The modeling of discrete space-time stochastic heterogeneous complex networks with unknown factors was achieved through the utilization of differencing techniques with respect to the time and space variables of the nodes' states. Via the space-time discrete Lyapunov-Krasovskii functional and the approach of linear matrix inequality, this paper derived the mean-squared asymptotic anti-synchronization of the aforementioned discrete networks. This was achieved by defining an updated law for the hitherto unknown parameters and incorporating boundary values within the feedback controller. The theoretical and experimental findings indicated that the feedback controller at the boundary represented a more effective and cost-effective control technique for the networks. Furthermore, an adaptive rule has been designed to identify the uncertainties that occur in the networks with a high degree of accuracy. In particular, this rule enabled the response networks to identify unknown information in the drive networks with a high level of precision by incorporating an adaptive updating mechanism. Finally, a numerical example was provided to elucidate the viability of the ongoing investigation.
Citation: Huan Luo. Heterogeneous anti-synchronization of stochastic complex dynamical networks involving uncertain dynamics: an approach of the space-time discretizations[J]. Electronic Research Archive, 2025, 33(2): 613-641. doi: 10.3934/era.2025029
The modeling of discrete space-time stochastic heterogeneous complex networks with unknown factors was achieved through the utilization of differencing techniques with respect to the time and space variables of the nodes' states. Via the space-time discrete Lyapunov-Krasovskii functional and the approach of linear matrix inequality, this paper derived the mean-squared asymptotic anti-synchronization of the aforementioned discrete networks. This was achieved by defining an updated law for the hitherto unknown parameters and incorporating boundary values within the feedback controller. The theoretical and experimental findings indicated that the feedback controller at the boundary represented a more effective and cost-effective control technique for the networks. Furthermore, an adaptive rule has been designed to identify the uncertainties that occur in the networks with a high degree of accuracy. In particular, this rule enabled the response networks to identify unknown information in the drive networks with a high level of precision by incorporating an adaptive updating mechanism. Finally, a numerical example was provided to elucidate the viability of the ongoing investigation.
[1] |
M. Ding, Y. Guo, Z. Huang, B. Lin, H. Luo, GROM: A generalized routing optimization method with graph neural network and deep reinforcement learning, J. Network Comput. Appl., 229 (2024), 103927. https://doi.org/10.1016/j.jnca.2024.103927 doi: 10.1016/j.jnca.2024.103927
![]() |
[2] |
F. Dabaghi-Zarandi, P. KamaliPour, Community detection in complex network based on an improved random algorithm using local and global network information, J. Network Comput. Appl., 206 (2022), 103492. https://doi.org/10.1016/j.jnca.2022.103492 doi: 10.1016/j.jnca.2022.103492
![]() |
[3] |
Z. Zhang, L. Cui, J. Wu, Exploring an edge convolution and normalization based approach for link prediction in complex networks, J. Network Comput. Appl., 189 (2021), 103113. https://doi.org/10.1016/j.jnca.2021.103113 doi: 10.1016/j.jnca.2021.103113
![]() |
[4] |
B. D. Nallamuthu, S. Rathinasamy, H. Shanmugam, G. Ran, Disturbance rejection-based cluster synchronization of nonlinear transportation networks with hybrid-driven mechanism, Int. J. Robust Nonlinear Control, 33 (2023), 8715–8730. https://doi.org/10.1002/rnc.6845 doi: 10.1002/rnc.6845
![]() |
[5] |
B. Lu, H. Jiang, C. Hu, A. Abdurahman, M. Liu, Adaptive pinning cluster synchronization of a stochastic reaction-diffusion complex network, Neural Networks, 166 (2023), 524–540. https://doi.org/10.1016/j.neunet.2023.07.034 doi: 10.1016/j.neunet.2023.07.034
![]() |
[6] |
P. Khanra, S. Ghosh, K. Alfaro-Bittner, P. Kundu, S. Boccaletti, C. Hens, et al., Identifying symmetries and predicting cluster synchronization in transportation networks, Chaos, Solitons Fractals, 155 (2022), 111703. https://doi.org/10.1016/j.chaos.2021.111703 doi: 10.1016/j.chaos.2021.111703
![]() |
[7] |
E. S. Mwanandiye, B. Wu, Q. Jia, Synchronization of delayed dynamical networks with multi-links via intermittent pinning control, Neural Comput. Appl., 32 (2019), 11277–11284. https://doi.org/10.1007/s00521-019-04614-x doi: 10.1007/s00521-019-04614-x
![]() |
[8] |
L. H. Zhao, S. Wen, M. Xu, K. Shi, S. Zhu, T. Huang, PID control for output synchronization of multiple output coupled transportation networks, IEEE Trans. Network Sci. Eng., 9 (2022), 1553–1566. https://doi.org/10.1109/TNSE.2022.3147786 doi: 10.1109/TNSE.2022.3147786
![]() |
[9] |
R. Sakthivel, O. M. Kwon, M. J. Park, S. G. Choi, R. Sakthivel, Robust asynchronous filtering for discrete-time T–S fuzzy transportation networks against deception attacks, IEEE Trans. Fuzzy Syst., 30 (2022), 3257–3269. https://doi.org/10.1109/TFUZZ.2021.3111453 doi: 10.1109/TFUZZ.2021.3111453
![]() |
[10] |
D. Xu, N. Hong, H. Su, Quasi-synchronization of stochastic heterogeneous networks via intermittent pinning sampled-data control, Expert Syst. Appl., 238 (2024), 121867. https://doi.org/10.1016/j.eswa.2023.121867 doi: 10.1016/j.eswa.2023.121867
![]() |
[11] |
J. Sun, L. Xiang, Finite-time quasi-synchronization of multi-layer heterogeneous networks with distributed hybrid control, Neurocomputing, 566 (2024), 127046. https://doi.org/10.1016/j.neucom.2023.127046 doi: 10.1016/j.neucom.2023.127046
![]() |
[12] |
C. Jin, Z. Wang, L. Gong, M. Xiao, G. P. Jiang, Quasi-synchronization of heterogeneous Lur'e networks with uncertain parameters and impulsive effect, Neurocomputing, 482 (2022), 252–263. https://doi.org/10.1016/j.neucom.2021.11.057 doi: 10.1016/j.neucom.2021.11.057
![]() |
[13] |
T. Chen, New effective approach to quasi synchronization of coupled heterogeneous transportation networks, Neural Networks, 145 (2022), 139–143. https://doi.org/10.1016/j.neunet.2021.10.019 doi: 10.1016/j.neunet.2021.10.019
![]() |
[14] |
D. M. Semenov, A. L. Fradkov, Adaptive synchronization in the complex heterogeneous networks of Hindmarsh-Rose neurons, Chaos, Solitons Fractals, 150 (2021), 111170. https://doi.org/10.1016/j.chaos.2021.111170 doi: 10.1016/j.chaos.2021.111170
![]() |
[15] |
K. S. R. Priyanka, G. Soundararajan, A. Kashkynbayev, G. Nagamani, Exponential $H_\infty$ synchronization and anti-synchronization of delayed discrete-time complex-valued neural networks with uncertainties, Math. Comput. Simul., 207 (2023), 301–321. https://doi.org/10.1016/j.matcom.2023.01.002 doi: 10.1016/j.matcom.2023.01.002
![]() |
[16] |
Y. Huang, L. Su, General decay anti-synchronization and $H_\infty$ anti-synchronization of coupled reaction-diffusion complex-valued memristive neural networks, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107451. https://doi.org/10.1016/j.cnsns.2023.107451 doi: 10.1016/j.cnsns.2023.107451
![]() |
[17] |
P. Wan, D. Sun, M. Zhao, Finite-time and fixed-time anti-synchronization of Markovian neural networks with stochastic disturbances via switching control, Neural Networks, 123 (2020), 1–11. https://doi.org/10.1016/j.neunet.2019.11.012 doi: 10.1016/j.neunet.2019.11.012
![]() |
[18] | J. Jiang, X. Jin, J. Chi, X. Wu, Distributed adaptive fixed-time synchronization for disturbed transportation networks, Chaos, Solitons Fractals, 173 (2023). https://doi.org/10.1016/j.chaos.2023.113612 |
[19] |
F. W. Alsaade, Q. Yao, S. Bekiros, M. S. Al-zahrani, A. S. Alzahrani, H. Jahanshahi, Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller, Chaos, Solitons Fractals, 165 (2022), 112883. https://doi.org/10.1016/j.chaos.2022.112883 doi: 10.1016/j.chaos.2022.112883
![]() |
[20] |
W. Xu, S. Zhu, X. Y. Fang, W. Wang, Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays, Physica A, 535 (2019), 122427. https://doi.org/10.1016/j.physa.2019.122427 doi: 10.1016/j.physa.2019.122427
![]() |
[21] |
F. Tatari, H. Modares, Deterministic and stochastic fixed-time stability of discrete-time autonomous systems, IEEE/CAA J. Autom. Sin., 10 (2023), 945–956. https://doi.org/10.1109/JAS.2023.123405 doi: 10.1109/JAS.2023.123405
![]() |
[22] |
Z. C. Su, A. H. F. Chow, C. L. Fang, E. M. Liang, R. X. Zhong, Hierarchical control for stochastic network traffic with reinforcement learning, Transp. Res. Part B Methodol., 167 (2023), 196–216. https://doi.org/10.1016/j.trb.2022.12.001 doi: 10.1016/j.trb.2022.12.001
![]() |
[23] |
Q. Q. Li, Z. P. Wang, T. Huang, H. N. Wu, H. X. Li, J. Qiao, Fault-tolerant stochastic sampled-data fuzzy control for nonlinear delayed parabolic PDE systems, IEEE Trans. Fuzzy Syst., 31 (2023), 2679–2693. https://doi.org/10.1109/TFUZZ.2023.3235400 doi: 10.1109/TFUZZ.2023.3235400
![]() |
[24] |
B. Li, X. Xie, Convergence of a spatial semidiscretization for a backward semilinear stochastic parabolic equation, SIAM J. Control Optim., 61 (2023), 47–71. https://doi.org/10.1137/21M1453700 doi: 10.1137/21M1453700
![]() |
[25] |
R. Zhang, H. Wang, J. H. Park, P. He, D. Zeng, X. Xie, Fuzzy secure control for nonlinear $N$-D parabolic PDE-ODE coupled systems under stochastic deception attacks, IEEE Trans. Fuzzy Syst., 30 (2022), 3347–3359. https://doi.org/10.1109/TFUZZ.2021.3113580 doi: 10.1109/TFUZZ.2021.3113580
![]() |
[26] |
H. Bessaih, M. J. Garrido-Atienza, V. Köpp, B. Schmalfuß, Synchronization of stochastic lattice equations and upper semicontinuity of attractors, Stochastic Anal. Appl., 40 (2021), 1067–1103. https://doi.org/10.1080/07362994.2021.1981383 doi: 10.1080/07362994.2021.1981383
![]() |
[27] |
R. Tang, X. Yang, P. Shi, Z. Xiang, L. Qing, Finite-time $\mathcal{L}_2$ stabilization of uncertain delayed T-S fuzzy systems via intermittent control, IEEE Trans. Fuzzy Syst., 32 (2024), 116–125. https://doi.org/10.1109/TFUZZ.2023.3292233 doi: 10.1109/TFUZZ.2023.3292233
![]() |
[28] |
Y. Kao, Y. Cao, Y. Chen, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 15638–15646. https://doi.org/10.1109/TNNLS.2023.3288849 doi: 10.1109/TNNLS.2023.3288849
![]() |
[29] |
C. Hao, B. Wang, D. Tang, Global asymptotic stability and projective lag synchronization for uncertain inertial competitive neural networks, Math. Methods Appl. Sci., 46 (2023), 17137–17157. https://doi.org/10.1002/mma.9492 doi: 10.1002/mma.9492
![]() |
[30] |
Y. Wang, J. Zhao, Periodic event-triggered sliding mode control for switched uncertain T-S fuzzy systems with a logistic adaptive event-triggering scheme, IEEE Trans. Fuzzy Syst., 30 (2022), 4115–4126. https://doi.org/10.1109/TFUZZ.2022.3141749 doi: 10.1109/TFUZZ.2022.3141749
![]() |
[31] | W. Sun, Z. Wang, X. Lv, F. E. Alsaadi, H. Liu, $H_\infty$ fusion estimation for uncertain discrete time-delayed Hamiltonian systems with sensor saturations: An event-triggered approach, Inf. Fusion, 86–87 (2022), 93–103. |
[32] |
S. Kuppusamy, Y. H. Joo, Stabilization criteria for T–S fuzzy systems with multiplicative sampled-data control gain uncertainties, IEEE Trans. Fuzzy Syst., 30 (2022), 4082–4092. https://doi.org/10.1109/TFUZZ.2021.3138633 doi: 10.1109/TFUZZ.2021.3138633
![]() |
[33] |
T. W. Zhang, Y. K. Li, Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique, Knowl.-Based Syst., 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675
![]() |
[34] |
T. W. Zhang, Y. Y. Yang, S. F. Han, Node-to-node clustering asymptotic synchronized discrete stochastic neural networks in time and space with Bernoulli switching delay, Chin. J. Phys., 92 (2024), 743–754. https://doi.org/10.1016/j.cjph.2024.09.007 doi: 10.1016/j.cjph.2024.09.007
![]() |
[35] |
N. Sakthivel, S. Pallavi, Y. K. Ma, V. Vijayakumar, Finite-time dissipative synchronization of discrete-time semi-Markovian jump transportation networks with actuator faults, Soft Comput., 26 (2022), 8371–8386. https://doi.org/10.1007/s00500-022-07207-4 doi: 10.1007/s00500-022-07207-4
![]() |
[36] |
J. Y. Li, Z. Wang, R. Lu, Y. Xu, Cluster synchronization control for discrete-time transportation networks: when data transmission meets constrained bit rate, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 2554–2568. https://doi.org/10.1109/TNNLS.2021.3106947 doi: 10.1109/TNNLS.2021.3106947
![]() |
[37] |
S. Ding, Z. Wang, X. Xie, Periodic event-triggered synchronization for discrete-time transportation networks, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 3622–3633. https://doi.org/10.1109/TNNLS.2021.3053652 doi: 10.1109/TNNLS.2021.3053652
![]() |
[38] |
M. S. Ali, L. Palanisamy, N. Gunasekaran, A. Alsaedi, B. Ahmad, Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks, Discrete Contin. Dyn. Syst. - Ser. S, 14 (2021), 1465–1477. https://doi.org/10.3934/dcdss.2020395 doi: 10.3934/dcdss.2020395
![]() |
[39] |
Y. Luo, Y. Yao, Z. Cheng, X. Xiao, H. Liu, Event-triggered control for coupled reaction–diffusion complex network systems with finite-time synchronization, Physica A, 562 (2021), 125219. https://doi.org/10.1016/j.physa.2020.125219 doi: 10.1016/j.physa.2020.125219
![]() |
[40] |
X. Liu, Y. Kao, Aperiodically intermittent pinning outer synchronization control for delayed complex dynamical networks with reaction-diffusion terms, Appl. Math. Comput., 410 (2021), 126406. https://doi.org/10.1016/j.amc.2021.126406 doi: 10.1016/j.amc.2021.126406
![]() |
[41] |
D. Y. Wang, J. L. Wang, Boundary control for passivity of multiple state or spatial diffusion coupled parabolic transportation networks with and without control input constraint, Int. J. Control, 94 (2020), 2783–2794. https://doi.org/10.1080/00207179.2020.1736340 doi: 10.1080/00207179.2020.1736340
![]() |
[42] |
M. S. Ali, J. Yogambigai, O.M. Kwon, Finite-time robust passive control for a class of switched reaction-diffusion stochastic transportation networks with coupling delays and impulsive control, Int. J. Syst. Sci., 49 (2018), 718–735. https://doi.org/10.1080/00207721.2017.1421723 doi: 10.1080/00207721.2017.1421723
![]() |
[43] |
T. W. Zhang, Z. H. Li, Switching clusters' synchronization for discrete space-time transportation networks via boundary feedback controls, Pattern Recognit., 143 (2023), 109763. https://doi.org/10.1016/j.patcog.2023.109763 doi: 10.1016/j.patcog.2023.109763
![]() |
[44] |
X. Wang, H. B. Gu, Q. Y. Wang, J. H. Lü, Identifying topologies and system parameters of uncertain time-varying delayed transportation networks, Sci. China Technol. Sci., 62 (2019), 94–105. ttps://doi.org/10.1007/s11431-018-9287-0 doi: 10.1007/s11431-018-9287-0
![]() |
[45] |
X. Chen, J. Zhang, T. Ma, Parameter estimation and topology identification of uncertain general fractional-order transportation networks with time delay, IEEE/CAA J. Autom. Sin., 3 (2016), 295–303. https://doi.org/10.1109/JAS.2016.7508805 doi: 10.1109/JAS.2016.7508805
![]() |
[46] |
H. Liu, J. A. Lu, J. H. Lü, D. J. Hill, Structure identification of uncertain general complex dynamical networks with time delay, Automatica, 45 (2009), 1799–1807. https://doi.org/10.1016/j.automatica.2009.03.022 doi: 10.1016/j.automatica.2009.03.022
![]() |
[47] |
T. W. Zhang, Y. Y. Yang, S. F. Han, Exponential heterogeneous anti-synchronization of multi-variable discrete stochastic inertial neural networks with adaptive corrective parameter, Eng. Appl. Artif. Intell., 142 (2025), 109871. https://doi.org/10.1016/j.engappai.2024.109871 doi: 10.1016/j.engappai.2024.109871
![]() |
[48] |
T. W. Zhang, H. Z. Qu, Y. T. Liu, J. W. Zhou, Weighted pseudo $\theta$-almost periodic sequence solution and guaranteed cost control for discrete-time and discrete-space stochastic inertial neural networks, Chaos, Solitons Fractals, 173 (2023), 113658. https://doi.org/10.1016/j.chaos.2023.113658 doi: 10.1016/j.chaos.2023.113658
![]() |
[49] |
D. Zhang, Q. G. Wang, D. Srinivasan, H. Li, L. Yu, Asynchronous state estimation for discrete-time switched complex networks with communication constraints, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 1732–1746. https://doi.org/10.1109/TNNLS.2017.2678681 doi: 10.1109/TNNLS.2017.2678681
![]() |
[50] |
A. Seuret, E. Fridman, Wirtinger-like Lyapunov-Krasovskii functionals for discrete-time delay systems, IMA J. Math. Control Inf., 35 (2018), 861–876. https://doi.org/10.1093/imamci/dnx002 doi: 10.1093/imamci/dnx002
![]() |
[51] | K. Mollaiyan, Generalization of Discrete-Time Wirtinger Inequalities and A Preliminary Study of Their Application to SNR Analysis of Sinusoids Buried in Noise, Masters thesis, Concordia University, 2008. |
[52] | W. N. Zhou, J. Yang, L. W. Zhou, D. B. Tong, Stability and Synchronization Control of Stochastic Neural Networks, Springer-Verlag, Berlin, Heidelberg, 2016. |