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Abstract: In this paper, we investigate the existence of a normalized solution for the following
Kirchhoff system in the entire space RN (N ≥ 3):−

(
1 +

∫
RN |∇u|2dx

)
∆u = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 ,

−
(
1 +

∫
RN |∇v|2dx

)
∆v = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v,

(P)

under the constraints
∫
RN |u|2dx = m1 and

∫
RN |v|2dx = m2, where m1,m2 > 0 are prescribed. The

parameters µ1, µ2, β > 0, 2 ≤ p, q < 2 + 8
N , r1, r2 > 1, and satisfy r1 + r2 = 2∗ = 2N

N−2 . The frequencies
λ1, λ2 appear as Lagrange multipliers. With the help of the Pohožaev manifold and the minimization
of the energy functional over a combination of the mass constraints and the closed balls, we obtain a
positive ground state solution to (P). We mainly extend the results of Yang (Normalized ground state
solutions for Kirchhoff-type systems) concerning the above problem from a single critical to a coupled
critical nonlinearity.

Keywords: normalized solutions; nonlinearity; coupled Kirchhoff equation; Pohožaev manifold

1. Introduction

In the present paper, we study the following Kirchhoff system with a coupled critical nonlinearity−
(
1 +

∫
RN |∇u|2dx

)
∆u = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 ,

−
(
1 +

∫
RN |∇v|2dx

)
∆v = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v,

(1.1)

having prescribed mass ∫
RN
|u|2dx = m1 and

∫
RN
|v|2dx = m2, (1.2)
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where m1,m2 > 0, λ1, λ2, β > 0 and N ≥ 3, λ1, λ2 are unknown parameters that will appear as
Lagrange multipliers.

Problem (1.1) originates from the steady-state analogy of the equation:

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2dx
)
∂2u
∂x2 = 0, (1.3)

which was proposed by Kirchhoff in 1883 in [1] as the existence of the classical D’Alembert wave
equation for the free vibration of elastic strings. The Kirchhoff model takes into consideration the
changes in the length of the string that are caused by transverse vibrations.

In recent years, lots of interesting results on the normalized solutions for the Kirchhoff type
problem that has been obtained. From a physical perspective, the mass

∫
RN |u|2dx = m may represent

the number of the power supply in the framework of nonlinear optics or Bose-Einstein condensates.
Alternatively, finding normalized solutions seems to be particularly meaningful because the L2-norm
of such solutions is a preserved quantity of the evolution, and their variational characterization can
help to analyze the orbital stability or instability, e.g., see [2–4]. In Bose-Einstein condensates, the
parameters µi and β both describe the interactions between particles. When β > 0, the two
components attract each other, while β < 0, the two components repel each other.

Based on the above important background, the problem like (1.1) has been studied in numerous
papers. For example, Yang [5] has obtained a couple of positive solutions to the following equation:−

(
a1 + b1

∫
RN |∇u|2dx

)
∆u = λ1u + µ1|u|p−2u + βr1|u|r1−2u|v|r2 ,

−
(
a2 + b2

∫
RN |∇v|2dx

)
∆v = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v,

(1.4)

where ai, bi > 0(i = 1, 2) and 2 ≤ N ≤ 4. By proving that (1.4) satisfies the mountain pass structure,
they obtained a couple of positive solutions. In particular, as β > 0, Cao et al. [6] considered the L2-
subcritical case and L2-critical case of the problem by the bifurcation method and showed the existence
of normalized solutions when N ≤ 3. Eq (1.1) can also be formally transformed into the following
fractional Kirchhoff equation

(
a1 + b1

∫
R3 |(−△)

s
2 u|2dx

)
(−△)su + λu = f (u) + γv, in R3,(

a2 + b2

∫
R3 |(−△)

s
2 v|2dx

)
(−△)sv + µv = g (v) + γu, in R3,

u, v ∈ H s
(
R3

)
,

(1.5)

where ai, bi(i = 1, 2), λ, µ > 0. When s ∈ [ 3
4 , 1) and γ > 0, by assuming that the nonlinear terms f

and g satisfy Berestycki-Lions conditions, and combining with Pohožaev identity, Che and Chen in [7]
proved problem (1.5) has positive ground state solutions, and the asymptotic behavior of the solution
was also studied when γ → 0+. When s = 1, Lü and Peng [8] proved that (1.5) has vector solutions.
We refer readers to [9,10] for multiplicity solutions. However, to our knowledge, there are few articles
discussing the results regarding N ≥ 5 for the Kirchhoff-type system . This motivates us to consider
the solution of the Kirchhoff system (1.1) for N ≥ 3 and with a coupled critical nonlinearity, where
2 ≤ p, q < 2 + 8

N and r1 + r2 = 2∗ = 2N
N−2 .

Other forms of (1.1), such as the Schrödinger equation, have also been extensively studied. For
example, Li and Zou [11] considered the case with 2 < p, r1 + r2 < 2∗, q ≤ 2∗ of the following
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equation: 
−∆u + λ1u = µ1|u|p−2u + βr1|u|r1−2|v|r2u in RN ,

−∆v + λ2v = µ2|v|q−2v + βr2|u|r1 |v|r2−2v in RN ,∫
RN u2dx = a2

1 and
∫
RN v2dx = a2

2.

(1.6)

When 2 < r1 + r2 < 2∗ = p = q, Bartsch et al. in [12] have proved (1.6) has a normalized ground state
solution and have also investigated the asymptotic behavior by the symmetric decreasing rearrangement
and the Ekeland variational principle. When 2 + 4

N < p, q < r1 + r2 < 2∗ and N ≥ 3, Liu and Fang [13]
obtained the existence of positive normalized solutions of (1.6) by revealing the basic behavior of
mountain-pass energy. Compared with Schrödinger equations, it is more challenging and interesting
to study problem (1.1) due to the nonlocal term

∫
RN |∇u|2dx∆u and

∫
RN |∇v|2dx∆v.

In order to study the solution of Eq (1.1) satisfying the normalized condition (1.2), it suffices to
consider the critical points of the functional

I(u, v) =
1
2

∫
RN

(|∇u|2 + |∇v|2)dx +
1
4

[∫
RN

(|∇u|2 + |∇v|2)dx
]2

−
µ1

p

∫
RN
|u|pdx

−
µ2

q

∫
RN
|v|qdx − β

∫
RN
|u|r1 |v|r2dx, (1.7)

on the constraint S (m1,m2) = S (m1) × S (m2), where S (m) = {u ∈ H1(RN) : ∥u∥22 = m} for m > 0.
In this paper, we employ the Pohožaev manifold, which is defined by (1.8) and plays a crucial role,
encompassing all solutions that satisfy the condition (u, v) ∈ S (m1,m2)

P(m1,m2) = {(u, v) ∈ S (m1,m2) : ϑ(u, v) = 0}, (1.8)

where

ϑ(u, v) =
∫
RN

(
|∇u|2 + |∇v|2

)
dx +

[∫
RN

(
|∇u|2 + |∇v|2

)
dx

]2

− µ1δp

∫
RN
|u|pdx

− µ2δq

∫
RN
|v|qdx − β2∗

∫
RN
|u|r1 |v|r2dx,

where δt =
N(t−2)

2t . To accommodate the constraint S (m), it becomes crucial to define dilation

(t ∗ u)(x) = e
Nt
2 u(etx), for a.e. x ∈ RN .

Consider the following functionals I(u, v) and Lu,v(t)

Lu,v(t) = I(t ∗ u, t ∗ v) =
1
2

e2t
∫
RN

(
|∇u|2 + |∇v|2

)
dx +

1
4

e4t

[∫
RN

(
|∇u|2 + |∇v|2

)
dx

]2

−
µ1

p
epδpt

∫
RN
|u|pdx −

µ2

q
eqδqt

∫
RN
|v|qdx − βe2∗t

∫
RN
|u|r1 |v|r2dx,

for any (u, v) ∈ S (m1,m2).
Remark 1.1. As in [5], if (u,v) is a solution of (1.1), then (u, v) ∈ P(m1,m2). We can also see that if
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(u, v) ∈ S (m1,m2), then (e
Nt
2 u(etx), e

Nt
2 v(etx)) ∈ S (m1,m2). Furthermore, for fixed (u, v) ∈ S (m1,m2), by

performing a simple calculation, we can obtain
(
Lu,v

)′ (0) = ϑ(u, v). Then we have that (t ∗ u, t ∗ v) ∈
P(m1,m2) if and only if t is a critical point of Lu,v(t). In addition, (u, v) ∈ P(m1,m2) if t = 0 is a critical
point of Lu,v(t).

To prove the existence of a normalized solution to (1.1), we use the following assumptions:
(H1) N ∈ {3, 4}, 2 < p, q < 2 + 8

N , r1 + r2 = 2∗.
(H2) N ≥ 5, 2 < p, q < 2 + 2

N−2 , r1 + r2 = 2∗.
Here comes our main result:
Theorem 1.2. Assume that (H1) or (H2) is established. Then, there exist βτ = βτ(m1,m2) > 0 and
ρτ = ρτ(m1,m2) > 0 such that for arbitrary 0 < β < βτ, (1.1) has a positive ground state solution (u,v)
for λ1, λ2 < 0, which satisfies

I(u, v) = inf
(u,v)∈P(m1,m2)

I(u, v) = inf
(u,v)∈S (m1,m2)∩V(ρτ)

I(u, v) < 0,

where
V(r) = {(u, v) ∈ H1(RN) × H1(RN) : ∥∇u∥22 + ∥∇v∥22 < r2}.

Remark 1.3. Due to the additional difficulties caused by the combined effect of the nonlocal term∫
RN |∇u|2dx∆u,

∫
RN |∇v|2dx∆v and multiple powers, the study is much more challenging; for example,

the functional I(u, v) is composed of several distinct terms that exhibit varying scaling behavior with
respect to the dilation e

Nt
2 u(etx). The intricate interplay among these terms makes it more difficult to

ascertain the types of critical points for I(u, v) on S (m1,m2). Furthermore, when proving (ũn, ṽn) →
(u, v) in D1,2(RN;R2), the inequalities that need to be estimated will also be more difficult.

Remark 1.4. From a variational point of view, besides the Sobolev critical exponent 2∗ := 2N
N−2 for

N ≥ 3 and 2∗ = ∞ for N = 1, 2, a new L2-critical exponent PN := 2 + 8
N arises that plays a pivotal

role in the study of normalized solutions to (1.1). This threshold determines whether the constrained
functional I(u, v) remains bounded from below on S (m1,m2).

Definition 1.5. We say that (ũ, ṽ) is a couple of ground state solutions to (1.1) on S (m1,m2) if it
is a couple of solutions to (1.1) having minimal energy among all the solutions, i.e., dI|S (m1,m2)(ũ, ṽ) = 0
and

I(ũ, ṽ) = inf{I(u, v) : dI|S (m1,m2)(u, v) = 0 and (u, v) ∈ S (m1,m2)}.

2. Preliminary results

In this section, we recall some preliminary results that will be used later. Throughout this paper, we
represent the norms on Lt(RN) and H1(RN) with ∥ · ∥t and ∥ · ∥, respectively. Denote H1(RN) × H1(RN)
byV with the norm

∥(u, v)∥2V = ∥u∥
2 + ∥v∥2.

Let Lt(RN;R2) be the space Lt(RN × RN) with the norm

∥(u, v)∥tLt = ∥u∥tt + ∥v∥
t
t.

D1,2(RN) represents the closure of the C∞c (RN) with norm

∥u∥D1,2 = ∥∇u∥2.

Electronic Research Archive Volume 33, Issue 2, 600–612.



604

For N ≥ 3, the best Sobolev constant is given by

S = inf
u∈D1,2(RN )\{0}

∥∇u∥22
∥u∥22∗

. (2.1)

For all u ∈ H1(RN), we consider the Gagliardo-Nirenberg-Sobolev inequality:

∥u∥pp ≤ Cp
p∥u∥

p(1−δp)
2 ∥∇u∥pδp

2 , where δp =
N(p − 2)

2p
. (2.2)

For any u, v ∈ H1(RN), by the Young’s inequality, we can prove:∫
RN
|u|r1 |v|r2dx ≤

∫
RN

r1

2∗
|u|2

∗

dx +
∫
RN

r2

2∗
|v|2

∗

dx

≤ S −
2∗
2

( r1

2∗
∥∇u∥2

∗

2 +
r2

2∗
∥∇v∥2

∗

2

)
(2.3)

≤ S −
2∗
2
(
∥∇u∥22 + ∥∇v∥22

) 2∗
2
.

Furthermore, taking into consideration the existing results of the Kirchhoff equation as follows:{
−(1 +

∫
RN |∇u|2)△u = λu + µ|u|p−2u, in RN;∫

RN |u|2 = m > 0.
(Pm)

Solution u of (Pm) can be found as critical points of the functional Iµ(u) defined by

Iµ(u) =
1
2

∫
RN
|∇u|2dx +

1
4

(∫
RN
|∇u|2dx

)2

−
µ

p

∫
RN
|u|pdx

constrained to the L2-sphere S (m).
Similar to [14] and [6], we can get the following lemma.
Lemma 2.1 ( [6]). Assume that p ∈ (2, 2 + 8

N ), m > 0, and µ > 0. Set

ζµp(m) := inf
u∈S (m)

Iµ(u).

Then,
(i) there exists a unique couple (um,µ, λm) ∈ R+ × H1(RN) satisfying (Pm);
(ii) Iµ(um,µ) = ζ

µ
p(m) < 0;

(iii) the map m 7→ ζ
µ
p(m) is strictly decreasing with respect to m, and ζµp(m)→ −∞ as m→ +∞.

3. Proof of Theorem 1.2

To begin with, we set
γ1 = um1,µ1 , γ2 = um2,µ2

and
ζ1 = Iµ(γ1), ζ2 = Iµ(γ2).

Lemma 3.1. Let m1,m2, µ1, µ2 > 0 be given and assume (H1) or (H2) holds. Then there exists βτ =
βτ(m1,m2) > 0 and ρτ = ρτ(m1,m2) > (∥∇γ1∥

2
2 + ∥∇γ2∥

2
2)

1
2 such that

I(u, v) > 0 on S (m1,m2) ∩ V(2ρτ)\V(ρτ) for any 0 < β < βτ.
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Proof. For (u, v) ∈ V, let ρ = (∥∇u∥22 + ∥∇v∥22)
1
2 . From (2.2) and (2.3), we derive that

I(u, v) ≥
1
2

(∥∇u∥22 + ∥∇v∥22) +
1
4

(∥∇u∥22 + ∥∇v∥22)2 −
µ1

p
Cp

p∥u∥
p(1−δp)
2 ∥∇u∥pδp

2

−
µ2

q
Cq

q∥v∥
q(1−δq)
2 ∥∇v∥qδq

2 − βS −
2∗
2
(
∥∇u∥22 + ∥∇v∥22

) 2∗
2

≥
1
2
ρ2 +

1
4
ρ4 −

µ1

p
Cp

pm
p(1−δp)

2
1 ρpδp −

µ2

q
Cq

qm
q(1−δq)

2
2 ρqδq − βS −

2∗
2 ρ2∗

= ρ2[1
2
+

1
4
ρ2 −

µ1

p
Cp

pm
p(1−δp)

2
1 ρpδp−2 −

µ2

q
Cq

qm
q(1−δq)

2
2 ρqδq−2 − βS −

2∗
2 ρ2∗−2]. (3.1)

Recalling that pδq < 2 and qδq < 2, we can take a large enough

ρτ > max{∥∇γ1∥2, ∥∇γ2∥2},

such that
µ1

p
Cp

pm
p(1−δp)

2
1 ρ

pδp−2
τ +

µ2

q
Cq

qm
q(1−δq)

2
2 ρ

qδq−2
τ ≤

1
4
. (3.2)

Due to the fact that 2∗ − 2 > 0, there exists a βτ > 0 such that

βτS −
2∗
2 (2ρτ)2∗−2 ≤

1
8
. (3.3)

We conclude that I(u, v) > 0 follows from (3.1)–(3.3). □

Define
M(m1,m2) := inf

(u,v)∈S (m1,m2)∩V(2ρτ)
I(u, v),

where ρτ is defined in Lemma 3.1.
Lemma 3.2. Let m1,m2, µ1, µ2 > 0 be given, and (H1) or (H2) is true. Then for arbitrary 0 < β < βτ,
the following statements are true:
(i)M(m1,m2) < ζ1 + ζ2 < 0;
(ii)M(m1,m2) ≤ M(mα1,mα2), for any 0 < mα1 < m1 and 0 < mα2 < m2.

Proof. (i) From Lemma 3.1, we know that (γ1, γ2) ∈ V(ρτ). Moreover, we deduce that

M(m1,m2) ≤ I(γ1, γ2) = Iµ1(γ1) + Iµ2(γ2) − β
∫
RN
|γ1|

r1 |γ2|
r2dx

< ζ1 + ζ2 < 0.

(ii) The proof is similar to that of [15]. We just need to prove that for arbitrary ϵ > 0,

M(m1,m2) ≤ M(mα1,mα2) + ϵ

for any 0 < mα1 < m1 and 0 < mα2 < m2.
By Lemma 3.1 and the definition ofM(mα1,mα2), there exist u, v ∈ S (mα1,mα2) ∩ V(ρτ) such that

I(u, v) ≤ M(mα1,mα2) +
ϵ

2
.
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Define a cut-off function: ω ∈ C∞m (RN) such that

0 ≤ ω(t) ≤ 1 and ω(t) =

1, |t| ≤ 1;
0, |t| ≥ 2.

(3.4)

For any ı > 0, we define (uı(t), vı(t))=(uω(ıt), vω(ıt)). Clearly, (uı, vı) → (u, v) in V as ı → 0+. As a
consequence, for η > 0 small enough, there exists a sufficiently small ı such that

I(uı, vı) ≤ I(u, v) +
ε

4
and (∥∇uı∥22 + ∥∇vı∥22)

1
2 < ρτ − η. (3.5)

Let χ(t) ∈ C∞m (RN) such that supp(χ) ⊂ {t ∈ RN : 4
ı
≤ |t| ≤ 1 + 4

ı
} and set

(um1 , vm2) =
( √

m1 − ∥uı∥2
∥χ∥2

χ,

√
m2 − ∥vı∥2
∥χ∥2

χ

)
.

And observe that

supp(uı) ∩ supp(t ∗ um1) = ∅ and supp(vı) ∩ supp(t ∗ vm2) = ∅

for any t ≤ 0, hence,
(uı + t ∗ um1 , vı + t ∗ vm2) ∈ S m.

Next, since
I(t ∗ um1 , t ∗ vm2)→ 0 and (∥∇t ∗ um1∥

2
2 + ∥∇t ∗ vm2∥

2
2)

1
2 → 0,

as t → −∞, we can obtain

I(t ∗ um1 , t ∗ vm2) ≤
ε

4
and

(
∥∇t ∗ um1∥

2
2 + ∥∇t ∗ vm2∥

2
2

)1/2
≤
η

2
, for t ≪ 0. (3.6)

It follows that (
∇∥(uı + t ∗ um1)∥

2
2 + ∇∥(vı + t ∗ vm2)||

2
2

)1/2
< ρτ.

Using (3.5) and (3.6), we conclude

M(m1,m2) ≤ I(uı + t ∗ um1 , vı + t ∗ vm2) = I(uı, vı) + I(t ∗ um1 , t ∗ vm2)

≤ I(u, v) +
ε

2
≤ M(mα1,mα2) + ε

for t ≪ 0. □

Lemma 3.3. Let m1,m2, µ1, µ2 > 0, and assume that either (H1) is true or (H2) is true. Then, for
arbitrary 0 < β < βτ and (u, v) ∈ S (m1,m2), Lu,v(t) has two critical points τu1v1 < τu2v2 ∈ R and two
zero points φ1 < φ2 with τu1v1 < φ1 < τu2v2 < φ2. Moreover,
(i) if (t ∗ u, t ∗ v) ∈ P(m1,m2), then t = τu1v1 or t = τu2v2;
(ii) (∥∇t ∗ u∥22 + ∥∇t ∗ v∥22)

1
2 ≤ ρτ for all t ≤ φ1 and

I(τu1v1 ∗ u, τu1v1 ∗ v) = min
{
I(t ∗ u, t ∗ v) : t ∈ R and (∥∇t ∗ u∥22 + ∥∇t ∗ v∥22)

1
2 ≤ ρτ

}
< 0,

where ρτ is given in Lemma 3.1;
(iii) I(τu2v2 ∗ u, τu2v2 ∗ v) = max {I(t ∗ u, t ∗ v) : t ∈ R} .
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Proof. (i) Since qδq, pδp < 2 < 2∗, it can be seen that Lu,v(−∞) = 0− and Lu,v(+∞) = −∞. According
to Lemma 3.1, we obtain that Lu,v(t) has at least two critical points τu1v1 < τu2v2 , with τu1v1 local
minimum point of Lu,v(t) at a negative level and τu2v2 global maximum point at a positive level.
Secondly, similar to [5], it is not difficult to check that there are no other critical points. On the
other hand,

L′uv(t) = e2t
(
∥∇u∥22 + ∥∇v∥22

)
+ e4t

(
∥∇u∥22 + ∥∇v∥22

)2
− epδptµ1δp∥u∥pp

− eqδqtµ2δq∥v∥qq − e2∗t2∗β∥|u|r1 |v|r2∥1.

Putting together all the considerations mentioned above, we conclude that Lu,v has exactly two critical
points. By monotonicity and recalling the behavior at infinity, Lu,v has moreover exactly two zeros
points φ1 < φ2 with τu1v1 < φ1 < τu2v2 < φ2. From Lemma 3.1 and (i), we can deduce the (ii)
and (iii). □

Corollary 3.4. Let m1,m2, µ1, µ2 > 0, and assume that either (H1) is true or (H2) is true. Then, for
arbitrary 0 < β < βτ, the following inequality holds:

−∞ <M(m1,m2) = inf
P(m1,m2)

I(u, v) < 0.

Next, we establish a necessary condition for the existence of a non-negative solution to (1.1). This
Liouville-type result will be used to prove the existence of a positive solution.

Lemma 3.5.( [16]) Suppose 0 < p ≤ N
N−2 when N ≥ 3 and 0 < p < ∞ when N = 1, 2. Let u ∈ Lp(RN)

be a smooth, nonnegative function and satisfy −∆u ≥ 0 in RN . Then u ≡ 0 holds.

Lemma 3.6. Let (u, v) ∈ S (m1,m2), u, v ≥ 0, and u, v . 0, if (u,v) satisfies−(1 +
∫
RN |∇u|2dx)∆u = λ1u + µ1|u|p−2u + βr1|v|r2 |u|r1−2u,

−(1 +
∫
RN |∇v|2dx)∆v = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v,

(3.7)

then λ1, λ2 < 0.

Proof. Arguing by contradiction, we assume that λ1 ≥ 0. Since u ≥ 0, we have that all components on
the right-hand side of

−(1 +
∫
RN
|∇u|2dx)∆u = λ1u + µ1|u|p−2u + βr1|v|r2 |u|r1−2u

are nonnegative. Hence,

−(1 +
∫
RN
|∇u|2dx)∆u ≥ 0,

it is easy to see that
−∆u ≥ 0.

Moreover, modifying the standard elliptic regularity theorems, we can ensure that the smoothness of
(u, v) is up to C2. Hence, it follows from Lemma 3.5 that u = 0. This contradicts with u . 0; thus,
λ1 < 0. The proof of λ2 < 0 is the same as that of λ1 < 0. □
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Lemma 3.7.( [17]) Let (un)n≥0 ⊂ H1(RN) be a bounded sequence of spherically symmetric functions.
If N ≥ 2 or if un(x) is a nonincreasing function of |x| for every n ≥ 0, then there exist a subsequence
(unk)k≥0 and u ∈ H1(RN) such that unk → u as k → ∞ in Lp(RN) for every 2 < p < 2N

N−2 .

Proof of Theorem 1.2. Let us consider a minimizing sequence {(un, vn)} for I|S (m1,m2)∩V(2ρτ) and
{(un, vn)} ⊂ V ∩ S (m1,m2). Without loss of generality, we can assume that (un, vn) ⊂ V are
nonnegative and radially decreasing for every n[Otherwise, we replace (un, vn) with (|un|

∗, |vn|
∗), which

is the Schwarz rearrangement of (|un|, |vn|)]. Furthermore, by Lemma 3.3 (ii),
(∥∇s ∗ u∥22 + ∥∇s ∗ v∥22)

1
2 ≤ ρτ, and {τunvn ∗ u, τunvn ∗ v} is still a minimizing sequence for I|S (m1,m2)∩V(2ρτ).

And hence, by the Ekeland variational principle [18], it yields that there exists a new minimizing
sequence {(ũn, ṽn)} satisfying

∥ũn − τunvn ∗ ũn∥ + ∥ṽn − τunvn ∗ ũn∥ → 0, as n→ ∞,

I(ũn, ṽn)→M(m1,m2), as n→ ∞,

ϑ(ũn, ṽn)→ 0, as n→ ∞,

I′|S (m1,m2)(ũn, ṽn)→ 0, as n→ ∞.

(3.8)

In the sequel, we divide the proof into three steps.
Step 1: (ũn, ṽn)→ (u, v) in Lt(RN;R2) for arbitrarily t ∈ (2, 2∗).
In fact, from (3.8), we can know that I′|S (m1,m2)(ũn, ṽn) → 0. By the Lagrange multipliers theorem,
there exist two sequences {λ1,n} ⊂ R and {λ2,n} ⊂ R satisfying the following equation∫

RN
(∇ũn∇ϕ + ∇ṽn∇ψ) dx +

(∫
RN

(∇ũn∇ϕ + ∇ṽn∇ψ) dx
)2

−

∫
RN

(
µ1|ũn|

p−2ũnϕ + µ2|ṽn|
p−2ũnψ

)
dx − βr1

∫
RN
|ũn|

r1−2|ṽn|
r2 ũnϕdx

− βr2

∫
RN
|ũn|

r1 |ṽn|
r2−2ṽnψdx

=

∫
RN

(
λ1,nũnϕ + λ2,nṽnψ

)
dx + on(1)

(
∥ϕ∥ + ∥ψ∥

)
, (3.9)

for arbitrarily (ϕ, ψ) ∈ V. By substituting (ũn, 0) and (0, ṽn) into (3.9), we can derive

λ1,nm1 = ∥∇ũn∥
2
2 + ∥∇ũn∥

4
2 − µ1∥ũn∥

p
p

and

λ2,nm2 = ∥∇ṽn∥
2
2 + ∥∇ṽn∥

4
2 − µ2∥ṽn∥

q
q.

Since {ũn, ṽn} ⊂ S (m1,m2) ∩ V(2ρτ), up to a subsequence, (λ1,n, λ2,n) → (λ1, λ2) ∈ R2 and (ũn, ṽn) ⇀
(u, v) ∈ V, where both u and v are non-negative. Combined with that, ϑ(u, v) = 0, then (u, v) is a weak
solution of (1.1). By Lemma 3.7, we obtain that (ũn, ṽn)→ (u, v) in Lt(RN ,R2) for any t ∈ (2, 2∗).
Step 2: (ũn, ṽn)→ (u, v) in D1,2(RN;R2).
Let (un, vn) = (ũn − u, ṽn − v). Then un → 0 in Lp(RN) and vn → 0 in Lq(RN). Moreover, from the
Brézis-Lieb Lemma, we have∫

RN
[|ũn|

r1 |ṽn|
r2 − |u|r1 |v|r2]dx =

∫
RN
|un|

r1 |vn|
r2dx + on(1). (3.10)

Electronic Research Archive Volume 33, Issue 2, 600–612.



609

Since ϑ(ũn, ṽn) − ϑ(u, v)→ 0, we can infer from (2.3) and (3.10) that

∥∇un∥
2
2 + ∥∇vn∥

2
2 +

(
∥∇un∥

2
2 + ∥∇vn∥

2
2

)2

=β2∗
∫
RN
|un|

r1 |vn|
r2dx + on(1)

≤β2∗S −
2∗
2
(
∥∇un∥

2
2 + ∥∇vn∥

2
2

) 2∗
2
+ on(1). (3.11)

Up to a subsequence, we assume that ∥∇un∥
2
2 + ∥∇vn∥

2
2 → R ≥ 0. Then R = 0 or R ≥

(
1
β2∗

) N−2
2 S

N
2 . If

R ≥
(

1
β2∗

) N−2
2 S

N
2 , from (3.8), (3.10), and (3.11), we have

M(m1,m2) = lim
n→∞
I(ũn, ṽn) = I(u, v) + lim

n→∞
I(un, vn)

≥M(∥u∥22, ∥v∥
2
2) + lim

n→∞

[1
2

(
∥∇un∥

2
2 + ∥∇vn∥

2
2

)
+

1
4

(
∥∇un∥

2
2 + ∥∇vn∥

2
2

)2
− β

∫
RN
|un|

r1 |vn|
r2
]

≥m(∥u∥22, ∥v∥
2
2) +

1
N

lim
n→∞

(
∥∇un∥

2
2 + ∥∇vn∥

2
2

)
=m(∥u∥22, ∥v∥

2
2) +

1
N

(
1
β2∗

)
N−2

2 S
N
2 .

This contradicts with Lemma 3.2 (ii). Then ∥∇un∥
2
2 + ∥∇vn∥

2
2 → 0. Thus, we conclude (ũn, ṽn)→ (u, v)

in D1,2(RN;R2).
Step 3: (ũn, ṽn)→ (u, v) inV.
From Step 1, then, as in [19], we know that there exists (u, v) ∈ V that is a weak solution of−(1 +

∫
RN |∇u|2dx)∆u = λ1u + µ1|u|p−2u + βr1|v|r2 |u|r1−2u,

−(1 +
∫
RN |∇v|2dx)∆v = λ2v + µ2|v|q−2v + βr2|u|r1 |v|r2−2v,

(3.12)

with
∥u∥22 ≤ lim inf ∥ũn∥

2
2 = m1 and ∥v∥22 ≤ lim inf ∥ṽn∥

2
2 = m2.

We claim that u , 0 and v , 0. Indeed, if v = 0, then u satisfies{
−(1 +

∫
RN |∇u|2dx)△u = λu + µ|u|p−2u, in RN ,

∥u∥22 ≤ m1.

By applying Lemma 2.1, we know that ζµp(m) is strictly decreasing with respect to m. So

ζµ1
p (m1) ≤ ζµ1

p (∥u∥22) =
1
2
∥∇u∥22 +

1
4
∥∇u∥42 −

µ1

p
∥u∥pp.

However,

M(m1,m2) = lim
n→∞
I(ũn, ṽn)
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= lim
n→∞

1
2

(∥∇ũn∥
2
2 + ∥∇ṽn∥

2
2) +

1
4

(∥∇ũn∥
2
2 + ∥∇ṽn∥

2
2)2

−
µ1

p
∥ũn∥

p
p −

µ2

q
∥ṽn∥

q
q − β

∫
RN
|ũn|

r1 |ṽn|
r2

≥
1
2

(∥∇u∥22 + ∥∇v∥22) +
1
4

(∥∇u∥22 + ∥∇v∥22)2

−
µ1

p
∥u∥pp −

µ2

q
∥v∥qq

≥ ζµ1
p (m1) + ζµ2

p (m2),

which contradicts to Lemma 3.2 (i). Hence, v , 0. Similarly, we have u , 0. Thus, from Lemma 3.6,
we know λ1, λ2 < 0. Then, by substituting (ũn, 0) and (u, 0) into (3.9), we can derive

∥∇ũn∥
2
2 + ∥∇ũn∥

4
2 + µ1∥ũn∥

p
p = λ1∥ũn∥

2
2 + on(1)

and

∥∇u∥22 + ∥∇u∥42 + µ1∥u∥pp = λ1∥u∥22,

which implies that ũn → u in H1(RN) as λ1 < 0 . Similarly, we obtain ṽn → v in H1(RN).
Therefore, we have (ũn, ṽn)→ (u, v) inV and by Corollary 3.4, we have

I(u, v) = inf
(u,v)∈P(a,b)

I(u, v) = inf
(u,v)∈S (m1,m2)∩V(ρτ)

I(u, v) < 0.

Therefore, we deduce that (u, v) is a normalized solution. By the maximum principle, we conclude
that (u, v) is a positive solution.

4. Conclusions

In this paper, we establish the existence of a ground state solution for a nonlinear Kirchhoff-type
system using the minimization of the energy functional over a combination of the mass-constrained and
the closed balls. To the best of our knowledge, there are few articles that deal with a coupled critical
nonlinearity of the Kirchhoff system. Especially, our assumptions on the parameters are different from
the previous related works. Therefore, we need to use some new analytical tricks to estimate the critical
value. Our results in this article improve and generalize the related ones in the literature. In addition,
condition 2 ≤ p, q < 2 + 8

N means that our results are established in a critical setting. Therefore, a new
research direction closely related to problem (1.1) is to replace 2 ≤ p, q < 2 + 8

N with the following
L2-supercritical condition: 2 + 8

N ≤ p, q < 2∗.
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