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Abstract: Let G be a finite abelian group with exponent exp(G) and S be a sequence with elements
of G. We say S is a zero-sum sequence if the sum of the elements in S is the zero element of G. For a
positive integer t, let st exp(G)(G) (respectively, s′t exp(G)(G)) denote the smallest integer ℓ such that every
sequence (respectively, zero-sum sequence) S over G with |S | ≥ ℓ contains a zero-sum subsequence of
length t exp(G). The invariant st exp(G)(G) (respectively, s′t exp(G)(G)) is called the Generalized Erdős-
Ginzburg-Ziv constant (respectively, Modified Erdős-Ginzburg-Ziv constant) of G. In this paper,
we discuss the relationship between Generalized Erdős-Ginzburg-Ziv constant and Modified Erdős-
Ginzburg-Ziv constant, and determine s′t exp(G)(G) for some finite abelian groups.
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1. Introduction and main results

Let Zn denote the cyclic group of n elements. Let G be a finite abelian group. Up to isomorphism,
we can write G as Zn1 ⊕ . . . ⊕ Znr with 1 < n1 | . . . | nr, where nr = exp(G) is the exponent of
G. Whenever n1 = n2 = · · · = nr = n, we denote G by Zr

n. For convenience, we write g ∈ Zr
n as

g = (a1, a2, . . . , ar), where integers ai ∈ [0, n − 1] for every i ∈ [1, r].
Let G be an abelian group and G0 ⊆ G be a subset. We consider sequences over G0 as elements in

the free abelian monoid with basis G0. So a sequence S over G0 can be written in the form

S = g1 · . . . · gℓ =
∏
g∈G0

gvg(S ),

where vg(S ) ∈ N ∪ {0} denotes the multiplicity of g in S . We denote |S | = ℓ ∈ N ∪ {0} the length of
S , σ(S ) =

∑ℓ
i=1 gi =

∑
g∈G vg(S )g ∈ G the sum of S . We say the sequence S over G0 is a zero-sum

sequence if σ(S ) = 0 ∈ G. For an element g ∈ G, let g + S denote the sequence (g + g1) · . . . · (g + gℓ)
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over g + G0. Let H be a subgroup of G and φ : G → G/H be the natural homomorphism. Then
φ(S ) denotes the sequence φ(g1) · . . . · φ(gℓ) over G0/H. A sequence T is called a subsequence of S
if vg(T ) ≤ vg(S ) for all g ∈ G0. Whenever T is a subsequence of S , let S T−1 denote the subsequence
with T deleted from S . If S 1 and S 2 are two sequences over G, let S 1S 2 denote the sequence satisfying
that vg(S 1S 2) = vg(S 1) + vg(S 2) for all g ∈ G0. If S 1 = S 2, we denote S 1S 2 by S 2

1.
For a finite abelian group G and a positive integer t, let st exp(G)(G) denote the smallest integer ℓ

such that every sequence S over G with |S | ≥ ℓ contains a zero-sum subsequence of length t exp(G).
For t = 1, we abbreviate sexp(G)(G) to s(G), which is called the Erdős-Ginzburg-Ziv constant of G.
For t ≥ 2, the invariant st exp(G)(G) is called the Generalized Erdős-Ginzburg-Ziv constant of G. The
classical Erdős-Ginzburg-Ziv Theorem [7], proved in 1961, states that

s(Zn) = 2n − 1.

This theorem was viewed as one of the starting points for many problems involving zero-sum sequences
over finite abelian groups. These problems occur naturally in various branches of combinatorics and
number theory (see [1,3,16] for some classical papers). Since 1960s, the invariant st exp(G)(G) has been
studied by many authors (for recent progress see [6, 10, 12–15, 17–20]).

Our main motivation of this paper is the following Modified Erdős-Ginzburg-Ziv constant, which
was introduced by Augspurger et al. [2] in 2017.

Definition 1.1. Let G be an abelian group and G0 ⊆ G be a subset. For a positive integer w, let s′w(G0)
denote the smallest integer ℓ such that every zero-sum sequence S over G0 with |S | ≥ ℓ contains a zero-
sum subsequence of length w. If no such ℓ exists, then let s′w(G0) = ∞. For w = exp(G), we abbreviate
s′exp(G)(G0) to s′(G0). The invariant s′w(G0) is called the Modified Erdős-Ginzburg-Ziv constant of G0.

There has been lots of results on Generalized Erdős-Ginzburg-Ziv constant, but little is known about
Modified Erdős-Ginzburg-Ziv constant.

For the infinite abelian group Z, let [−k, k] = {i | −k ≤ i ≤ k} ⊂ Z, where k is a positive integer.
Augspurger et al. [2] gave some conditions for which s′w([−k, k]) is finite. They also gave the first results
on s′w([−k, k]) for some positive integers w, k. In 2019, Berger [4] completely determined s′w([−k, k])
for all positive integers w, k.

Let G be a finite abelian group and g be an element of G with ord(g) = exp(G). Let w be a positive
integer with exp(G) ∤ w. Then for every positive integer ℓ, both S 1 = gℓ ·(−ℓg) and S 2 = gℓ+1 ·(−(ℓ+1)g)
are zero-sum sequences over G. But either S 1 or S 2 contains no zero-sum subsequence of length w. It
follows that s′w(G) is infinite. So we always consider the case when w = t exp(G), where t is a positive
integer. In 2009, Berger and Wang [5] determined the invariants s′tn(Zn) for every positive integer t and
s′(Z2

n).
By the definition of st exp(G)(G) and s′t exp(G)(G), we clearly have

s′t exp(G)(G) ≤ st exp(G)(G) (1.1)

for every finite abelian group G and every positive integer t.
Let G be a finite abelian group. In 2017, Zhong (see [2, Lemma 1]) proved that if gcd(s(G) −

1, exp(G)) = 1, then s′(G) = s(G). In this paper, we can slightly improve this result as
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Theorem 1.2. Let G be a finite abelian group. If gcd(st exp(G)(G) − i, exp(G)) = 1 for some positive
integer i, then s′t exp(G)(G) > st exp(G)(G) − i. Moreover, if gcd(st exp(G)(G) − 1, exp(G)) = 1, then
s′t exp(G)(G) = st exp(G)(G).

By Theorem 1.2, we are able to determine s′t exp(G)(G) for the following cases.

Theorem 1.3. (1) Let G = Z2
n. If t ≥ 2 and gcd(n, 3) = 1, then s′tn(G) = stn(G) = tn + 2n − 2.

(2) Let G = Zm ⊕ Zn with 1 ≤ m | n. If gcd(2m − i, n) = 1 for some integer i ≥ 4, then s′(G) ≥
2m + 2n − (i − 1). Moveover, if i = 4, then s′(G) = s(G) = 2m + 2n − 3.

(3) Let G = Zd
2, where d is even. If 2t > d, then s′2t(G) = s2t(G) = 2t + d.

We also find some cases such that s′t exp(G)(G) , st exp(G)(G). We need the following definition
associated with s(G).

Definition 1.4. [8, Definition 1.1] A pair (n, d) of positive integers is said to have Property D if
(n− 1) | (s(Zd

n)− 1) and every sequence S over Zd
n of length s(Zd

n)− 1 having no zero-sum subsequence
of length n is of the form T n−1, where T is a sequence over Zd

n with |T | = (s(Zd
n) − 1)/(n − 1).

Let G = Zr
n with n ≥ 3 and r ≥ 2. Suppose s(G) = c(n− 1)+ 1 for some positive integer c and (n, r)

has Property D. Zhong (see [2, Lemma 1]) proved that if gcd(s(G) − 1, n) = c, then s′(G) < s(G). In
this paper, we obtain that

Theorem 1.5. (1) Let n, d, k1 be positive integers and n > 1. Suppose s(Zd
nk) = c(nk − 1)+ 1 for every

positive integer k, where c is a constant depending only on n and d. If s′(Zd
nk1

) ≤ s(Zd
nk1

) − i for
some positive integer i, then s′(Zd

nk) ≤ s(Zd
nk) − i for every integer k ≥ k1.

(2) Let G = Zm ⊕ Zn with 1 ≤ m | n and H = Zd ⊕ Zd with d | m. If s′(H) ≤ s(H)− i for some positive
integer i, then s′(G) ≤ s(G) − i.

By using Theorem 1.2 and Theorem 1.5, we obtain the following results.

Theorem 1.6. Let k, d be two positive integers.

(1) If k < d, then s′(Zd
2k) = s(Zd

2k) = 2d(2k − 1) + 1.
(2) If k ≥ d, then s′(Zd

2k) = s(Zd
2k) − 1 = 2d(2k − 1).

(3) If k ≥ 2, then s′(Z3
3k) = s(Z3

3k) − 1 = 9(3k − 1).

We remark that the first two results in Theorem 1.6 confirm a conjecture of Berger and Wang
(see [5, Conjecture 4.2]).

This paper is organized as follows. In Section 2, we deal with Theorems 1.2 and 1.3. In Section 3,
we prove Theorems 1.5 and 1.6. In the final section, some additional results are given.

2. Proofs of Theorems 1.2 and 1.3

In this section, we deal with some cases when s′t exp(G)(G) = st exp(G)(G).
Proof of Theorem 1.2. Suppose gcd(st exp(G)(G)− i, exp(G)) = 1 for some positive integer i. We need to
find a zero-sum sequence of length st exp(G)(G) − i, which contains no zero-sum subsequence of length
t exp(G). By the definition of st exp(G)(G), there exists a sequence S with |S | = st exp(G)(G) − i and S has
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no zero-sum subsequence of length t exp(G). Assume that σ(S ) = h ∈ G and let x ∈ N be an integer
such that

(st exp(G)(G) − i)x ≡ 1 (mod exp(G)).

Such integer x exists because gcd(st exp(G)(G) − i, exp(G)) = 1. Let

S ′ = −(xh) + S .

Since σ(S ′) = σ(S ) − (st exp(G)(G) − i)xh = 0, we obtain that S ′ is a zero-sum sequence of length
st exp(G)(G) − i. Next we prove that S ′ has no zero-sum subsequence of length t exp(G). Assume to the
contrary that T ′ is a zero-sum subsequence of S ′ with |T ′| = t exp(G). Then σ(T ′) + t exp(G)(xh) =
0. It follows that T = (xh) + T ′ is a zero-sum subsequence of S with |T | = t exp(G), yielding a
contradiction to the definition of S . So S ′ has no zero-sum subsequence of length t exp(G). It follows
that s′t exp(G)(G) > st exp(G)(G) − i, and we are done.

Moreover, if gcd(st exp(G)(G) − 1, exp(G)) = 1, then s′t exp(G)(G) > st exp(G)(G) − 1. By (1.1), we obtain
that s′t exp(G)(G) ≤ st exp(G)(G). Therefore, s′t exp(G)(G) = st exp(G)(G). □

We need the following lemmas to prove Theorem 1.3.

Lemma 2.1. [9, Proposition 4.1] Suppose t ≥ 2, then stn(Z2
n) = tn + 2n − 2.

Lemma 2.2. [11, Theorem 5.8.3] Let G = Zm ⊕ Zn with 1 ≤ m | n. Then s(G) = 2m + 2n − 3.

Lemma 2.3. [20, Theorem 5.9] s2t(Zd
2) = 2t + d for d < 2t.

Proof of Theorem 1.3. (1). Let G = Z2
n. Suppose t ≥ 2. By Lemma 2.1, we have that stn(G) =

tn + 2n − 2. Since gcd(n, 3) = 1, we infer that gcd(stn(G) − 1, n) = 1. It follows from Theorem 1.2 that
s′tn(G) = stn(G) = tn + 2n − 2.

(2). Let G = Zm ⊕ Zn. By Lemma 2.2, we have that s(G) = 2m + 2n − 3. Since gcd(2m − i, n) = 1
for some integer i ≥ 4, we infer that gcd(s(G) − (i − 3), exp(G)) = 1. By Theorem 1.2, we obtain that
s′(G) ≥ s(G) − (i − 3) + 1 = 2m + 2n − (i − 1).

If i = 4, we infer that gcd(s(G) − 1, exp(G)) = 1. By Theorem 1.2, we obtain that s′(G) = s(G) =
2m + 2n − 3.

(3). Let G = Zd
2. Since d < 2t, by Lemma 2.3, we have that s2t(G) = 2t + d. Since d is even, we

obtain that gcd(2t + d − 1, 2) = 1, i.e. gcd(s2t(G) − 1, exp(G)) = 1. By Theorem 1.2, we obtain that
s′2t(G) = s2t(G) = 2t + d. □

3. Proof of Theorems 1.5 and 1.6

In this section, we study some cases when s′t exp(G)(G) , st exp(G)(G).
Proof of Theorem 1.5. (1). We proceed by induction on k. If k = k1, then by the hypothesis of the
theorem we have s′(Zd

nk1
) ≤ s(Zd

nk1
) − i.

Suppose that the theorem is true for k − 1 ≥ k1. We will show that s′(Zd
nk) ≤ s(Zd

nk) − i. Let S be a
zero-sum sequence over Zd

nk with |S | = s(Zd
nk) − i = c(nk − 1) + 1 − i. It suffices to show that S contains

a zero-sum subsequence of length nk. Let

ϕ : Zd
nk → Z

d
nk−1
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be the natural homomorphism with ker ϕ � Zd
n. Then ϕ(S ) is a zero-sum sequence over Zd

nk−1 with
|ϕ(S )| = c(nk − 1)+ 1− i = c(n− 1)× nk−1 + c(nk−1 − 1)+ 1− i > c(nk−1 − 1)+ 1− i. By the assumption,
we have s′(Zd

nk−1) ≤ c(nk−1 − 1) + 1 − i. So we can find a subsequence S 1 of S such that ϕ(S 1) is a
zero-sum sequence over Zd

nk−1 of length nk−1. It follows that ϕ(S S −1
1 ) is a zero-sum sequence over Zd

nk−1

with |ϕ(S S −1
1 )| = c(nk − 1)+ 1− i− nk−1 = (c(n− 1)− 1)× nk−1 + c(nk−1 − 1)+ 1− i > c(nk−1 − 1)+ 1− i

(n > 1). Then we can find a subsequence S 2 of S S −1
1 such that ϕ(S 2) is a zero-sum sequence over

Zd
nk−1 of length nk−1. Repeating the above procedure, one can find c(n − 1) + 1 disjoint zero-sum

subsequences ϕ(S 1), . . . , ϕ(S c(n−1)+1) of ϕ(S ) such that |ϕ(S 1)| = · · · = |ϕ(S c(n−1)+1)| = nk−1. Since
ϕ(σ(S i)) = σ(ϕ(S i)) = 0 ∈ Zd

nk−1 , we infer that σ(S i) ∈ ker ϕ � Zd
n for i = 1, . . . , c(n − 1) + 1. Let

T = σ(S 1) · . . . · σ(S c(n−1)+1).

Then T is a sequence over ker ϕ � Zd
n. By the hypothesis of the theorem, we have s(Zd

n) = c(n−1)+1. So
T has a zero-sum subsequence of length n. Without loss of generality we may assume that σ(S 1)σ(S 2) ·
. . . · σ(S n) is a zero-sum subsequence of T over ker ϕ � Zd

n. Since σ(S 1) + σ(S 2) + · · · + σ(S n) = 0 ∈
ker ϕ ⊆ Zd

nk and |S 1S 2 · . . . · S n| = |ϕ(S 1)ϕ(S 2) · . . . · ϕ(S n)| = nk, we obtain that S 1S 2 · . . . · S n is a
zero-sum subsequence of S of length nk. It follows that s′(Zd

nk) ≤ s(Zd
nk) − i, and we are done.

(2). Let G = Zm ⊕ Zn with 1 ≤ m | n and H = Zd ⊕ Zd with d | m. By Lemma 2.2, we have
s(G) = 2m + 2n − 3 . Let S be a zero-sum sequence over G with |S | = s(G) − i = 2m + 2n − 3 − i. It
suffices to show that S contains a zero-sum subsequence of length n. Let

ϕ : G → H

be the natural homomorphism with ker ϕ � G/H = Zm
d
⊕Z n

d
. By the assumption, we have s′(H) ≤ 4d−

3−i. Since ϕ(S ) is a zero-sum sequence over H with |ϕ(S )| = 2m+2n−3−i = (2m
d +2 n

d−4)d+4d−3−i,
similar with (1), we can find 2m

d + 2 n
d − 3 disjoint zero-sum subsequences ϕ(S 1), . . . , ϕ(S 2 m

d +2 n
d−3) such

that |ϕ(S 1)| = · · · = |ϕ(S 2 m
d +2 n

d−3)| = d. By Lemma 2.2, we have s(G/H) = 2m
d + 2 n

d − 3. So we can
prove that S has a zero-sum subsequence of length n. It follows that s′(G) ≤ s(G) − i, and we are
done. □

In 2003, Gao and Thangadurai proved the following result.

Lemma 3.1. [8, Corollary 1.1] The pairs (2k, d), (3k, 3) have Property D for any positive integers k
and d.

We need the following results.

Lemma 3.2. (1) s(Zd
2k) = 2d(2k − 1) + 1 for every k ≥ 1 and d ≥ 1. (Harborth [16])

(2) s(Z3
3k) = 9(3k − 1) + 1 for every k ≥ 1. (Gao and Thangadurai [8])

Now we are in a position to prove Theorem 1.6.
Proof of Theorem 1.6. (1). We will prove s′(Zd

2k) = 2d(2k − 1) + 1 for k ≤ d − 1. By (1.1) and
Lemma 3.2.(1), we have s′(Zd

2k) ≤ s(Zd
2k) = 2d(2k − 1) + 1. Let

W =
∏

a1,a2,...,ad∈{0,1}

(a1, a2, . . . , ad)2k−1.

Since k ≤ d − 1, it is easy to check that W is a zero-sum sequence of length 2d(2k − 1), and W
contains no zero-sum subsequence of length 2k. It follows that s′(Zd

2k) ≥ 2d(2k − 1) + 1. Therefore,
s′(Zd

2k) = 2d(2k − 1) + 1 for k ≤ d − 1.
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(2). Assume that k ≥ d. By (1.1) and Lemma 3.2.(1), we have s′(Zd
2k) ≤ s(Zd

2k) = 2d(2k − 1) + 1.
We first prove that s′(Zk

2k) ≤ 2k(2k−1). Let S be a zero-sum sequence over Zk
2k with |S | = 2k(2k−1).

We need to prove that S contains a zero-sum subsequence of length 2k. Assume to the contrary that
S contains no zero-sum subsequence of length 2k. Note that |S | = s(Zk

2k) − 1. By Lemma 3.1, we
obtain that the pair (2k, k) has Property D. Therefore, S is of form T 2k−1 for some sequence T with

|T | =
s(Zk

2k )−1

2k−1 = 2k. Since 0 = σ(S ) = (2k − 1)σ(T ) and gcd(2k − 1, 2k) = 1, we infer that σ(T ) = 0.
Therefore, T is a zero-sum subsequence of S with |T | = 2k, yielding a contradiction. So S contains a
zero-sum subsequence of length 2k, and this proves that

s′(Zk
2k) ≤ 2k(2k − 1) = s(Zk

2k) − 1.

By Theorem 1.5, we have that s′(Zd
2k) ≤ s(Zd

2k) − 1 = 2d(2k − 1) for every k ≥ d. Since gcd(2d(2k −

1) − 1, 2k) = gcd(s(Zd
2k) − 2, exp(Zd

2k)) = 1, by Theorem 1.2, we obtain that

s′(Zd
2k) > s(Zd

2k) − 2 = 2d(2k − 1) − 1.

Therefore, s′(Zd
2k) = 2d(2k − 1) for every k ≥ d.

(3). By Lemma 3.2.(2), we have s(Z3
3k) = 9(3k − 1) + 1. Since (3k, 3) has Property D, by using a

similar argument as in (2), we can prove that s′(Z3
3k) = 9(3k − 1) for every integer k ≥ 2. □

4. Concluding remarks

In this section, we give some additional results. By (1.1), we have s′t exp(G)(G) ≤ st exp(G)(G) for
every finite abelian group G and every positive integer t. By Theorem 1.6, the equality s′t exp(G)(G) =
st exp(G)(G) does not always hold. A natural problem asks that

Problem 4.1. When do we have s′t exp(G)(G) = st exp(G)(G)?

By Theorem 1.2, if gcd(st exp(G)(G) − 1, exp(G)) = 1, then s′t exp(G)(G) = st exp(G)(G). However,
gcd(st exp(G)(G) − 1, exp(G)) = 1 is not necessary for s′t exp(G)(G) = st exp(G)(G). In this paper, we are able
to prove the following result.

Theorem 4.2. Let G = Z2t
2 . Then s′2t(G) = s2t(G) = 4t + 1.

In order to prove Theorem 4.2, we need the following result due to Sidorenko [20].

Lemma 4.3. [20, Theorem 5.10] s2t(Z2t
2 ) = 4t + 1.

Proof of Theorem 4.2. By (1.1) and Lemma 4.3, we have

s′2t(Z
2t
2 ) ≤ s2t(Z2t

2 ) = 4t + 1.

Next we need to prove s′2t(Z
2t
2 ) ≥ 4t + 1. We denote e j = (a1, a2, . . . , a2t) for every j = 1, 2, . . . , 2t,

where a j = 1 and ai = 0 for every i , j. Let

T = 02t−1e1 · e2 · . . . · e2t · (e1 + e2 + · · · + e2t).

Then T is a zero-sum sequence with |T | = 4t and T contains no zero-sum subsequence of length 2t.
Hence, s′2t(Z

2t
2 ) ≥ 4t + 1. Therefore, s′2t(Z

2t
2 ) = 4t + 1. □

Among other results, we can also determine some cases when s′t exp(G)(G) < st exp(G)(G) holds.
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Theorem 4.4. (1) If G = Zn with gcd(n, 2) , 1, then s′tn(G) < stn(G) for every integer t ≥ 1.
(2) If G = Z2

n with 4 | n, then s′(G) < s(G).
(3) If G = Zm ⊕ Zn with 4 | m | n, then s′(G) < s(G).

In order to prove Theorem 4.4, we need the following results.

Lemma 4.5. [5, Theorem 1.3] s′tn(Zn) = (t+ 1)n− ℓ+ 1 for every integer t ≥ 1, where ℓ is the smallest
integer such that ℓ ∤ n.

Lemma 4.6. [5, Theorem 1.4] s′(Z2
n) = 4n − ℓ + 1, where ℓ is the smallest integer such that ℓ ≥ 4 and

ℓ ∤ n.

The following result is a consequence of the Erdős-Ginzburg-Ziv Theorem.

Lemma 4.7. Let t, n be two positive integers. Then stn(Zn) = (t + 1)n − 1.

Proof of Theorem 4.4. (1). By Lemma 4.5, we infer that s′tn(Zn) = (t + 1)n − ℓ + 1 for every integer
t ≥ 1, where ℓ is the smallest integer such that ℓ ∤ n. Since gcd(n, 2) , 1, we infer that ℓ ≥ 3. It follows
that s′tn(Zn) ≤ (t + 1)n − 2. By Lemma 4.7, we have that s′tn(Zn) < stn(Zn).

(2). By Lemma 4.6, we infer that s′(Z2
n) = 4n− ℓ+ 1, where ℓ is the smallest integer such that ℓ ≥ 4

and ℓ ∤ n. Since 4 | n, we infer that ℓ ≥ 5. It follows that s′(Z2
n) ≤ 4n − 4. By Lemma 2.2, we get that

s′(Z2
n) < s(Z2

n).
(3). Let H = Z2

4. By (2), we obtain that s′(H) ≤ s(H) − 1. By Theorem 1.5, we infer that
s′(Zm ⊕ Zn) < s(Zm ⊕ Zn). □
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