Let $ G $ be a finite abelian group with exponent $ \exp(G) $ and $ S $ be a sequence with elements of $ G $. We say $ S $ is a zero-sum sequence if the sum of the elements in $ S $ is the zero element of $ G $. For a positive integer $ t $, let $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) denote the smallest integer $ \ell $ such that every sequence (respectively, zero-sum sequence) $ S $ over $ G $ with $ |S|\geq \ell $ contains a zero-sum subsequence of length $ t\exp(G) $. The invariant $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) is called the Generalized Erdős-Ginzburg-Ziv constant (respectively, Modified Erdős-Ginzburg-Ziv constant) of $ G $. In this paper, we discuss the relationship between Generalized Erdős-Ginzburg-Ziv constant and Modified Erdős-Ginzburg-Ziv constant, and determine $ \mathtt{s}'_{t\exp(G)}(G) $ for some finite abelian groups.
Citation: Yuting Hu, Jiangtao Peng, Mingrui Wang. On Modified Erdős-Ginzburg-Ziv constants of finite abelian groups[J]. AIMS Mathematics, 2023, 8(3): 6697-6704. doi: 10.3934/math.2023339
Let $ G $ be a finite abelian group with exponent $ \exp(G) $ and $ S $ be a sequence with elements of $ G $. We say $ S $ is a zero-sum sequence if the sum of the elements in $ S $ is the zero element of $ G $. For a positive integer $ t $, let $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) denote the smallest integer $ \ell $ such that every sequence (respectively, zero-sum sequence) $ S $ over $ G $ with $ |S|\geq \ell $ contains a zero-sum subsequence of length $ t\exp(G) $. The invariant $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) is called the Generalized Erdős-Ginzburg-Ziv constant (respectively, Modified Erdős-Ginzburg-Ziv constant) of $ G $. In this paper, we discuss the relationship between Generalized Erdős-Ginzburg-Ziv constant and Modified Erdős-Ginzburg-Ziv constant, and determine $ \mathtt{s}'_{t\exp(G)}(G) $ for some finite abelian groups.
[1] | N. Alon, S. Friedland, G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, 37 (1984), 79–91. https://doi.org/10.1016/0095-8956(84)90047-9 doi: 10.1016/0095-8956(84)90047-9 |
[2] | C. Augspurger, M. Minter, K. Shoukry, P. Sissokho, K. Voss, Avoiding zero-sum sequences of prescribed length over the integers, Integers, 17 (2017), Paper No. A18, 13pp. |
[3] | A. Bialostocki, P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math., 110 (1992), 1–8. https://doi.org/10.1016/0012-365X(92)90695-C doi: 10.1016/0012-365X(92)90695-C |
[4] | A. Berger, An analogue of the Erdős-Ginzburg-Ziv Theorem over $\mathbb{Z}$, Discrete Math., 342 (2019), 815–820. https://doi.org/10.1016/j.disc.2018.11.018 doi: 10.1016/j.disc.2018.11.018 |
[5] | A. Berger, D. Wang, Modified Erdős-Ginzburg-Ziv constants for $\mathbb{Z}/n\mathbb{Z}$ and $(\mathbb{Z}/n\mathbb{Z})^2$, Discrete Math., 342 (2019), 1113–1116. https://doi.org/10.1016/j.disc.2018.12.024 doi: 10.1016/j.disc.2018.12.024 |
[6] | J. Bitz, S Griffith, X. He, Exponential lower bounds on the generalized Erdős-Ginzburg-Ziv constant, Discrete Math., 343 (2020), 112083, 4pp. https://doi.org/10.1016/j.disc.2020.112083 doi: 10.1016/j.disc.2020.112083 |
[7] | P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10 (1961), 41–43. |
[8] | W. Gao, R. Thangadurai, On the structure of sequences with forbidden zero-sum subsequences, Colloq. Math., 98 (2003), 213–222. https://doi.org/10.4064/cm98-2-7 doi: 10.4064/cm98-2-7 |
[9] | W. Gao, D. Han, J. Peng, F. Sun, On zero-sum subsequences of length $k\exp(G)$, J. Combin. Theory Ser. A, 125 (2014), 240–253. https://doi.org/10.1016/j.jcta.2014.03.006 doi: 10.1016/j.jcta.2014.03.006 |
[10] | W. Gao, S. Hong, J. Peng, On zero-sum subsequences of length $k\exp(G)$ II, J. Combin. Theory Ser. A, 187 (2022), 105563. https://doi.org/10.1016/j.jcta.2021.105563 doi: 10.1016/j.jcta.2021.105563 |
[11] | A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420003208 |
[12] | B. Girard, W.A. Schmid, Direct zero-sum problems for certain groups of rank three, J. Number Theory, 197 (2019), 297–316. https://doi.org/10.1016/j.jnt.2018.08.016 doi: 10.1016/j.jnt.2018.08.016 |
[13] | B. Girard, W.A. Schmid, Inverse zero-sum problems for certain groups of rank three, Acta Math. Hungar., 160 (2020), 229–247. https://doi.org/10.1007/s10474-019-00983-w doi: 10.1007/s10474-019-00983-w |
[14] | D. Han, H. Zhang, On generalized Erdős-Ginzburg-Ziv constants of $C_n^{r}$, Discrete Math., 342 (2019), 1117–1127. https://doi.org/10.1016/j.disc.2018.12.018 doi: 10.1016/j.disc.2018.12.018 |
[15] | D. Han, H. Zhang, Zero-sum invariants on finite abelian groups with large exponent, Discrete Math., 342 (2019), 111617, 7pp. https://doi.org/10.1016/j.disc.2019.111617 doi: 10.1016/j.disc.2019.111617 |
[16] | H. Harborth, Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math., 262 (1973), 356–360. https://doi.org/10.1515/crll.1973.262-263.356 doi: 10.1515/crll.1973.262-263.356 |
[17] | G. Hegedűs, An improved exponential upper bound for the Erdős-Ginzburg-Ziv constant, Integers, 20 (2020), Paper No. A22, 5pp. |
[18] | E. Naslund, Exponential bounds for the Erdős-Ginzburg-Ziv constant, J. Combin. Theory Ser. A, 174 (2020), 105185, 19pp. https://doi.org/10.1016/j.jcta.2019.105185 doi: 10.1016/j.jcta.2019.105185 |
[19] | J. Oh, Q. Zhong, On Erdős-Ginzburg-Ziv inverse theorems for dihedral and dicyclic groups, Israel J. Math., 238 (2020), 715–743. https://doi.org/10.1007/s11856-020-2036-6 doi: 10.1007/s11856-020-2036-6 |
[20] | A. Sidorenko, On generalized Erdős-Ginzburg-Ziv constants for $Z_2^d$, J. Combin. Theory Ser. A, 174 (2020), 150254, 20pp. https://doi.org/10.1016/j.jcta.2020.105254 doi: 10.1016/j.jcta.2020.105254 |