In this article, the concept of a Hausdorff fuzzy $ b $-metric space is introduced. The new notion is used to establish some fixed point results for multivalued mappings in $ G $-complete fuzzy $ b $-metric spaces satisfying a suitable requirement of contractiveness. An illustrative example is formulated to support the results. Eventually, an application for the existence of a solution for an integral inclusion is established which involves showing the materiality of the obtained results. These results are more general and some theorems proved by of Shehzad et al. are their special cases.
Citation: Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer. Multivalued contraction maps on fuzzy $ b $-metric spaces and an application[J]. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330
In this article, the concept of a Hausdorff fuzzy $ b $-metric space is introduced. The new notion is used to establish some fixed point results for multivalued mappings in $ G $-complete fuzzy $ b $-metric spaces satisfying a suitable requirement of contractiveness. An illustrative example is formulated to support the results. Eventually, an application for the existence of a solution for an integral inclusion is established which involves showing the materiality of the obtained results. These results are more general and some theorems proved by of Shehzad et al. are their special cases.
[1] | B. C. Dhage, Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean Math. Soc., 36 (1999), 565–578. |
[2] | H. Pathak, S. Mishra, A. Kalinde, Common fixed point theorems with applications to nonlinear integral equations, Demonstr. Math., 32 (1999), 547–564. https://doi.org/10.1515/dema-1999-0310 doi: 10.1515/dema-1999-0310 |
[3] | S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[4] | I. A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26–37. |
[5] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. U. Ostraviensis, 1 (1993), 5–11. |
[6] | H. Aydi, M. Aslam, D. Sagheer, S. Batul, R. Ali, E. Ameer, Kannan-type contractions on new extended b-metric spaces, J. Funct. Space., 2021 (2021). https://doi.org/10.1155/2021/7613684 doi: 10.1155/2021/7613684 |
[7] | T. Kamran, M. Postolache, A. Ghiura, S. Batul, R. Ali, The Banach contraction principle in $ C^{*} $-algebra-valued $b$-metric spaces with application, Fix. Point Theor. Appl., 2016 (2016), 10. https://doi.org/10.1186/s13663-015-0486-z doi: 10.1186/s13663-015-0486-z |
[8] | D. Shehwar, T. Kamran, $C^*$-valued $G$-contractions and fixed points, J. Inequal. Appl., 304 (2015), 304. https://doi.org/10.1186/s13660-015-0827-9 doi: 10.1186/s13660-015-0827-9 |
[9] | D. Shehwar, S. Batul, T. Kamran, A. Ghura, Caristi's fixed point theorem on C*-algebra valued metric spaces, J. Nonlinear Sci., 9 (2016), 584–588. https://doi.org/10.22436/jnsa.009.02.22 doi: 10.22436/jnsa.009.02.22 |
[10] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[11] | I. Kramosil, J. Michálek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326–334. |
[12] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[13] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[14] | K. Javed, H. Aydi, F. Uddin, M. Arshad, On orthogonal partial b-metric spaces with an application, J. Math., 2021 (2021). https://doi.org/10.1155/2021/6692063 doi: 10.1155/2021/6692063 |
[15] | F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric Spaces, J. Math. Anal., 8 (2017), 124–131. |
[16] | D. Mehit, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Set. Syst., 144 (2004), 431–439. https://doi.org/10.1016/S0165-0114(03)00305-1 doi: 10.1016/S0165-0114(03)00305-1 |
[17] | S. N. Mishra, S. N. Sharma, S. L. Singh, Common fixed point of maps on fuzzy metric spaces, Int. J. Math. Sci., 17 (1994), 253–258. https://doi.org/10.1155/S0161171294000372 doi: 10.1155/S0161171294000372 |
[18] | A. F. Roldán-López-de-Hierro, E. Karapinar, S. Manro, Some new fixed point theorems in fuzzy metric space, J. Intell. Fuzzy Syst., 27 (2014), 2257–2264. https://doi.org/10.3233/IFS-141189 doi: 10.3233/IFS-141189 |
[19] | K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math., 2021 (2021). https://doi.org/10.1155/2021/6663707 doi: 10.1155/2021/6663707 |
[20] | C. Vetro, Fixed points in a weak non-Archemedean fuzzy metric spaces, Fuzzy Set. Syst., 162 (2011), 84–90. https://doi.org/10.1016/j.fss.2010.09.018 doi: 10.1016/j.fss.2010.09.018 |
[21] | S. Nădăban, Fuzzy $b$-metric Spaces, Int. J. Comput. Commun., 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 doi: 10.15837/ijccc.2016.2.2443 |
[22] | D. Rakić, A. Mukheimer, T. Dosenovic, Z. D. Mitrović, S. Radenović, On some new fixed point results in fuzzy b-metric spaces, J. Inequal. Appl., 2020 (2020). https://doi.org/10.1186/s13660-020-02371-3 doi: 10.1186/s13660-020-02371-3 |
[23] | D. Rakić, T. Dosenović, Z. Mitrović, M. De la Sen, Some fixed point theorems of Cirić type in fuzzy metric spaces, Mathematics, 8 (2020), 297. https://doi.org/10.3390/math8020297 doi: 10.3390/math8020297 |
[24] | J. Rodriguez-Lopez, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Set. Syst., 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007 |
[25] | A. Shahzad, A. Shoaib, Q. Mahmood, Fixed point results for the multivalued mapping in Hausdorff fuzzy metric space, J. Fix. Point Theor. A., 2017 (2017). |
[26] | B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 314–334. https://doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313 |
[27] | N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy b-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 719–739. https://doi.org/10.22436/jnsa.008.05.24 doi: 10.22436/jnsa.008.05.24 |
[28] | Q. Zheyong, H. Shihuang, Coupled fixed points for multivalued mappings in fuzzy metric spaces, J. Fix. Point Theor. A., 2013 (2013), 162. https://doi.org/10.1186/1687-1812-2013-162 doi: 10.1186/1687-1812-2013-162 |
[29] | V. Gupta, N. Mani, A. Saini, Fixed point theorems and its applications in fuzzy metric spaces, Proceedings of the conference AEMDS-2013, 2013. https://doi.org/10.1186/1687-1812-2013-133 |
[30] | N. Hussain, M. A. Taoudi, Fixed point theorems for multivalued mappings in ordered Banach spaces with application to integral inclusions, Fix. Point Theor. A., 2016 (2016), 65. https://doi.org/10.1186/s13663-016-0555-y doi: 10.1186/s13663-016-0555-y |
[31] | P. Diamond, Theory and applications of fuzzy Volterra integral equations, IEEE T. Fuzzy Syst., 10 (2002), 97–102. https://doi.org/10.1109/91.983284 doi: 10.1109/91.983284 |
[32] | A. Jerri, Introduction to integral equations with applications, John Wiley & Sons, 1999. |
[33] | D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, Kluwer Academic Publishers, Dordrecht, 1996. |
[34] | L. Lishan, C. Wu, F. Guo, Existence theorems of global solutions of initial value problems for nonlinear integro-differential equations of mixed type in Banach spaces and applications, Comput. Math. Appl., 47 (2004), 13–22. https://doi.org/10.1016/S0898-1221(04)90002-8 doi: 10.1016/S0898-1221(04)90002-8 |
[35] | Z. Peiguo, X. Hao, Existence and uniqueness of solutions for a class of nonlinear integro-differential equations on unbounded domains in Banach spaces, Adv. Differ. Equ., 2018 (2018), 247. https://doi.org/10.1186/s13662-018-1681-0 doi: 10.1186/s13662-018-1681-0 |
[36] | M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal.-Model., 22 (2017), 17–30. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2 |
[37] | S. S. Alshoraify, A. Shoaib, M. Arshad, New types of F-Contraction for multivalued mappings and related fixed point results in abstract spaces, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/1812461 doi: 10.1155/2019/1812461 |
[38] | M. Anwar, R. Ali, D. Sagheer, N. Hussain, Wardowski type $\alpha$-$F$-contractive approach for nonself multivalued mappings, U. P. B. Sci. Bull., 82 (2020), 69–78. |
[39] | M. S. Ashraf, R. Ali, N. Hussain, New fuzzy fixed point results in generalized fuzzy metric spaces with application to integral equations, IEEE Access, 8 (2020), 91653–91660. https://doi.org/10.1109/ACCESS.2020.2994130 doi: 10.1109/ACCESS.2020.2994130 |
[40] | F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular b-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275–1285. https://doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719 |