Research article

On Modified Erdős-Ginzburg-Ziv constants of finite abelian groups

  • Received: 01 September 2022 Revised: 22 December 2022 Accepted: 30 December 2022 Published: 09 January 2023
  • MSC : 11B13, 11P70, 05D10

  • Let $ G $ be a finite abelian group with exponent $ \exp(G) $ and $ S $ be a sequence with elements of $ G $. We say $ S $ is a zero-sum sequence if the sum of the elements in $ S $ is the zero element of $ G $. For a positive integer $ t $, let $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) denote the smallest integer $ \ell $ such that every sequence (respectively, zero-sum sequence) $ S $ over $ G $ with $ |S|\geq \ell $ contains a zero-sum subsequence of length $ t\exp(G) $. The invariant $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) is called the Generalized Erdős-Ginzburg-Ziv constant (respectively, Modified Erdős-Ginzburg-Ziv constant) of $ G $. In this paper, we discuss the relationship between Generalized Erdős-Ginzburg-Ziv constant and Modified Erdős-Ginzburg-Ziv constant, and determine $ \mathtt{s}'_{t\exp(G)}(G) $ for some finite abelian groups.

    Citation: Yuting Hu, Jiangtao Peng, Mingrui Wang. On Modified Erdős-Ginzburg-Ziv constants of finite abelian groups[J]. AIMS Mathematics, 2023, 8(3): 6697-6704. doi: 10.3934/math.2023339

    Related Papers:

  • Let $ G $ be a finite abelian group with exponent $ \exp(G) $ and $ S $ be a sequence with elements of $ G $. We say $ S $ is a zero-sum sequence if the sum of the elements in $ S $ is the zero element of $ G $. For a positive integer $ t $, let $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) denote the smallest integer $ \ell $ such that every sequence (respectively, zero-sum sequence) $ S $ over $ G $ with $ |S|\geq \ell $ contains a zero-sum subsequence of length $ t\exp(G) $. The invariant $ \mathtt{s}_{t\exp(G)}(G) $ (respectively, $ \mathtt{s}'_{t\exp(G)}(G) $) is called the Generalized Erdős-Ginzburg-Ziv constant (respectively, Modified Erdős-Ginzburg-Ziv constant) of $ G $. In this paper, we discuss the relationship between Generalized Erdős-Ginzburg-Ziv constant and Modified Erdős-Ginzburg-Ziv constant, and determine $ \mathtt{s}'_{t\exp(G)}(G) $ for some finite abelian groups.



    加载中


    [1] N. Alon, S. Friedland, G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, 37 (1984), 79–91. https://doi.org/10.1016/0095-8956(84)90047-9 doi: 10.1016/0095-8956(84)90047-9
    [2] C. Augspurger, M. Minter, K. Shoukry, P. Sissokho, K. Voss, Avoiding zero-sum sequences of prescribed length over the integers, Integers, 17 (2017), Paper No. A18, 13pp.
    [3] A. Bialostocki, P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math., 110 (1992), 1–8. https://doi.org/10.1016/0012-365X(92)90695-C doi: 10.1016/0012-365X(92)90695-C
    [4] A. Berger, An analogue of the Erdős-Ginzburg-Ziv Theorem over $\mathbb{Z}$, Discrete Math., 342 (2019), 815–820. https://doi.org/10.1016/j.disc.2018.11.018 doi: 10.1016/j.disc.2018.11.018
    [5] A. Berger, D. Wang, Modified Erdős-Ginzburg-Ziv constants for $\mathbb{Z}/n\mathbb{Z}$ and $(\mathbb{Z}/n\mathbb{Z})^2$, Discrete Math., 342 (2019), 1113–1116. https://doi.org/10.1016/j.disc.2018.12.024 doi: 10.1016/j.disc.2018.12.024
    [6] J. Bitz, S Griffith, X. He, Exponential lower bounds on the generalized Erdős-Ginzburg-Ziv constant, Discrete Math., 343 (2020), 112083, 4pp. https://doi.org/10.1016/j.disc.2020.112083 doi: 10.1016/j.disc.2020.112083
    [7] P. Erdős, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel, 10 (1961), 41–43.
    [8] W. Gao, R. Thangadurai, On the structure of sequences with forbidden zero-sum subsequences, Colloq. Math., 98 (2003), 213–222. https://doi.org/10.4064/cm98-2-7 doi: 10.4064/cm98-2-7
    [9] W. Gao, D. Han, J. Peng, F. Sun, On zero-sum subsequences of length $k\exp(G)$, J. Combin. Theory Ser. A, 125 (2014), 240–253. https://doi.org/10.1016/j.jcta.2014.03.006 doi: 10.1016/j.jcta.2014.03.006
    [10] W. Gao, S. Hong, J. Peng, On zero-sum subsequences of length $k\exp(G)$ II, J. Combin. Theory Ser. A, 187 (2022), 105563. https://doi.org/10.1016/j.jcta.2021.105563 doi: 10.1016/j.jcta.2021.105563
    [11] A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. https://doi.org/10.1201/9781420003208
    [12] B. Girard, W.A. Schmid, Direct zero-sum problems for certain groups of rank three, J. Number Theory, 197 (2019), 297–316. https://doi.org/10.1016/j.jnt.2018.08.016 doi: 10.1016/j.jnt.2018.08.016
    [13] B. Girard, W.A. Schmid, Inverse zero-sum problems for certain groups of rank three, Acta Math. Hungar., 160 (2020), 229–247. https://doi.org/10.1007/s10474-019-00983-w doi: 10.1007/s10474-019-00983-w
    [14] D. Han, H. Zhang, On generalized Erdős-Ginzburg-Ziv constants of $C_n^{r}$, Discrete Math., 342 (2019), 1117–1127. https://doi.org/10.1016/j.disc.2018.12.018 doi: 10.1016/j.disc.2018.12.018
    [15] D. Han, H. Zhang, Zero-sum invariants on finite abelian groups with large exponent, Discrete Math., 342 (2019), 111617, 7pp. https://doi.org/10.1016/j.disc.2019.111617 doi: 10.1016/j.disc.2019.111617
    [16] H. Harborth, Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math., 262 (1973), 356–360. https://doi.org/10.1515/crll.1973.262-263.356 doi: 10.1515/crll.1973.262-263.356
    [17] G. Hegedűs, An improved exponential upper bound for the Erdős-Ginzburg-Ziv constant, Integers, 20 (2020), Paper No. A22, 5pp.
    [18] E. Naslund, Exponential bounds for the Erdős-Ginzburg-Ziv constant, J. Combin. Theory Ser. A, 174 (2020), 105185, 19pp. https://doi.org/10.1016/j.jcta.2019.105185 doi: 10.1016/j.jcta.2019.105185
    [19] J. Oh, Q. Zhong, On Erdős-Ginzburg-Ziv inverse theorems for dihedral and dicyclic groups, Israel J. Math., 238 (2020), 715–743. https://doi.org/10.1007/s11856-020-2036-6 doi: 10.1007/s11856-020-2036-6
    [20] A. Sidorenko, On generalized Erdős-Ginzburg-Ziv constants for $Z_2^d$, J. Combin. Theory Ser. A, 174 (2020), 150254, 20pp. https://doi.org/10.1016/j.jcta.2020.105254 doi: 10.1016/j.jcta.2020.105254
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1214) PDF downloads(51) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog