
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(2): 613–641.
DOI: 10.3934/era.2025029
Received: 04 December 2024
Revised: 20 January 2025
Accepted: 21 January 2025
Published: 10 February 2025

Research article

Heterogeneous anti-synchronization of stochastic complex dynamical
networks involving uncertain dynamics: an approach of the space-time
discretizations

Huan Luo*

Oxbridge College, Kunming University of Science and Technology, Kunming 650091, China

* Correspondence: Email: thhluo@yeah.net.

Abstract: The modeling of discrete space-time stochastic heterogeneous complex networks with un-
known factors was achieved through the utilization of differencing techniques with respect to the time
and space variables of the nodes’ states. Via the space-time discrete Lyapunov-Krasovskii functional
and the approach of linear matrix inequality, this paper derived the mean-squared asymptotic anti-
synchronization of the aforementioned discrete networks. This was achieved by defining an updated
law for the hitherto unknown parameters and incorporating boundary values within the feedback con-
troller. The theoretical and experimental findings indicated that the feedback controller at the boundary
represented a more effective and cost-effective control technique for the networks. Furthermore, an
adaptive rule has been designed to identify the uncertainties that occur in the networks with a high de-
gree of accuracy. In particular, this rule enabled the response networks to identify unknown information
in the drive networks with a high level of precision by incorporating an adaptive updating mechanism.
Finally, a numerical example was provided to elucidate the viability of the ongoing investigation.

Keywords: heterogeneous networks; complex networks; inverse synchronization; spatial
discretization; parameter recognition

1. Introduction

Complex dynamical networks (CDNs) refer to systems composed of interconnected nodes or en-
tities, where the relationships between nodes are not trivial and often exhibit nontrivial patterns or
structures, e.g., transport networks and 5G communication networks, social networks and Covid-19
epidemic networks. The study of complex networks has become a significant interdisciplinary field,
drawing insights and methodologies from mathematics, computer science, physics, biology, sociology,
and other disciplines [1–3]. Complex networks have found applications in diverse fields, including
biology (e.g., gene regulatory networks, protein-protein interaction networks), social sciences (e.g.,
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social networks, collaboration networks), transportation (road networks, air traffic networks), and in-
formation systems (e.g., the World Wide Web, citation networks); see papers [4–6]. Researchers in
this field often use tools from graph theory, statistical physics, and machine learning to analyze and
model the intricate structures and behaviors of complex systems (see refs. [7–9]).

A system composed of nonidentical networks may refer to a heterogeneous network. It consists
of different types of nodes or entities with diverse characteristics, and the connections between them
can vary in nature. Examples include multiplex networks, where nodes can have different types of
relationships in different layers, and interdependent networks, where the failure of nodes in one net-
work can affect nodes in another. The synchronization of nonidentical networks is a complex and
interdisciplinary topic that spans various fields, including physics, engineering, and network science.
In the context of nonidentical networks, achieving synchronization implies that nodes with different
dynamics or characteristics become correlated or coordinated in their behavior. A common approach
is to consider a drive network influencing the behavior of a response network. The drive network might
have more influence or a different role compared to the response network, and achieving synchroniza-
tion involves aligning the dynamics of the two networks. For the synchronization issues of nonidentical
CDNs, the readers could refer to the literatures [10–14].

Anti-synchronization of networks involves achieving a specific type of coordination or correlation
between nodes in a network. In synchronization, nodes in a network tend to evolve in a coordinated
manner. In contrast, anti-synchronization is a state where the nodes exhibit an antiphase relationship,
meaning that their dynamics are such that when one node is in a certain state, the other is in the opposite
state; see refs. [15–20]. Adaptive anti-synchronization involves incorporating mechanisms that allow
the network to adapt to changes in its internal or external conditions. These adaptive mechanisms
can include adjusting parameters, coupling strengths, or introducing control signals based on feedback
from the system or external measurements. Adaptive anti-synchronization has potential applications
in various fields, including secure communication systems, networked control systems, and complex
systems where maintaining a specific antiphase relationship between components is important, see
refs. [18–20].

Stochastic network plays a significant role in the evolution of the network. These uncertainties can
arise from various sources, including random events, probabilistic interactions, or dynamic processes.
Analyzing and modeling stochastic networks is essential for understanding their behavior and making
informed decisions in scenarios where uncertainty is inherent; see refs. [21–26]. Uncertain networks
refer to network structures where there is uncertainty or variability in the connections between nodes,
the strengths of these connections, or other properties of the network. This uncertainty can arise from
various sources, including incomplete information, dynamic changes in network topology, or random
fluctuations. Understanding and modeling uncertain networks are crucial for various applications, and
researchers often employ different approaches to address the challenges associated with uncertainty.
Researchers have developed various approaches and methodologies to address these challenges; please
see publications [27–32].

Discrete space or discrete time networks, as opposed to continuous space or continuous time net-
works, have distinct advantages in various applications. For example, discrete time systems are often
easier to synchronize and coordinate. Events or updates can be synchronized at specific time intervals,
simplifying the management of network-wide activities. Discrete time models are often simpler to de-
velop and analyze. In signal processing applications, discrete time signals are often preferred for digital
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signal processing. Discrete time allows for the application of powerful digital filtering techniques and
efficient algorithms [33]. On the other hand, discretizing space simplifies computations, making it
more computationally efficient, especially for systems with a large number of nodes or complex in-
teractions. Nodes in the network are located at specific points in space, simplifying the description
of their positions and connections. In certain applications, discretizing space allows for more efficient
utilization of resources [34]. To the authors’ knowledge, despite numerous reports having focused on
the research of discrete-time complex networks [9, 15, 35–37] or continuous-time complex networks
with reaction diffusions [5,38–42], the studies of the discrete networks in both time and space are very
few; please see ref. [43]. Specifically, almost no paper involves the adaptive anti-synchronization of
time-space discrete drive-response nonidentical CDNs.

Based on the above discussion, the primary purpose of this paper is to study the adaptive anti-
synchronization problems of space-time discrete heterogeneous stochastic multilayer CDNs with mul-
tiple delays. To achieve this, a space-time discrete Lyapunov-Krasovskii functional and the linear
matrix inequality (LMI) method are used to design an adaptive updated law for unknown parameter
and feedback controller that incorporates boundary information. In particular, the adaptive parameter
in the response networks can achieve the accuracy identification to the unknown information in the
drive networks. This document presents key contributions that are distinct from existing works. These
contributions are briefly summarized.

1) This paper differs from the continuous time networks in [6–8, 10–14, 44–46] or reaction-diffusion
networks in [5, 38–42]; a CDNs in time and space is modeled by a discrete way.

2) In contrast to the feedback controller in the networks presented in previous reports [9, 15, 35–37], a
feedback controller in the boundary is built to discrete space-time CDNs, which is a more effective
and low-cost control technique for the networks.

3) In contrast to previous work on the incomplete synchronization to heterogeneous CDNs, e.g., quasi-
synchronization [10–14], the present paper addresses the problem of anti-synchronization to hetero-
geneous discrete space-time CDNs, which belongs to the category of the complete synchronization.

4) In order to fill the gap that no report had been published for the adaptive control of discrete space-
time CDNs until now, this paper considers the uncertainty in the model of CDNs and designs an
adaptive updated rule. The adaptive parameter in the response networks can achieve the accuracy
identification to the uncertain factor.

This article has the following structure. In Section 2, the drive-response discrete space-time hetero-
geneous CDNs with multiple delays have been established. The adaptive updated law of the unknown
parameter and adaptive anti-synchronization of the drive-response heterogeneous CDNs are discussed
in Section 3. In Section 4, the theoretical results are confirmed by a numerical example. A brief
summary is given in Section 5.

Notations: Denote R0 = [0,+∞), Z0 = {0, 1, 2, . . .}; Z+ = Z0 \ {0}. We use symbol ⊗ to denote the
Kronecker product. Define ∥A∥∞ = max1≤i≤m,1≤ j≤n |ai j| for A = (ai j)m×n ∈ R

m×n. For any sets I, J, IJ

stands for set I ∩ J. I represents some suitable dimensional identical matrix. Also, denote

∆z[·]
k = z[·]

k+1 − z[·]
k , ∆ℏz

[δ]
k =

z[δ+1]
k − z[δ]

k

ℏ
, ∆2

ℏz
[δ]
k = ∆ℏ(∆ℏz

[δ]
k ),

where z = z[δ]
k : Z2 → RM, (δ, k) ∈ Z2, ℏ > 0.
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2. Digital scheme of space-time CDNs

In the following model, F, σ ∈ RM are the activation and noise functions in sequence; Γl ∈ R
M×M

and Gl = (Gi j,l)m×m represent the inner and outer linking matrix in sequence l = 1, 2, . . . , p, i, j =
1, 2, . . . ,m; w ∈ R denotes the Brownian motion on certain probability space. This paper discusses the
general CDNs with reaction diffusions, unknown dynamics, and multiple delays, which are constructed
by

dwi(x, t) =
[
A
∂2wi(x, t)
∂x2 +Cwi(x, t) + γ(t)F(wi(x, t))

+

p∑
l=1

m∑
j=1

clGi j,lΓlw j(x, t − τl)
]
dt +

p∑
l=1

σ̂
(
wi(x, t − τl)

)
dw(t) + ζ, (2.1)

where (x, t) ∈ (0, L) × R0 for some L > 0, or in a discrete form

w[δ]
i,k+1 = eChw[δ]

i,k + (eCh − I)C−1
[
A∆2
ℏw

[δ−1]
i,k + γkF(w[δ]

i,k )

+

p∑
l=1

m∑
j=1

clGi j,lΓlw[δ]
j,k−τl
+

p∑
l=1

σ
(
w[δ]

i,k−τl

)
∆hwk + ζ

]
, (2.2)

where (δ, k) ∈ (0,L)Z × Z0, L ≥ 2 is some integer; wi = (wi1,wi2, . . . ,wiM)T ∈ RM stands for the state
of the ith transportation node; γk is adaptive; w[δ]

i,k and wk are the simplified forms of wi(δℏ, kh) and
w(kh) in sequence i = 1, 2, . . . ,m; ∆hwk =

wk+1−wk√
h

; ℏ and h denote the space and time steps’ length,

respectively; A ∈ RM×M, C is nonsingular M-order square matrix; cl ≥ 0, σ̂(·) =
√

hσ(·), τl ∈ [1,+∞)Z
is the time delay, l = 1, 2, . . . , p; ζ ∈ RM is a corrective vector. Furthermore, CDNs (2.2) possesses the
following initial and controlling boundary values:w[δ]

i,s = ϕ
[δ]
i,s , ∀(δ, s) ∈ [0,L]Z × [−τ∞, 0]Z,

∆ℏw[δ]
i,k

∣∣∣∣
δ=0
= 0, ∆ℏw[δ]

i,k

∣∣∣∣
δ=L−1

= ξi,k, ∀k ∈ Z0,

where τ∞ := maxδ=1,2,...,p τl < ∞, ξi denotes the boundary input, i = 1, 2, . . . ,m.

Remark 2.1. CDNs (2.2) is the discrete form of CDNs (2.1) by using the exponential Euler differ-
ence (see [33]) for variable t and the central finite difference (see [47, 48]) for variable x.

Remark 2.2. It can be seen from the boundary control described above that, in contrast to the feedback
controls (FCs) that are designed within the networks, the boundary control described in this study is
only active at the boundary pointL−1. This control method is a more effective and low-cost technique
than the FCs described in the paper [48], which occurs for all values of δ ∈ [1,L − 1]Z.

Let the matrix G·, and the activation and noise functions F, σ meet the following assumptions.

(c1) Gl = (Gi j,l)m×m is irreducible and Gi j,l = G ji,l ≥ 0 for i , j, Gii,l = −
∑m

j=1, j,i Gi j,l, i, j = 1, 2, . . . ,m,
l = 1, 2, . . . , p.
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(c2) F(·) and σ(·) are odd, and there exist positive constant F0, and M-order matrices L f , Lσ ≥ 0 such
that

∥F(z)∥∞ ≤ F0,

[F(z) − F(y)]T [F(z) − F(y)] ≤ (z − y)T L f (z − y),

[σ(z) − σ(y)]T [σ(z) − σ(y)] ≤ (z − y)T Lσ(z − y),

where z, y ∈ RM.

Let us consider the drive CDNs below:

z[δ]
k+1 = eChz[δ]

k + (eCh − I)C−1
[
A∆2
ℏz

[δ−1]
k + γF(z[δ]

k ) +
p∑

l=1

m∑
j=1

clGi j,lΓlz[δ]
k−τl
+

p∑
l=1

σ
(
z[δ]

k−τl

)
∆hwk − ζ

]
, (2.3)

where (δ, k) ∈ (0,L)Z × Z0; γ is an unknown parameter. The initial and boundary values are described
by  z[δ]

s = ψ
[δ]
s , ∀(δ, s) ∈ [0,L]Z × [−τ∞, 0]Z,

∆ℏz[δ]
k

∣∣∣∣
δ=0
= 0 = ∆ℏz[δ]

k

∣∣∣∣
δ=L−1

, ∀k ∈ Z0.

CDNs (2.2) can be regarded as the response networks of the drive networks (2.3). Let the anti-
synchronous error between the drive-response networks (2.3) and (2.2) be represented by ei = wi + z
for i = 1, 2, . . . ,m. From CDNs (2.3) and (2.2), it follows

e[δ]
i,k+1 = eChe[δ]

i,k + (eCh − I)C−1
[
A∆2
ℏe

[δ−1]
i,k + γF̃(e[δ]

i,k )

+(γk − γ)F(w[δ]
i,k ) +

p∑
l=1

m∑
j=1

clGi j,lΓle[δ]
j,k−τl
+

p∑
l=1

σ̃
(
e[δ]

i,k−τl

)
∆hwk

]
,

where i = 1, 2, . . . ,m, or in a compact form

ē[δ]
k+1 = (eCh)⊗mē[δ]

k + (C∗)⊗m

[
(A)⊗m∆

2
ℏē

[δ−1]
k + γF̃⊗(ē[δ]

k )

+(γk − γ)F⊗(w[δ]
k ) +

p∑
l=1

cl(Γl)⊗Gl ē
[δ]
k−τl
+

p∑
l=1

σ̃w
⊗

(
ē[δ]

k−τl

)]
, (2.4)

where (δ, k) ∈ (0,L)Z × Z0, ē = (eT
1 , . . . , e

T
m)T , C∗ = (eCh − I)C−1,

F̃(ei) = F(wi) + F(z), σ̃(ei) = σ(wi) + σ(z), i = 1, 2, . . . ,m,

F̃⊗(ē) = (F̃(e1), . . . , F̃(em))T , F⊗(w) = (F(w1), . . . ,F(wm))T ,

σ̃⊗(ē) =
(
σ̃(e1), . . . , σ̃(em)

)T
, σ̃w

⊗(ē) =
(
σ̃(e1), . . . , σ̃(em)

)T
∆hw.

In the model above, (A)⊗m := Im ⊗ A and (A)⊗B := B⊗ A for suitable dimensional matrices A, B and the
m-order identical matrix Im.
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According to the initial and boundary values in CDNs (2.2) and (2.3), the error system (2.4) pos-
sesses the initial and controlling boundary conditions ē[δ]

s = φ
[δ]
s , ∀(δ, s) ∈ [0,L]Z × [−τ∞, 0]Z,

∆ℏē[δ]
k

∣∣∣∣
δ=0
= 0, ∆ℏē[δ]

k

∣∣∣∣
δ=L−1

= ξ̄k, ∀k ∈ Z0,
(2.5)

where φ = (ϕ1 + ψ, . . . , ϕm + ψ)T , ξ̄ = (ξ1, . . . , ξm)T .
The framework of the drive-response-error CDNs (2.2)–(2.4) is figured as that in Figure 1.

Figure 1. Framework of the drive-response-error boundary controlling CDNs.

Remark 2.3. In [43], Zhang and Li discussed a class of discrete space-time CDNs and the issue of
switching clusters’ synchronization had been addressed perfectly in this article. Compared with the
work above, this paper possesses some merits below. First, CDNs (2.2) of this paper is involved with
the stochastic disturbances. Second, the drive-response networks (2.2) and (2.3) are heterogeneous,
but the CDNs in [43] were homogeneous. Finally, it exists the uncertainty in CDNs (2.2), which
extensively increases the researching difficulty and the applicable categories of the networks.

Remark 2.4. Literatures [44–46] used adaptive methods to identify and estimate unknown parameters
of continuous time transportation networks without spatial variables. However, identifying uncertain
parameters in spatiotemporal discrete heterogeneous networks presents two challenges that must be
overcome. In the first, the introduction of spatial diffusion will complicate the research of this topic.
Additionally, based on the applicant’s recent research experience in [43], the calculation of the time
discrete Lyapunov function is more complex than that of the continuous time Lyapunov function. You
can see this point in Eq (3.6), where the term £k exists, but remember that there is no £k in the continu-
ous case.

Definition 2.1 ( [49]). The drive-response networks (2.3) and (2.2) are said to be mean squared asymp-
totic anti-synchronization (MSAAS) via boundary control ξ̄k in (2.5) if

lim
k→∞

m∑
i=1

L∑
δ=0

E∥e[δ]
i,k ∥

2 = lim
k→∞

m∑
i=1

L∑
δ=0

E
∥∥∥w[δ]

i,k + z[δ]
k

∥∥∥2 = 0, ∀k ∈ Z0.
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Remark 2.5. In the existing publications, papers [9,15,35–37] investigated single discrete-time CDNs
and reports [5, 38–42] considered the continuous-time CDNs with reaction diffusions. The drive-
response CDNs (2.3) and (2.2) are distinct with them by discussing both time and space discretizations
in the model of CDNs. Although the time-space discrete CDNs has been considered in our work in
literature [43], it has some clear distinctions. The biggest difference is that the drive-response CDNs
in literature [43] are identical, but drive-response CDNs (2.3) and (2.2) are nonidentical. Besides,
this paper considers MSAAS with adaptive updated rule, which is different from the synchronization in
literature [43].

Throughout this article, suppose that

m∑
i=1

L−1∑
δ=1

E∥ϕ[δ]
i,s ∥

2 < ∞,

L−1∑
δ=1

E∥ψ[δ]
s ∥

2 < ∞,

where s ∈ [−τ∞, 0]Z. By right of initial values (2.5), it has

L−1∑
δ=1

E∥ē[δ]
s ∥

2 < ∞, ∀s ∈ [−τ∞, 0]Z. (2.6)

In view of Corollary 3.1 of [50], Subsection 2.3, and Inequalities 3.2.1 and 3.2.3 of [51], one has
the following lemma.

Lemma 2.1 ( [50, 51]). The inequalities below are valid for m-dimensional vector z and m-order
positive definitive matrix G.

(i)
L−1∑
δ=0

∆ℏz[δ]TG∆ℏz[δ] ≤
µL
ℏ2

L∑
δ=0

z[δ]TGz[δ] when z0 = 0, where µL = 4 cos2 π
2L+1 .

(ii)
L−1∑
δ=1

∆ℏz[δ]TG∆ℏz[δ] ≥
χL
ℏ2

L∑
δ=1

z[δ]TGz[δ] −
1
ℏ2 (z1 + zL)TG(z1 + zL), where χL = 4 sin2 π

2L .

(iii)
L−1∑
δ=1

∆ℏz[δ]TG∆ℏz[δ] +
1
ℏ2

[
z1 + (−1)LzL

]TG
[
z1 + (−1)LzL

]
≤

4 − χL
ℏ2

L∑
δ=1

z[δ]TGz[δ].

3. Adaptive anti-synchronization with parameter identification

This section constructs the space-time discrete stochastic Lyapunov-Krasovskii functional to the
error CDNs (2.4). Subsequently, an adaptive update law of uncertain parameter γ is designed. Fur-
ther, boundary input and controlling gain are designed to perform mean squared asymptotic anti-
synchronization of the drive-response networks (2.3) and (2.2), i.e., some asymptotical stability cri-
terions in mean squared sense are established to the error CDNs (2.4). Meanwhile, it achieves the
identification of the uncertain parameter.

In accordance with the error CDNs (2.4), a space-time discrete Lyapunov-Krasovskii functional
candidate is constructed by

Vk = V0,k + V1,k + V2,k,

Electronic Research Archive Volume 33, Issue 2, 613–641.



620

where

V0,k =
1
α

(γk − γ)2, V1,k =

L−1∑
δ=1

ē[δ]T
k (P)⊗mē[δ]

k ,

V2,k =

L−1∑
δ=1

p∑
l=1

k−1∑
q=k−τl

[
d2 pē[δ]T

q (Lσ)⊗mē[δ]
q + d3 pc2

l ē[δ]T
q (ΓT

l )⊗GT
l
(Γl)⊗Gl ē

[δ]
q

]
,

where P > 0 is an M-order matrix, and d2, d3, α are some positive constants.
The chief research scheme of this paper can be summarized in the flowchart described by Figure 2.

Figure 2. The flowchart of the chief research scheme.

3.1. Adaptive updated law

Set η[δ]
k = ē[δ]

k+1 − ē[δ]
k , ∀(δ, k) ∈ (0,L)Z × Z0. We design the adaptive updated law for unknown

parameter γk as below:

γk+1 = γk − Υk, Υk = α

L−1∑
δ=1

[
ē[δ]T

k (PC∗)⊗m + η
[δ]T
k (QC∗)⊗m

]
F⊗(w[δ]

k ), (3.1)

where k ∈ Z0. Hereby, Q is a positive definitive M-order matrix, which will be calculated by some
LMIs later. Remarkably, it follows from (c2) that

(uT Hv)2 ≤ M3∥H∥2∞∥v∥
2
∞∥u∥

2, ∥F⊗(w)∥∞ ≤ F0, (3.2)

where u, v ∈ RM,w ∈ RmM,H ∈ RM×M. So, it implies

EΥ2
k ≤ 2α2LE

L−1∑
δ=1

{[
ē[δ]T

k (PC∗)⊗mF⊗(w[δ]
k )
]2
+
[
η[δ]T

k (QC∗)⊗mF⊗(w[δ]
k )
]2}
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≤ 2α2(mM)3LE
L−1∑
δ=1

[
∥PC∗∥2∞∥F⊗(w

[δ]
k )∥2∞ē[δ]T

k ē[δ]
k + ∥QC∗∥2∞∥F⊗(w

[δ]
k )∥2∞η

[δ]T
k η[δ]

k

]
≤ 2α2(mM)3F2

0Lmax{∥PC∗∥2∞, ∥QC∗∥2∞}E
L−1∑
δ=1

[
ē[δ]T

k ē[δ]
k + η

[δ]T
k η[δ]

k

]
, (3.3)

for all k ∈ Z0. Suppose that

(c3) Constants α, α∗ satisfy 0 < 2α(mM)3F2
0Lmax{∥PC∗∥2∞, ∥QC∗∥2∞} < α∗.

According to (3.3) and assumption (c3), it yields

E
[
∆V0,k

]
=

1
α
E(γk+1 − γ)2 −

1
α
E(γk − γ)2

=
1
α
E(γk+1 − γk)(γk+1 + γk − 2γ)

=
1
α
EΥ2

k −
2
α
E
[
(γk − γ)Υk

]
≤ α∗E

L−1∑
δ=1

[
ē[δ]T

k ē[δ]
k + η

[δ]T
k η[δ]

k

]
− 2E

L−1∑
δ=1

(γk − γ)
[
ē[δ]T

k (PC∗)⊗m

+η[δ]T
k (QC∗)⊗m

]
F⊗(w[δ]

k ), ∀k ∈ Z0. (3.4)

Remark 3.1. In the designation of adaptive updated law (3.1), it is dependent of the value of η[δ]
k =

ē[δ]
k+1− ē[δ]

k , namely, the value of ē at time k+1. If the current time is k, by the iterative relationship (3.1),
the states’ values of the response network (2.2) at time k + 1 can be determined by the whole relative
values at time k or before the time k, and so are the states’ values of the response network (2.3).

Remark 3.2. In the construction of adaptation rules for continuous CDNs ( [44–46]), it was observed
that all of them were not involved with the term η[δ]

k . In other words, it was ascertained that the second
term on the righthand side of Υk in (3.1) does not exist. Why? The rationale will be expounded in the
ensuing discourse on heterogeneous anti-synchronization. The calculations of inequalities (3.3) and
(3.4) demonstrate that the presence of term η[δ]

k greatly increases the complexity and difficulty of the
current research.

Remark 3.3. In the studies of nonidentical CDNs [10–14], nobody designs the adaptive updated rule
such as Eq (3.1), so the concept of quasi-synchronization was proposed and researched. In this article,
an adaptive parameter with updated rule Eq (3.1) has been designed to perform the complete MSAAS
for the drive-response CDNs (2.3) and (2.2).

3.2. Heterogeneous anti-synchronization with uncertain recognition

The boundary controlling input is designed by

ξ̄k = −

L−1∑
δ=1

(Π)⊗mē[δ]
k , ∀k ∈ Z0, (3.5)

where Π ∈ RM×M represents the controlling gain.
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Theorem 3.1. Let assumptions (c1)–(c3) hold, det(A) , 0, det(C) , 0, ε ∈ (0, 1), and the updated law
for adaptive parameter γ and the boundary controlling input be designed as those in (3.1) and (3.5),
respectively. Suppose further that

(c4) Eγ2
0 < ∞ and |γ| ≤ γ∗, where γ∗ is a known constant.

(c5) There exist matrices P > 0, Q > 0, R > 0, Φ > 0, ℧ > 0 and positive numbers α∗, d1, d2, d3 so
that

−2PC∗A +
Lℏ2

χL
℧ +

µL−1

ℏ2 R < 0,

Ω :=



Ω11 Ω12 0 (QC∗A)⊗m 0 0 (QC∗)⊗m

∗ Ω22 −
1
ℏ
(Φ)⊗m 0 0 0 (PC∗)⊗m

∗ ∗ −(℧)⊗m 0 0 0 0

∗ ∗ ∗ −(R)⊗m 0 0 0

∗ ∗ ∗ ∗ Ω55 0 0

∗ ∗ ∗ ∗ ∗ Ω66 0

∗ ∗ ∗ ∗ ∗ ∗ −(d3I)⊗m



< 0,

where
Ω11 = (α∗I)⊗m − (2 − ε − εγ2

∗)(Q)⊗m + (P)⊗m, Ω12 = [Q(eCh − I)]⊗m,

Ω22 = (α∗I)⊗m −
2
ℏ

(Φ)⊗m + εγ
2
∗(P)⊗m + d1(L f )⊗m

+2
[
P(eCh − I)

]
⊗m
+ d2 p2(Lσ)⊗m + d3 p

p∑
l=1

c2
l (ΓT

l )⊗GT
l
(Γl)⊗Gl ,

Ω55 = −(d1I)⊗m +
1
ε

(CT
∗ PC∗)⊗m +

1
ε

(CT
∗ QC∗)⊗m,

Ω66 = −(d2I)⊗m +
1
ε

(CT
∗ QC∗)⊗m.

Then, the response CDNs (2.2) asymptotically inversely synchronizes the drive CDNs (2.3) in the mean
squared sense, and E|γk − γ|

2 → 0 as k → ∞. Moreover, the controlling gain Π =
[
PC∗A

]−1
Φ.

Proof. Taking α fulfills assumption (c3). Based on the Lyapunov-Krasovskii functional as before and
the error networks (2.4), it attains

E[∆V1,k] = E
L−1∑
δ=1

ē[δ]T
k+1 (P)⊗mē[δ]

k+1 − E[V1,k]

= E
L−1∑
δ=1

(η[δ]T
k + ē[δ]T

k )(P)⊗m(η[δ]
k + ē[δ]

k ) − E[V1,k]
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= E
L−1∑
δ=1

η[δ]T
k (P)⊗mη

[δ]
k︸                  ︷︷                  ︸

£k

+ 2E
L−1∑
δ=1

ē[δ]T
k (P)⊗mη

[δ]
k︸                   ︷︷                   ︸

Λ1,k

, (3.6)

where

Λ1,k = 2E
L−1∑
δ=1

ē[δ]T
k (P)⊗mη

[δ]
k

= 2E
L−1∑
δ=1

ē[δ]T
k

[
P(eCh − I)

]
⊗m

ē[δ]
k

+ 2E
L−1∑
δ=1

ē[δ]T
k (PC∗A)⊗m∆

2
ℏē

[δ−1]
k︸                               ︷︷                               ︸

Λ2,k

+ 2E
L−1∑
δ=1

γē[δ]T
k (PC∗)⊗mF̃⊗(ē[δ]

k )︸                               ︷︷                               ︸
Θ1,k

+2E
L−1∑
δ=1

ē[δ]T
k (PC∗)⊗m

p∑
l=1

cl(Γl)⊗Gl ē
[δ]
k−τl

+2E
L−1∑
δ=1

ē[δ]T
k (γk − γ)(PC∗)⊗mF⊗(w[δ]

k ), ∀k ∈ Z0. (3.7)

Via the discrete formula of integration by parts and boundary values in (2.5), it computes

Λ2,k = 2E
L−1∑
δ=1

ē[δ]T
k (PC∗A)⊗m∆

2
ℏē

[δ−1]
k

=
2
ℏ
Eē[δ]T

k (PC∗A)⊗m∆ℏē[δ−1]
k

∣∣∣∣∣L
1
− 2E

L−1∑
δ=1

∆ℏē[δ]T
k (PC∗A)⊗m∆ℏē[δ]

k

=
2
ℏ
Eē[L]T

k (PC∗A)⊗mξ̄k︸                   ︷︷                   ︸
ℵk

−2E
L−1∑
δ=1

∆ℏē[δ]T
k (PC∗A)⊗m∆ℏē[δ]

k , ∀k ∈ Z0. (3.8)

Define ˆ̄e[δ]
k = ē[L]

k − ē[δ]
k , ∀(δ, k) ∈ [0,L]Z × Z0. It should be noted that

ˆ̄e[L]
k = 0, ˆ̄e[1]

k = ē[L]
k − ē[1]

k , ∀k ∈ Z0.

Together with the discrete Wirtinger’s inequalities in item (ii) of Lemma 2.1, it results in

E
L−1∑
δ=1

∆ℏē[δ]T
k (℧)⊗m∆ℏē[δ]

k = E
L−1∑
δ=1

∆ℏ ˆ̄e[δ]T
k (℧)⊗m∆ℏ ˆ̄e[δ]

k
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≥
χL
ℏ2 E

L∑
δ=1

ˆ̄e[δ]T
k (℧)⊗m ˆ̄e[δ]

k −
1
ℏ2E(ˆ̄e[L]T

k + ˆ̄e[1]T
k )(℧)⊗m(ˆ̄e[L]

k +
ˆ̄e[1]

k )

=
χL
ℏ2 E

L−1∑
δ=1

ˆ̄e[δ]T
k (℧)⊗m ˆ̄e[δ]

k −
1
ℏ2E(ē[L]T

k − ē[1]T
k )(℧)⊗m(ē[L]

k − ē[1]
k )

=
χL
ℏ2 E

L−1∑
δ=1

ˆ̄e[δ]T
k (℧)⊗m ˆ̄e[δ]

k − E

L−1∑
δ=1

∆ℏē[δ]T
k

 (℧)⊗m

L−1∑
δ=1

∆ℏē[δ]
k


≥
χL
ℏ2 E

L−1∑
δ=1

ˆ̄e[δ]T
k (℧)⊗m ˆ̄e[δ]

k − (L − 1)E
L−1∑
δ=1

∆ℏē[δ]T
k (℧)⊗m∆ℏē[δ]

k ,

which indicates

E
L−1∑
δ=1

ˆ̄e[δ]T
k (℧)⊗m ˆ̄e[δ]

k ≤
Lℏ2

χL
E
L−1∑
δ=1

∆ℏē[δ]T
k (℧)⊗m∆ℏē[δ]

k , ∀k ∈ Z0. (3.9)

According to the error CDNs (2.4), it gets

η[δ]
k = (eCh − I)⊗mē[δ]

k + (C∗)⊗m

[
(A)⊗m∆

2
ℏē

[δ−1]
k

+γF̃⊗(ē[δ]
k ) + (γk − γ)F⊗(w[δ]

k ) +
p∑

l=1

cl(Γl)⊗Gl ē
[δ]
k−τl
+

p∑
l=1

σ̃w
⊗

(
ē[δ]

k−τl

)]
, (3.10)

where (δ, k) ∈ (0,L) × Z0. It induces from (3.10) that

2E
L−1∑
δ=1

η[δ]T
k (Q)⊗mη

[δ]
k = 2E

L−1∑
δ=1

η[δ]T
k [Q(eCh − I)]⊗mē[δ]

k

+2E
L−1∑
δ=1

η[δ]T
k (QC∗A)⊗m∆

2
ℏē

[δ−1]
k

+ 2E
L−1∑
δ=1

γη[δ]T
k (QC∗)⊗mF̃⊗(ē[δ]

k )︸                               ︷︷                               ︸
Θ2,k

+2E
L−1∑
δ=1

η[δ]T
k (QC∗)⊗m

p∑
l=1

cl(Γl)⊗Gl ē
[δ]
k−τl

+ 2E
L−1∑
δ=1

(γk − γ)η[δ]T
k (QC∗)⊗mF⊗(w[δ]

k )︸                                         ︷︷                                         ︸
¶k

+ 2E
L−1∑
δ=1

η[δ]T
k (QC∗)⊗m

p∑
l=1

σ̃w
⊗

(
ē[δ]

k−τl

)
︸                                     ︷︷                                     ︸

Λ4,k

, ∀k ∈ Z0. (3.11)
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According to the elementary inequality in Lemma 1.13 of [52], i.e., 2XT Y ≤ εXT X + 1
ε
YT Y for any

X,Y ∈ RmM and ε > 0, it generates

Θ1,k = 2E
L−1∑
δ=1

γē[δ]T
k (PC∗)⊗mF̃⊗(ē[δ]

k )

≤ εγ2
∗E
L−1∑
δ=1

ē[δ]T
k (P)⊗mē[δ]

k +
1
ε
E
L−1∑
δ=1

F̃T
⊗(ē[δ]

k )(CT
∗ PC∗)⊗mF̃⊗(ē[δ]

k ), (3.12)

and, similarly,

Θ2,k = 2E
L−1∑
δ=1

γη[δ]T
k (QC∗)⊗mF̃⊗(ē[δ]

k )

≤ εγ2
∗E
L−1∑
δ=1

η[δ]T
k (Q)⊗mη

[δ]
k +

1
ε
E
L−1∑
δ=1

F̃T
⊗(ē[δ]

k )(CT
∗ QC∗)⊗mF̃⊗(ē[δ]

k ), ∀k ∈ Z0. (3.13)

From (3.11), we have

Λ4,k = 2E
L−1∑
δ=1

η[δ]T
k (QC∗)⊗m

p∑
l=1

σ̃w
⊗

(
ē[δ]

k−τl

)
≤ εE

L−1∑
δ=1

η[δ]T
k (Q)⊗mη

[δ]
k +

1
ε
E
L−1∑
δ=1

p∑
l=1

[
σ̃w
⊗

(
ē[δ]

k−τl

)]T (CT
∗ QC∗)⊗m

p∑
l=1

σ̃w
⊗

(
ē[δ]

k−τl

)
= εE

L−1∑
δ=1

η[δ]T
k (Q)⊗mη

[δ]
k +

1
ε
E
L−1∑
δ=1

p∑
l=1

σ̃T
⊗

(
ē[δ]

k−τl

)
(CT
∗ QC∗)⊗m

p∑
l=1

σ̃⊗
(
ē[δ]

k−τl

)
, (3.14)

where k ∈ Z0. In (3.14), note that ∆hwk is independent of ē[·]
s for all s ≤ k, and we use the fact of

E(∆hw·)2 = 1.
In terms of assumption (c2), it deduces

d1E
L−1∑
δ=1

F̃T
⊗(ē[δ]

k )F̃⊗(ē[δ]
k ) ≤ E

L−1∑
δ=1

ē[δ]T
k d1(L f )⊗mē[δ]

k , (3.15)

d2E
L−1∑
δ=1

p∑
l=1

σ̃T
⊗

(
ē[δ]

k−τl

) p∑
l=1

σ̃⊗
(
ē[δ]

k−τl

)
≤ d2 pE

L−1∑
δ=1

p∑
l=1

ē[δ]T
k−τl

(Lσ)⊗mē[δ]
k−τl

, (3.16)

d3E
L−1∑
δ=1

p∑
l=1

[
cl(Γl)⊗Gl ē

[δ]
k−τl

]T p∑
l=1

cl(Γl)⊗Gl ē
[δ]
k−τl

≤ d3 pE
L−1∑
δ=1

p∑
l=1

ē[δ]T
k−τl

c2
l (ΓT

l )⊗GT
l
(Γl)⊗Gl ē

[δ]
k−τl

, (3.17)
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where k ∈ Z0. Based on the definition of V2,k, we have

E[∆V2,k] = EV2,k+1 − EV2,k

= d2 p2E
L−1∑
δ=1

ē[δ]T
k (Lσ)⊗mē[δ]

k

+d3 pE
L−1∑
δ=1

ē[δ]T
k

p∑
l=1

c2
l (ΓT

l )⊗GT
l
(Γl)⊗Gl ē

[δ]
k

−d2 pE
L−1∑
δ=1

p∑
l=1

ē[δ]T
k−τl

(Lσ)⊗mē[δ]
k−τl

−d3 pE
L−1∑
δ=1

p∑
l=1

ē[δ]T
k−τl

c2
l (ΓT

l )⊗GT
l
(Γl)⊗Gl ē

[δ]
k−τl

, (3.18)

where k ∈ Z0.
From Lemma 2.1, we have

E
L−1∑
δ=1

∆2
ℏē

[l−1]T
k (R)⊗m∆

2
ℏē

[δ−1]
k ≤ E

L−2∑
δ=0

∆2
ℏē

[δ]T
k (R)⊗m∆

2
ℏē

[δ]
k

≤
µL−1

ℏ2 E
L−1∑
δ=1

∆ℏē[δ]T
k (R)⊗m∆ℏē[δ]

k , ∀k ∈ Z0. (3.19)

In view of (3.8) and by boundary input (3.5), it has

ℵk =
2
ℏ
Eē[L]T

k (PC∗A)⊗mξ̄k

= −
2
ℏ
E
L−1∑
δ=1

ē[L]T
k (PC∗AΠ)⊗mē[δ]

k

= −
2
ℏ
E
L−1∑
δ=1

ˆ̄e[δ]T
k (Φ)⊗mē[δ]

k −
2
ℏ
E
L−1∑
δ=1

ē[δ]T
k (Φ)⊗mē[δ]

k , ∀k ∈ Z0. (3.20)

Set

Ω̃ =

 Ω 0
0 −2PC∗A + Lℏ

2

χL
℧ +

µL−1
ℏ2 R

 .
On the grounds of (3.4), (3.6)–(3.20), and assumption (c5), it induces Ω̃ < 0 and

E[∆Vk] ≤ E
L−1∑
δ=1

H
[δ]T
k Ω̃H

[δ]
k , ∀k ∈ Z0,

where

H
[δ]
k =

[
η[δ]

k , ē
[δ]
k ,

ˆ̄e[δ]
k ,∆

2
ℏē

[δ−1]
k , F̃⊗(ē[δ]

k ),
p∑

l=1

σ̃⊗
(
ē[δ]

k−τl

)
,

p∑
l=1

cl(Γl)⊗Gl ē
[δ]
k−τl

,∆ℏē[δ]
k

]T
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for any (δ, k) ∈ (0,L)Z × Z0. Obviously,

k−1∑
j=0

E[∆V j] ≤ E
k−1∑
j=0

L−1∑
δ=1

H
[δ]T
j ΩH

[δ]
j ≤ E

k−1∑
j=0

L−1∑
δ=1

ē[δ]T
j Ωē[δ]

j ≤ λ
+
ΩE

k−1∑
j=0

L−1∑
δ=1

ē[δ]T
j ē[δ]

j

⇒ E
k−1∑
j=0

L−1∑
δ=1

ē[δ]T
j ē[δ]

j ≤
1
λ+
Ω

k−1∑
j=0

E[∆V j] ≤ −
1
λ+
Ω

EV0 < ∞,

which implies

E
L−1∑
δ=1

ē[δ]T
k ē[δ]

k → 0,

as k → ∞. Hereby, λ+
Ω

denotes the maximum eigenvalue of Ω. According to boundary information in
(3.5), it exists constant M1 > 0 so that

∥ē[L]
k ∥

2 ≤ M1

L−1∑
δ=1

∥ē[δ]
k ∥

2, ∀k ∈ Z0. (3.21)

Additionally,

∥ē[0]
k ∥

2 = ∥ē[1]
k ∥

2 ≤

L−1∑
δ=1

∥ē[δ]
k ∥

2, ∀k ∈ Z0. (3.22)

Together with (3.21) and (3.22), it causes

L∑
δ=0

∥ē[δ]
k ∥

2 → 0, as k → ∞.

Videlicet, the error CDNs (2.4) achieves global asymptotic stability in the mean squared sense. To wit,
the response CDNs (2.2) asymptotically inversely synchronizes the drive CDNs (2.3). Based on the
error CDNs (2.4) and the same discussions in [52, Theorem 4.20], it directly gains γk → γ, as k → ∞.
This achieves the proof. □

3.3. Homogeneous anti-synchronization

If γk ≡ γ for all k ∈ Z0, then the error CDNs (2.4) is transformed into

ē[δ]
k+1 = (eCh)⊗mē[δ]

k +
[
(eCh − I)C−1]

⊗m

[
(A)⊗m∆

2
ℏē

[δ−1]
k

+γF̃⊗(ē[δ]
k ) +

p∑
l=1

cl(Γl)⊗Gl ē
[δ]
k−τl
+

p∑
l=1

σ̃w
⊗

(
ē[δ]

k−τl

)]
, (3.23)

where (δ, k) ∈ (0,L)Z × Z0.

By a similar proof to Theorem 3.1, we can gain the corollary below.

Corollary 3.1. Let assumptions (c1)–(c3) hold, det(A) , 0, det(C) , 0, ε ∈ (0, 1), and the boundary
input be designed as that in (3.5). Assume that
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(c6) γk ≡ γ for all k ∈ Z0.

(c7) Assumption (c5) is valid with α∗ = 0.

Furthermore, the controlling gain is designed as before. Then, the response CDNs (2.2) asymptotically
anti-synchronizes the drive CDNs (2.3) in the mean squared sense.

According to Theorem 3.1, a realizable algorithm for adaptive anti-synchronization of the drive-
response CDNs (2.2) and (2.3) is designed as follows.

Algorithm 1 Adaptive anti-synchronization of the drive-response CDNs (2.2) and (2.3)

(a1) Initialing the values of the coefficients to the drive-response CDNs (2.2) and (2.3) and the
value of parameter ε ∈ (0, 1).

(a2) Computing LMIs in Theorem 3.1. If it is unviable, modify the values of in step (a1); other-
wise, switch to next step.

(a3) Receiving the values of α∗ and m-order matrices in assumption (c5). Calculating the control-
ling gain defined in (c5) and determining the boundary input in (3.5).

(a4) Take α to satisfy 0 < 2α(mM)3F2
0Lmax{∥PC∗∥2∞, ∥QC∗∥2∞} < α∗ and calculate the updated

law (3.1) of the unknown parameter γ.

(a5) Write the iterative program based on the drive-response CDNs (2.2) and (2.3) and plot the
response trajectories.

Remark 3.4. Discrete-time CDNs have been the focus of the authors’ previous works [9, 15, 35–37].
This article deals with discrete-time CDNs with discrete spatial diffusion. The associated calculations,
such as the Lyapunov-Krasovskii functional, are more complex than the case of a single time-variable.
In this paper, we present a boundary feedback controller for discrete-time and spatial CDNs, whereas
previous reports [9, 15, 35–37] have used a traditional feedback controller for CDNs. Previous stud-
ies [9, 15, 35–37] have focused on homogeneous CDNs, whereas this article examines heterogeneous
CDNs.

Remark 3.5. Previous publications [10–14] have examined continuous-time heterogeneous networks.
In contrast, this article addresses the following aspects: 1) The paper considers the issue of dis-
crete space transportation networks, taking into account their heterogeneity. 2) It achieves mean
squared asymptotic anti-synchronization for the networks, which differs significantly from the quasi-
synchronization discussed in previous publications [10–14]. 3) The response networks in these pub-
lications [10–14] have a predetermined heterogeneous coefficient. We have designed an adaptive pa-
rameter in the response networks that tends to drive-response CDNs homogeneously by continuously
adjusting it according to the updated law. At this moment, the adaptive parameter in the response
CDNs can perfectly identify the unknown parameter in the drive CDNs according to the updated law.
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4. Experiments

Supposing the drive CDNs are expressed by

z[δ]
k+1 = eChz[δ]

k + (eCh − I)C−1
{

0.1∆2
ℏz

[δ−1]
k + γ

[
0.3 0
0 0.1

] [
sin(z[δ]

1,k)
sin(z[δ]

2,k)

]

+

[
0.1 0.1
0.5 0.5

] 
z[δ]

1,k−1

1+|z[δ]
2,k−1 |

z[δ]
2,k−2

1+|z[δ]
1,k−2 |

∆hwk −

[
5.2027
5.6240

] }
, ∀(δ, k) ∈ (0, 6)Z × Z0, (4.1)

where z =
[

z1

z2

]
, C = −

[
8 0
8 24

]
,h = 0.01, ℏ = 0.25, γ = 0.1. The boundary values of the drive

CDNs (4.1) are given by ∆ℏz[0]
k = ∆ℏz

[5]
k = 0, ∀k ∈ Z0. The response CDNs of the drive CDNs (4.1) are

described as 

w[δ]
1,k+1 = eChw[δ]

1,k + (eCh − I)C−1
{

0.1∆2
ℏw

[δ−1]
1,k + γ̃k

[
0.3 0
0 0.1

] [
sin(w[δ]

11,k)
sin(w[δ]

12,k)

]
−0.5Γ1w[δ]

1,k−1 + 0.5Γ1w[δ]
2,k−1 − 0.8Γ2w[δ]

1,k−2 + 0.8Γ2w[δ]
2,k−2

+

[
0.1 0.1
0.5 0.5

] 
w[δ]

11,k−1

1+|w[δ]
12,k−1 |

w[δ]
12,k−2

1+|w[δ]
11,k−2 |

∆hwk +

[
5.2027
5.6240

] }
,

w[δ]
2,k+1 = eChw[δ]

2,k + (eCh − I)C−1
{

0.1∆2
ℏw

[δ−1]
2,k + γ̃k

[
0.3 0
0 0.1

] [
sin(w[δ]

21,k)
sin(w[δ]

22,k)

]
−0.5Γ1w[δ]

1,k−1 + 0.5Γ1w[δ]
2,k−1 − 0.8Γ2w[δ]

1,k−2 + 0.8Γ2w[δ]
2,k−2

+

[
0.1 0.1
0.5 0.5

] 
w[δ]

21,k−1

1+|w[δ]
22,k−1 |

w[δ]
22,k−2

1+|w[δ]
21,k−2 |

∆hwk +

[
5.2027
5.6240

] }
,

(4.2)

where (δ, k) ∈ (0, 6)Z × Z0, γ̃0 = 0,

w1 =

[
w11

w12

]
, w2 =

[
w21

w22

]
, Γ1 =

[
0 −0.2

0.7 0

]
, Γ2 =

[
0 0.5
−0.3 0

]
.

The boundary values of the response CDNs (4.2) are given by ∆δw[0]
1,k = ∆δw

[0]
2,k = 0, ∆δw[5]

1,k = ξ1,k,
∆δw[5]

2,k = ξ2,k, ∀k ∈ Z0.

According to the information above and Algorithm 1, a flow diagram of achieving the adaptive
anti-synchronization of the drive-response CDNs (4.1) and (4.2) is drawn in Figure 3.

Obviously, (c1)–(c2) in Theorem 3.1 hold. Taking ε = 0.5, γ∗ = 0.2 and computing the LMIs in
Theorem 3.1, the LMIs in (c5) are valid for α∗ = 1.5763, d1 = 29.0039, d2 = 9.1156, d3 = 10.6818,

P =
[

1229.1121 33.1733
33.1733 603.1577

]
, Q =

[
1149.4085 38.0849
38.0849 655.5776

]
,

R =
[

0.0204 0.0006
0.0006 0.0103

]
, Φ =

[
0.3385 0.0492
0.0492 0.2912

]
, ℧ =

[
0.6374 −0.0027
−0.0027 0.2390

]
.
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Figure 3. Flow diagram of achieving the adaptive anti-synchronization.

Further, taking α in (c3) small enough, it is easy to ensure that (c3) is satisfied.
So, the gain and controller are determined as

Π =

[
0.2847 0.0281
0.0863 0.5425

]
,

[
ξ1,k

ξ2,k

]
= −

5∑
δ=1


0.2847 0.0281 0 0
0.0863 0.5425 0 0

0 0 0.2847 0.0281
0 0 0.0863 0.5425




e[δ]
11,k

e[δ]
12,k

e[δ]
21,k

e[δ]
22,k

 ,
where e[δ]

11,k = w[δ]
11,k + z[δ]

1,k, e[δ]
12,k = w[δ]

12,k + z[δ]
2,k, e[δ]

21,k = w[δ]
21,k + z[δ]

1,k, e[δ]
22,k = w[δ]

22,k + z[δ]
2,k, (δ, k) ∈ (0, 6)Z × Z0.

The update law for the adaptive parameter γ̃k is outlined as

γ̃k+1 = γ̃k − 0.01
5∑
δ=1


e[δ]

11,k
e[δ]

12,k
e[δ]

21,k
e[δ]

22,k


T 

11.8004 0.2949 0 0
0.1017 5.3624 0 0

0 0 11.8004 0.2949
0 0 0.1017 5.3624




sin(w[δ]
11,k)

sin(w[δ]
12,k)

sin(w[δ]
21,k)

sin(w[δ]
22,k)


−0.01

5∑
δ=1


e[δ]

11,k+1 − e[δ]
11,k

e[δ]
12,k+1 − e[δ]

12,k
e[δ]

21,k+1 − e[δ]
21,k

e[δ]
22,k+1 − e[δ]

22,k


T 

11.0326 0.3386 0 0
0.1300 5.8284 0 0

0 0 11.0326 0.3386
0 0 0.1300 5.8284




sin(w[δ]
11,k)

sin(w[δ]
12,k)

sin(w[δ]
21,k)

sin(w[δ]
22,k)

 , (4.3)

where the initial value is γ̃0 = 0, k ∈ Z+. Apparently, (c4) holds. In sum, all assumptions in Theorem 3.1
are valid. By Theorem 3.1, the response CDNs (4.2) asymptotically inversely synchronizes the drive
CDNs (4.1); please see Figures 4–19.
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Figure 4. 3D anti-synchronization of states w11 and z1.

Figure 5. The error of states w11 and z1 in 3D space.

Figure 6. 3D anti-synchronization of states w12 and z2.
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Figure 7. The error of states w12 and z2 in 3D space.

Figure 8. 3D anti-synchronization of states w21 and z1.

Figure 9. The error of states w21 and z1 in 3D space.
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Figure 10. 3D asymptotical anti-synchronization of states w22 and z2.

Figure 11. The error of states w22 and z2 in 3D space.

In Figures 4–11, we picture the 3-dimensional asymptotical anti-synchronization of the drive-
response CDNs (4.1) and (4.2). Specifically, by taking the space variable δ = 3, we also show the
trajectories of the errors between the drive-response CDNs (4.1) and (4.2) in the 2-dimensional space;
see Figures 12–19. Finally, based upon the update law (4.3) for adaptive parameter γ̃k, we give a
variational curve in Figure 20, which tends to γ = 0.1 over time.

Figure 12. 2D anti-synchronization of states w11 and z1.
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Figure 13. The error of states w11 and z1 in 2D space.

Figure 14. 2D anti-synchronization of states w12 and z2.

Figure 15. The error of states w12 and z2 in 2D space.
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Figure 16. 2D anti-synchronization of states w21 and z1.

Figure 17. The error of states w21 and z1 in 2D space.

Figure 18. 2D anti-synchronization of states w22 and z2.
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Figure 19. The error of states w22 and z2 in 2D space.

Figure 20. The variation of adaptive parameter γ̃.

5. Conclusions

In the first place, by using mixed approaches of Euler time-difference and finite central space-
difference, we consider a delayed multivariable discrete stochastic transportation networks with un-
known parameter. In the second place, based on the theory of matrix, the compact drive-response
nonidentical stochastic transportation networks with the adaptive parameter are built. Via the method
of the Lyapunov-Krasovskii functional and the designation of the update law for the unknown param-
eter in the response networks, the article performs the mean squared asymptotic anti-synchronization
for the drive-response nonidentical stochastic transportation networks. Besides, by designing an adap-
tive parameter updated rule, the adaptive parameter in the response networks can achieve the accuracy
identification to the unknown information in the drive networks. The current work establishes a the-
ory of the problem of asymptotic anti-synchronization for the drive-response nonidentical stochastic
transportation networks under the framework of space-time discrete schemes.
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