In this work, we initiate the notion of a fuzzy cyclic $ (\alpha, \beta) $-admissibility to establish some fixed point results for contraction mappings involving a generalized simulation function in the class of fuzzy $ b $-metric spaces. We give some illustrative examples to validate the new concepts and obtained results. At the end, we present an application on a Fredholm integral equation.
Citation: Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi. Some new characterizations and results for fuzzy contractions in fuzzy $ b $-metric spaces and applications[J]. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338
In this work, we initiate the notion of a fuzzy cyclic $ (\alpha, \beta) $-admissibility to establish some fixed point results for contraction mappings involving a generalized simulation function in the class of fuzzy $ b $-metric spaces. We give some illustrative examples to validate the new concepts and obtained results. At the end, we present an application on a Fredholm integral equation.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math., 5 (1955), 285–309. https://doi.org/10.2140/pjm.1955.5.285 doi: 10.2140/pjm.1955.5.285 |
[3] | S. Heikkil? On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal., 14 (1990), 413–426. https://doi.org/10.1016/0362-546X(90)90082-R |
[4] | E. A. Ok, Fixed set theory for closed correspondences with applications to self-similarity and games, Nonlinear Anal., 56 (2004), 309–330. https://doi.org/10.1016/j.na.2003.08.001 doi: 10.1016/j.na.2003.08.001 |
[5] | S. Reich, A. J. Zaslavski, Generic well-posedness of fixed point problems, Vietnam J. Math., 46 (2018), 5–13. https://doi.org/10.1007/s10013-017-0251-1 doi: 10.1007/s10013-017-0251-1 |
[6] | I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[7] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[8] | S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4 |
[9] | T. Došenović, D. Rakić, M. Brdar, Fixed point theorem in fuzzy metric spaces using altering distance, Filomat, 28 (2014), 1517–1524. https://doi.org/10.2298/FIL1407517D doi: 10.2298/FIL1407517D |
[10] | A. George, P. Veeramani, On some results in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[11] | A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2 |
[12] | V. Gregori, A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9 |
[13] | I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdisc. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318 |
[14] | A. Shahzad, A. Shoaib, N. Mlaiki, S. S. Aiadi, Results for fuzzy mappings and stability of fuzzy sets with applications, Fractal Fract., 6 (2022), 556. https://doi.org/10.3390/fractalfract6100556 doi: 10.3390/fractalfract6100556 |
[15] | S. Sedghi, N. Shobkolaei, T. Došenović, S. Radenović, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca, 68 (2018), 451–462. https://doi.org/10.1515/ms-2017-0115 doi: 10.1515/ms-2017-0115 |
[16] | F. Uddin, U. Ishtiaq, K. Javed, S. S. Aiadi, M. Arshad, N. Souayah, et al., A new extension to the intuitionistic fuzzy metric-like spaces, Symmetry, 14 (2022), 1400. https://doi.org/10.3390/sym14071400 doi: 10.3390/sym14071400 |
[17] | N. Wairojjana, T. Došenović, T. Rakić, D. Gopal, P. Kumam, An altering distance function in fuzzy metric fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 1–19. https://doi.org/10.1186/s13663-015-0318-1 doi: 10.1186/s13663-015-0318-1 |
[18] | D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst., 144 (2004), 431–439. https://doi.org/10.1016/S0165-0114(03)00305-1 doi: 10.1016/S0165-0114(03)00305-1 |
[19] | I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[20] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[21] | E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9540-7 |
[22] | O. Hadžić, A fixed point theorem in Menger spaces, Publ. Inst. Math., 20 (1979), 107–112. |
[23] | O. Hadžić, E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publisher, 2001. |
[24] | S. Sedghi, N. Shobe, Common fixed point theorem in $b$-fuzzy metric space, Nonlinear Funct. Anal. Appl., 17 (2012), 349–359. |
[25] | T. Došenović, A. Javaheri, S. Sedghi, N. Shobe, Coupled fixed point theorem in $b$-fuzzy metric spaces, Novi Sad J. Math., 47 (2017), 77–88. https://doi.org/ 10.30755/NSJOM.04361 doi: 10.30755/NSJOM.04361 |
[26] | S. Sedghi, N. Shobe, Common fixed point theorem for $R$-weakly commuting maps in $b$-fuzzy metric space, Nonlinear Funct. Anal. Appl., 19 (2014), 285–295. |
[27] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K |
[28] | H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082–1094. https://doi.org/10.22436/jnsa.008.06.18 doi: 10.22436/jnsa.008.06.18 |
[29] | M. Demma, R. Saadati, P. Vetro, Fixed point results on $b$-metric space via Picard sequences and b-simulation functions, Iran. J. Math. Sci. Inform., 11 (2016), 123–136. https://doi.org/10.7508/IJMSI.2016.01.011 doi: 10.7508/IJMSI.2016.01.011 |
[30] | E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343–2350. https://doi.org/ 10.2298/FIL1608343K doi: 10.2298/FIL1608343K |
[31] | A. Perveen, M. Imdad, Proving new fixed point results in fuzzy metric spaces employing simulation function, J. Intell. Fuzzy Syst., 36 (2019), 6493–6501. https://doi.org/10.3233/JIFS-182873 doi: 10.3233/JIFS-182873 |
[32] | S. A. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $(\alpha, \beta)$-$(\psi, \phi)$-contractive mappings, Filomat, 28 (2014), 635–647. https://doi.org/10.2298/FIL1403635A doi: 10.2298/FIL1403635A |
[33] | P. Salimi, A. Latif, N. Hussain, Modified $\alpha$-$\psi$-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 1–19. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151 |
[34] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001 |
[35] | Y. Chalco-Cano, H. Román-Flores, M. D. Jiménez-Gamero, Generalized derivative and $\pi$-derivative for set-valued functions, Inform. Sci., 181 (2011), 2177–2188. https://doi.org/10.1016/j.ins.2011.01.023 doi: 10.1016/j.ins.2011.01.023 |
[36] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 |
[37] | A. R. Seadawy, M. Arshad, D. C. Lu, The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows, Chaos Solitons Fract., 139 (2020), 110141. https://doi.org/10.1016/j.chaos.2020.110141 doi: 10.1016/j.chaos.2020.110141 |
[38] | S. T. R. Rizvi, A. R. Seadawy, I. Ali, I. Bibi, M. Younis, Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers, Modern Phys. Lett. B, 34 (2020), 2050399. https://doi.org/10.1142/S0217984920503996 doi: 10.1142/S0217984920503996 |
[39] | A. R. Seadawy, S. Ahmed, S. T. R. Rizvi, K. Ali, Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system, Chaos Solitons Fract., 161 (2022), 112307. https://doi.org/10.1016/j.chaos.2022.112307 doi: 10.1016/j.chaos.2022.112307 |
[40] | A. R. Seadawy, S. T. R. Rizvi, S. Ahmed, Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation, Chaos Solitons Fract., 160 (2022), 112258. https://doi.org/10.1016/j.chaos.2022.112258 doi: 10.1016/j.chaos.2022.112258 |
[41] | N. Aziz, A. R. Seadawy, U. Raza, K. Ali, S. T. R. Rizvi, Chirped optical pulses for generalized longitudinal Lugiato Lefever: cubic nonlinear Schrödinger equation, Opt. Quant. Electron., 54 (2022), 1–29. https://doi.org/10.1007/s11082-022-04061-4 doi: 10.1007/s11082-022-04061-4 |
[42] | S. T. R. Rizvi, A. R. Seadawy, B. Mustafa, K. Ali, R. Ashraf, Propagation of chirped periodic and solitary waves for the coupled nonlinear Schrödinger equation in two core optical fibers with parabolic law with weak non-local nonlinearity, Opt. Quant. Electron., 54 (2022), 1–46. https://doi.org/10.1007/s11082-022-03960-w doi: 10.1007/s11082-022-03960-w |
[43] | A. Georgieva, Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method, Demonstr. Math., 54 (2021), 11–24. https://doi.org/10.1515/dema-2021-0005 doi: 10.1515/dema-2021-0005 |
[44] | D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967. https://doi.org/10.1016/j.amc.2014.01.135 doi: 10.1016/j.amc.2014.01.135 |