Citation: Julieta Bollati, María F. Natale, José A. Semitiel, Domingo A. Tarzia. A two-phase Stefan problem with power-type temperature-dependent thermal conductivity. Existence of a solution by two fixed points and numerical results[J]. AIMS Mathematics, 2024, 9(8): 21189-21211. doi: 10.3934/math.20241029
[1] | J. Bollati, A. Briozzo, M. Natale, Analytical solution for a cylinder glaciation model with variable latent heat and thermal, Int. J. Nonlin. Mech., 150 (2023), 104362. https://doi.org/10.1016/j.ijnonlinmec.2023.104362 doi: 10.1016/j.ijnonlinmec.2023.104362 |
[2] | J. Bollati, D. Tarzia, Approximate solutions to one-phase Stefan-like problems with space-dependent latent heat, Eur. J. Appl. Math., 32 (2020), 337–369. https://doi.org/10.1017/S0956792520000170 doi: 10.1017/S0956792520000170 |
[3] | L. Bougoffa, A. Khanfer, On the solutions of a phase change problem with temperature-dependent thermal conductivity and specific heat, Results Phys., 19 (2020) 103646. https://doi.org/10.1016/j.rinp.2020.103646 doi: 10.1016/j.rinp.2020.103646 |
[4] | L. Bougoffa, A. Khanfer, Solution of non-classical Stefan problem with nonlinear thermal coefficients and a Robin boundary condition, AIMS Math., 6 (2021), 6569–6579. https://doi.org/10.3934/math.2021387 doi: 10.3934/math.2021387 |
[5] | L. Bougoffa, R. Rach, A. Mennouni, On the existence, uniqueness, and new analytic approximate solution of the modified error function in two-phase Stefan problems, Math. Method. Appl. Sci., 44 (2021), 10948–10956. https://doi.org/10.1002/mma.7457 doi: 10.1002/mma.7457 |
[6] | J. Bollati, M. Natale, J. Semitiel, D. Tarzia, Existence and uniqueness of solution for two one-phase Stefan problems with variable thermal coefficients, Nonlinear Anal.-Real, 51 (2020), 103001. https://doi.org/10.1016/j.nonrwa.2019.103001 doi: 10.1016/j.nonrwa.2019.103001 |
[7] | J. Bollati, J. Semitiel, M. Natale, D. Tarzia, Existence and uniqueness of the p-generalized modified error function, Electron. J. Differ. Eq., 2020 (2020), 1–11. https://ejde.math.txstate.edu/Volumes/2020/35/bollati.pdf |
[8] | J. Bollati, M. Natale, J. Semitiel, D. Tarzia, Exact solution for non-classical one-phase Stefan problem with variable thermal coefficients and two different heat source terms, Comput. Appl. Math., 41 (2022), 1–11. https://doi.org/10.1007/s40314-022-02095-8 doi: 10.1007/s40314-022-02095-8 |
[9] | L. Bougoffa, S. Bougouffa, A. Khanfer, An analysis of the one-phase Stefan problem with variable thermal coefficients of order p, Axioms, 12 (2023), 497. https://doi.org/10.3390/axioms12050497 doi: 10.3390/axioms12050497 |
[10] | A. Kumar, A. Singh, R. Rajeev, A freezing problem with varying thermal coefficients and convective boundary condition, Int. J. Appl. Comput. Math., 6 (2020), 148. https://doi.org/10.1007/s40819-020-00894-3 doi: 10.1007/s40819-020-00894-3 |
[11] | A. Kumar, A. Singh, R. Rajeev, A moving boundary problem with variable specific heat and thermal conductivity, J. King Saud Univ.-Sci., 32 (2020), 384–389. https://doi.org/10.1016/j.jksus.2018.05.028 doi: 10.1016/j.jksus.2018.05.028 |
[12] | A. Kumar, A. Singh, R. Rajeev, A Stefan problem with temperature and time dependent thermal conductivity, J. King Saud Univ.-Sci., 32 (2020), 97–101. https://doi.org/10.1016/j.jksus.2018.03.005 doi: 10.1016/j.jksus.2018.03.005 |
[13] | J. Bollati, A. Briozzo, Stefan problems for the diffusion-convection equation with temperature-dependent thermal coefficients, Int. J. Nonlin. Mech., 134 (2021), 103732. https://doi.org/10.1016/j.ijnonlinmec.2021.103732 doi: 10.1016/j.ijnonlinmec.2021.103732 |
[14] | V. Cregan, J. Williams, T. Myers, Contact melting of a rectangular block with temperature-dependent properties, Int. J. Therm. Sci., 150 (2020), 106218. https://doi.org/10.1016/j.ijthermalsci.2019.106218 doi: 10.1016/j.ijthermalsci.2019.106218 |
[15] | A. Kumar, A. Singh, R. Rajeev, A Stefan problem with moving phase change material, variable thermal conductivity and periodic boundary condition, Appl. Math. Comput., 386 (2020), 125490. https://doi.org/10.1016/j.amc.2020.125490 doi: 10.1016/j.amc.2020.125490 |
[16] | T. Nauryz, Nonlinear Stefan problem for one-phase generalized heat equation with heat flux and convective boundary condition, Res. Square, 2022. https://doi.org/10.21203/rs.3.rs-2004382/v2 |
[17] | T. Nauryz, S. Kharin, Existence and uniqueness for one-phase spherical Stefan problem with nonlinear thermal coefficients and heat flux condition, Int. J. Appl. Math., 35 (2022), 645–659. http://dx.doi.org/10.12732/ijam.v35i5.2 doi: 10.12732/ijam.v35i5.2 |
[18] | S. Cho, J. Sunderland, Phase-change problems with temperature-dependent thermal conductivity, J. Heat Transf., 96 (1974), 214–217. https://doi.org/10.1115/1.3450167 doi: 10.1115/1.3450167 |
[19] | A. Ceretani, N. Salva, D. Tarzia, An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition, Nonlinear Anal.-Real, 40 (2018), 243–259. http://dx.doi.org/10.1016/j.nonrwa.2017.09.002 doi: 10.1016/j.nonrwa.2017.09.002 |
[20] | T. Goodman, The heat balance integral methods and its application to problems involving a change of phase, Trans. ASME, 80 (1958), 335–342. https://doi.org/10.1115/1.4012364 doi: 10.1115/1.4012364 |
[21] | A. Wood, A new look at the heat balance integral method, Appl. Math. Model., 25 (2001), 815–824. https://doi.org/10.1016/S0307-904X(01)00016-6 doi: 10.1016/S0307-904X(01)00016-6 |
[22] | J. Bollati, M. F. Natale, J. A. Semitiel, D. A. Tarzia, Approximate solutions to the one-phase Stefan problem with non-linear temperature-dependent thermal conductivity, Chapter 1, In Heat Conduction: Methods, Applications and Research, J. Hristov – R. Bennacer (Eds.), Nova Science Publishers, Inc., 2019, 1–20. |
[23] | J. Bollati, M. Natale, J. Semitiel, D. Tarzia, Integral balance methods applied to non-classical Stefan problems, Therm. Sci., 24 (2020), 1229–1241. https://doi.org/10.2298/TSCI180901310B doi: 10.2298/TSCI180901310B |
[24] | J. Bollati, J. Semitiel, D. Tarzia, Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face, Appl. Math. Comput., 331 (2018), 1–19. https://doi.org/10.1016/j.amc.2018.02.054 doi: 10.1016/j.amc.2018.02.054 |
[25] | G. Garguichevich, C. Sanziel, D. Tarzia, Comparison of approximate methods for the determination of thermal coefficients through a phase-change problem, Int. Commun. Heat Mass Tran., 12 (1985), 451–464. https://doi.org/10.1016/0735-1933(85)90039-9 doi: 10.1016/0735-1933(85)90039-9 |
[26] | N. Sadoun, E. Si-Ahmed, J. Colinet, On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl. Math. Model., 30 (2006), 531–544. https://doi.org/10.1016/j.apm.2005.06.003 doi: 10.1016/j.apm.2005.06.003 |
[27] | D. Tarzia, A variant of the heat balance integral method and a new proof of the exponentially fast asymptotic behavior of the solutions in heat conduction problems with absorption, Int. J. Eng. Sci., 28 (1990), 1253–1259. https://doi.org/10.1016/0020-7225(90)90073-R doi: 10.1016/0020-7225(90)90073-R |
[28] | J. Hristov, Integral-balance method with transmuted profiles: Concept, examples, and emerging problems, J. Comput. Appl. Math., 416 (2022), 114547. https://doi.org/10.1016/j.cam.2022.114547 doi: 10.1016/j.cam.2022.114547 |
[29] | S. Mitchell, T. Myers, Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM Rev., 52 (2010), 57–86. https://doi.org/10.1137/080733036 doi: 10.1137/080733036 |
[30] | F. Mosally, A. Wood, A. Al-Fhaid, An exponential heat balance integral method, Appl. Math. Comput., 130 (2002), 87–100. https://doi.org/10.1016/S0096-3003(01)00083-2 doi: 10.1016/S0096-3003(01)00083-2 |
[31] | J. Hristov, The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises, Therm. Sci., 13 (2009), 27–48. https://doi.org/10.2298/TSCI0902027H doi: 10.2298/TSCI0902027H |
[32] | J. Hristov, Research note on a parabolic heat-balance integral method with unspecified exponent: An entropy generation approach in optimal profile determination, Therm. Sci., 13 (2009), 49–59. https://doi.org/10.2298/TSCI0902049H doi: 10.2298/TSCI0902049H |
[33] | J. Hristov, On a non-linear diffusion model of wood impregnation: Analysis, approximate solutions, and experiments with relaxing boundary conditions, Advances in Mathematical Modelling, Applied Analysis and Computation, Springer, Singapore, 2023, 25–53. https://doi.org/10.1007/978-981-19-0179-9_2 |
[34] | S. Mitchell, Applying the combined integral method to one-dimensional ablation, Appl. Math. Model., 36 (2012), 127–138. https://doi.org/10.1016/j.apm.2011.05.032 doi: 10.1016/j.apm.2011.05.032 |
[35] | S. Mitchell, Applying the combined integral method to two-phase Stefan problems with delayed onset of phase change, J. Comput. Appl. Math., 281 (2015), 58–73. https://doi.org/10.1016/j.cam.2014.11.051 doi: 10.1016/j.cam.2014.11.051 |
[36] | S. Mitchell, N. McInerney, S. O'Brien, Approximate solution techniques for the sorption of a finite amount of swelling solvent in a glass polymer, Appl. Math. Model., 92 (2021), 624–650. https://doi.org/10.1016/j.apm.2020.11.018 doi: 10.1016/j.apm.2020.11.018 |
[37] | S. Mitchell, T. Myers, Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions. Int. J. Heat Mass Tran., 53 (2010), 3540–3551. https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.015 doi: 10.1016/j.ijheatmasstransfer.2010.04.015 |
[38] | S. Mitchell, T. Myers, Application of heat balance integral methods to one-dimensional phase change problems, Appl. Math. Comput., 2012 (2012), 1–22. https://doi.org/10.1155/2012/187902 doi: 10.1155/2012/187902 |
[39] | S. Mitchell, B. O'Brien, Asymptotic and numerical solutions of a free boundary problem for the sorption of a finite amount of solvent into a glassy polymer, SIAM J. Appl. Math., 74 (2014), 697–723. https://doi.org/10.1137/120899200 doi: 10.1137/120899200 |
[40] | A. Gonzalez, D. Tarzia, Determination of unknown coefficients of a semi-infinite material through a simple mushy zone model for the two-phase Stefan problem, Int. J. Eng. Sci., 34 (1996), 799–817. https://doi.org/10.1016/0020-7225(95)00107-7 doi: 10.1016/0020-7225(95)00107-7 |
[41] | B. Dhage, Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem, Nonlinear Anal., 70 (2009), 2485–2493. https://doi.org/10.1016/j.na.2008.03.033 doi: 10.1016/j.na.2008.03.033 |
[42] | B. Dhage, Some characterization of nonlinear first order differential equations of unbounded intervals, Differ. Equat. Appl., 2 (2010), 151–162. dx.doi.org/10.7153/dea-02-10 doi: 10.7153/dea-02-10 |
[43] | S. Myers, Banach spaces of continuous functions, Ann. Math., 49 (1948), 132–140. https://doi.org/10.2307/1969119 doi: 10.2307/1969119 |