Citation: Syafrizal Sy, Rinovia Simanjuntak, Tamaro Nadeak, Kiki Ariyanti Sugeng, Tulus Tulus. Distance antimagic labeling of circulant graphs[J]. AIMS Mathematics, 2024, 9(8): 21177-21188. doi: 10.3934/math.20241028
[1] | S. Arumugam, D. Froncek, N. Kamatchi, Distance magic graphs–a survey, J. Indones. Math. Soc., 2011, 11–26. https://doi.org/10.22342/jims.0.0.15.11-26 |
[2] | S. Arumugam, N. Kamatchi, G. R. Vijayakumar, On the uniqueness of D-vertex magic constant, Discuss. Math. Graph Theory, 34 (2014), 279–286. https://doi.org/10.7151/dmgt.1728 doi: 10.7151/dmgt.1728 |
[3] | F. Boesch, R. Tindell, Circulants and their connectivity, J. Graph Theory, 8 (1984), 487–499. https://doi.org/10.1002/jgt.3190080406 doi: 10.1002/jgt.3190080406 |
[4] | S. Cichacz, D. Froncek, Distance magic circulant graphs, Discrete Math., 339 (2016), 84–94. https://doi.org/10.1016/j.disc.2015.07.002 doi: 10.1016/j.disc.2015.07.002 |
[5] | J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 2023. https://doi.org/10.37236/27 |
[6] | A. Godinho, T. Singh, Some distance magic graphs, AKCE Int. J. Graphs Combin., 15 (2018), 1–6. https://doi.org/10.1016/j.akcej.2018.02.004 |
[7] | N. Kamatchi, S. Arumugam, Distance antimagic graphs, J. Combinat. Math. Combinat. Comput., 64 (2013), 61–67. |
[8] | N. Kamatchi, G. R. Vijayakumar, A. Ramalakshmi, S. Nilavarasi, S. Arumugam, Distance antimagic labelings of graphs, In: Theoretical computer science and discrete mathematics, 10398 (2017), 113–118. https://doi.org/10.1007/978-3-319-64419-6_15 |
[9] | C. H. Li, On isomorphisms of finite Cayley graphs–a survey, Discrete Math., 256 (2002), 301–334. https://doi.org/10.1016/S0012-365X(01)00438-1 doi: 10.1016/S0012-365X(01)00438-1 |
[10] | A. Llado, M. Miller, Approximate results for rainbow labeling, Period. Math. Hungar., 74 (2017), 11–21. https://doi.org/10.1007/s10998-016-0151-2 doi: 10.1007/s10998-016-0151-2 |
[11] | M. Muzychuk, On Adam's conjecture for circulant graphs, Discrete Math., 176 (1997), 285–298. https://doi.org/10.1016/S0012-365X(97)81804-3 doi: 10.1016/S0012-365X(97)81804-3 |
[12] | S. Miklavic, P. Sparl, Classification of tetravalent distance magic circulant graphs, Discrete Math., 344 (2021), 112557. https://doi.org/10.1016/j.disc.2021.112557 doi: 10.1016/j.disc.2021.112557 |
[13] | S. Miklavic, P. Sparl, On distance magic circulants of valency 6, Discrete Appl. Math., 329 (2023), 35–48. https://doi.org/10.1016/j.dam.2022.12.024 doi: 10.1016/j.dam.2022.12.024 |
[14] | A. O'Neal, P. J. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math., 27 (2013), 708–716. https://doi.org/10.1137/110834421 doi: 10.1137/110834421 |
[15] | S. K. Patel, J. Vasava, Some results on $(a, d)$-distance antimagic labeling, Proyecciones, 39 (2020), 361–381. https://doi.org/10.22199/issn.0717-6279-2020-02-0022 doi: 10.22199/issn.0717-6279-2020-02-0022 |
[16] | M. F. Semeniuta, $(a, d)$-distance antimagic labeling of some types of graphs, Cybernet. Syst. Anal., 52 (2016), 950–955. https://doi.org/10.1007/s10559-016-9897-z doi: 10.1007/s10559-016-9897-z |
[17] | N. P. Shrimali, A. K. Rathod, $(a, d)$-distance antimagic labeling for some regular graphs, Malaya J. Mat., 9 (2021), 1118–1122. |
[18] | R. Simanjuntak, T. Nadeak, F. Yasin, K. Wijaya, N. Hinding, K. A. Sugeng, Another antimagic conjecture, Symmetry, 13 (2021), 1–15. https://doi.org/10.3390/sym13112071 doi: 10.3390/sym13112071 |
[19] | R. Simanjuntak, A. Tritama, Distance antimagic product graphs, Symmetry, 14 (2022), 1–15. https://doi.org/10.3390/sym14071411 doi: 10.3390/sym14071411 |
[20] | V. Vilfred, Sigma-labelled graphs and circulant graphs, Ph.D. Thesis, India: University of Kerala, 1994. |
[21] | R. Y. Wulandari, R. Simanjuntak, Distance antimagic labelings of product graphs, Electron. J. Graph Theory Appl., 11 (2023), 111–123. https://doi.org/10.5614/ejgta.2023.11.1.9 doi: 10.5614/ejgta.2023.11.1.9 |