Let $ \{X_n, n\geq1\} $ be a sequence of $ m $-dependent strictly stationary random variables in a sub-linear expectation $ (\Omega, \mathcal{H}, \mathbb{E}) $. In this article, we give the definition of $ m $-dependent sequence of random variables under sub-linear expectation spaces taking values in $ \mathbb{R} $. Then we establish moderate deviation principle for this kind of sequence which is strictly stationary. The results in this paper generalize the result that in the case of independent identically distributed samples. It provides a basis to discuss the moderate deviation principle for other types of dependent sequences.
Citation: Shuang Guo, Yong Zhang. Moderate deviation principle for $ m $-dependent random variables under the sub-linear expectation[J]. AIMS Mathematics, 2022, 7(4): 5943-5956. doi: 10.3934/math.2022331
Let $ \{X_n, n\geq1\} $ be a sequence of $ m $-dependent strictly stationary random variables in a sub-linear expectation $ (\Omega, \mathcal{H}, \mathbb{E}) $. In this article, we give the definition of $ m $-dependent sequence of random variables under sub-linear expectation spaces taking values in $ \mathbb{R} $. Then we establish moderate deviation principle for this kind of sequence which is strictly stationary. The results in this paper generalize the result that in the case of independent identically distributed samples. It provides a basis to discuss the moderate deviation principle for other types of dependent sequences.
[1] | H. T. Chen, Y. Zhang, Moderate deviations for the total population arising from a nearly unstable sub-critical Galton-Watson process with immigration, Commun. Stat.-Theor. M., 50 (2021), 432–445. http://dx.doi.org/10.1080/03610926.2019.1635703 doi: 10.1080/03610926.2019.1635703 |
[2] | Z. J. Chen, X. W. Feng, Large deviation for negatively dependent random variables under sublinear expectation, Commun. Stat.-Theor. M., 45 (2016), 400–412. http://dx.doi.org/10.1080/03610926.2015.1006067 doi: 10.1080/03610926.2015.1006067 |
[3] | Z. J. Chen, P. Y. Wu, B. M. Li, A strong law of large numbers for non-additive probabilities, Int. J. Approx. Reason., 54 (2013), 365–377. http://dx.doi.org/10.1016/j.ijar.2012.06.002 doi: 10.1016/j.ijar.2012.06.002 |
[4] | G. Choquet, Theory of capacities, Ann. I. Fourier, 5 (1953), 131–295. http://dx.doi.org/10.5802/aif.53 doi: 10.5802/aif.53 |
[5] | L. Denis, M. Hu, S. G. Peng, Function spaces and capacity related to a sublinear expecation: Application to G-Brownian motion paths, Potential Anal., 34 (2011), 139–161. http://dx.doi.org/10.1007/s11118-010-9185-x doi: 10.1007/s11118-010-9185-x |
[6] | L. Denis, C. Martini, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab., 16 (2006), 827–852. http://dx.doi.org/10.1214/105051606000000169 doi: 10.1214/105051606000000169 |
[7] | C. Dellacherie, Capacités et processus stochastiques, Springer-Verlag, New York, 1972. |
[8] | X. W. Feng, Q. M. Shao, O. Zeitouni, Self-normalized moderate deviations for random walk in random scenery, J. Theor. Probab., 34 (2021), 103–124. http://dx.doi.org/10.1007/s10959-019-00965-2 doi: 10.1007/s10959-019-00965-2 |
[9] | F. Q. Gao, M. Z. Xu, Large deviations and moderate deviations for independent random variables under sublinear expectations, Sci. Sin. Math., 41 (2011), 337–352. http://dx.doi.org/10.1360/012009-879 doi: 10.1360/012009-879 |
[10] | F. Q. Gao, M. Z. Xu, Relative entropy and large deviations under sublinear expectations, Acta Math. Sci. Ser. B, 32 (2012), 1826–1834. http://dx.doi.org/10.1016/S0252-9602(12)60143-X doi: 10.1016/S0252-9602(12)60143-X |
[11] | S. Guo, Y. Zhang, Central limit theorem for linear processes generated by $m$-dependent random variables under the sub-linear expectation, Commun. Stat.-Theor. M., 2022, In press. |
[12] | Z. C. Hu, L. Zhou, Multi-dimensional central limit theorems and laws of large numbers under sublinear expectations, Acta Math. Sin., 31 (2015), 305–318. http://dx.doi.org/ 10.1007/s10114-015-3212-1 doi: 10.1007/s10114-015-3212-1 |
[13] | X. P. Li, A central limit theorem for m-dependent random variables under sublinear expectations, Acta Math. Appl. Sin.-E., 31 (2015), 435–444. http://dx.doi.org/ 10.1007/s10255-015-0477-1 doi: 10.1007/s10255-015-0477-1 |
[14] | Y. W. Lin, X. W. Feng, Complete convergence and strong law of large numbers for arrays of random variables under sublinear expectations, Commun. Stat.-Theor. M., 49 (2020), 5866–5882. http://dx.doi.org/10.1080/03610926.2019.1625924 doi: 10.1080/03610926.2019.1625924 |
[15] | W. Liu, Y. Zhang, Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Commun. Stat.-Theor. M., 2021. http://dx.doi.org/10.1080/03610926.2021.2018462 doi: 10.1080/03610926.2021.2018462 |
[16] | W. Liu, Y. Zhang, The law of the iterated logarithm for linear processes generated by stationary independent random variables under the sub-linear expectation, Entropy, 23 (2021), 1313. http://dx.doi.org/10.3390/e23101313 doi: 10.3390/e23101313 |
[17] | W. Liu, Y. Zhang, Central limit theorem for linear processes generated by IID random variables under the sub-linear expectation, Appl. Math. Ser. B, 36 (2021), 243–255. http://dx.doi.org/10.1007/s11766-021-3882-7 doi: 10.1007/s11766-021-3882-7 |
[18] | Y. Miao, J. N. Zhu, J. Y. Mu, Moderate deviation principle for m-dependent random variables, Lith. Math. J., 58 (2018), 54–68. http://dx.doi.org/10.1007/s10986-018-9382-7 doi: 10.1007/s10986-018-9382-7 |
[19] | S. G. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyers type, Probab. Theory Rel., 113 (1999), 473–499. http://dx.doi.org/10.1007/s004400050214 doi: 10.1007/s004400050214 |
[20] | S. G. Peng, G-Expectation, G-Brownian motion and related stochastic calculus of Ito's type, Stoch. Anal. Appl., 2 (2006), 541–567. http://dx.doi.org/10.1007/978-3-540-70847-6-25 doi: 10.1007/978-3-540-70847-6-25 |
[21] | S. G. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Math., 52 (2009), 1391–1411. http://dx.doi.org/10.1007/s11425-009-0121-8 doi: 10.1007/s11425-009-0121-8 |
[22] | S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, Springer, Berlin, Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59903-7 |
[23] | V. V. Petrov, The law of the iterated logarithm and probabilities of moderate deviations of sums of dependent random variables, J. Math. Sci., 251 (2020), 128–130. http://dx.doi.org/10.1007/s10958-020-05072-w doi: 10.1007/s10958-020-05072-w |
[24] | Y. Z. Tan, G. F. Zong, Large deviation principle for random variables under sublinear expectations on $\mathbb{R}^d$, J. Math. Anal. Appl., 488 (2020), 1–14. http://dx.doi.org/10.1016/j.jmaa.2020.124110 doi: 10.1016/j.jmaa.2020.124110 |
[25] | X. F. Xue, Moderate deviations of density-dependent Markov chains, Stoch. Proc. Appl., 140 (2021), 49–80. http://dx.doi.org/10.1016/j.spa.2021.06.005 doi: 10.1016/j.spa.2021.06.005 |
[26] | Q. Q. Zhou, A. V. Logachov, Moderate deviations principle for independent random variables under sublinear expectations, Sib. Elektron. Math. Re., 18 (2021), 817–826. http://dx.doi.org/10.33048/semi.2021.18.060 doi: 10.33048/semi.2021.18.060 |