth, Z. Angew. Math. Phys., 73 (2022), 108. https://doi.org/10.1007/s00033-022-01757-1 doi: 10.1007/s00033-022-01757-1
![]() |
[14] |
T. Bartsch, L. Jeanjean, Normalized solutions for nonlinear Schrödinger systems, Proc. R. Soc. Edinburgh Sect. A: Math., 148 (2018), 225–242. https://doi.org/10.1017/s0308210517000087 doi: 10.1017/s0308210517000087
![]() |
[15] |
L. Jeanjean, S. Lu, A mass supercritical problem revisited, Calculus Var. Partial Differ. Equations, 59 (2020), 174. https://doi.org/10.1007/s00526-020-01828-z doi: 10.1007/s00526-020-01828-z
![]() |
[16] |
N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 14 (2014), 115–136. https://doi.org/10.1515/ans-2014-0104 doi: 10.1515/ans-2014-0104
![]() |
[17] | T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, Rhode Island, 2003. https://doi.org/10.1090/cln/010 |
[18] | N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press, Cambridge, 1993. https://doi.org/10.1017/CBO9780511551703 |
[19] |
X. Luo, Q. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in $ \mathbb{R}^3$, Nonlinear Anal. Real World Appl., 33 (2017), 19–32. https://doi.org/10.1016/j.nonrwa.2016.06.001 doi: 10.1016/j.nonrwa.2016.06.001
![]() |