Citation: Syed T. R. Rizvi, Sana Ghafoor, Aly R. Seadawy, Ahmed H. Arnous, Hakim AL Garalleh, Nehad Ali Shah. Exploration of solitons and analytical solutions by sub-ODE and variational integrators to Klein-Gordon model[J]. AIMS Mathematics, 2024, 9(8): 21144-21176. doi: 10.3934/math.20241027
[1] | N. J. Zabusky, M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett, 15 (1965), 240–243. https://doi.org/10.1103/physrevlett.15.240 doi: 10.1103/physrevlett.15.240 |
[2] | M. T. Darvishi, M. Najafi, L. Akinyemi, H. Rezazadeh, Gaussons of some new nonlinear logarithmic equations, J. Nonlinear Opt. Phys. Mater., 3 (2023), 2350013. https://doi.org/10.1142/s0218863523500133 doi: 10.1142/s0218863523500133 |
[3] | L. Akinyemi, S. Manukure, A. Houwe, S. Abbagari, A study of (2+1)-dimensional variable coefficients equation: Its oceanic solitons and localized wave solutions, Phys. Fluids, 36 (2024), 013120. https://doi.org/10.1063/5.0180078 doi: 10.1063/5.0180078 |
[4] | L. Akinyemi, M. Şenol, U. Akpan, K. Oluwasegun, The optical soliton solutions of generalized coupled nonlinear Schrödinger-Korteweg-de Vries equations, Opt. Quan. Electron., 53 (2021), 394. https://doi.org/10.1007/s11082-021-03030-7 doi: 10.1007/s11082-021-03030-7 |
[5] | M. Senol, E. A. Az-Zo'bi, L. Akinyemi, A. O. Alleddawi, Novel soliton solutions of the generalized (3+1)-dimensional conformable KP and KP–BBM equations, Comput. Sci. Eng., 1 (2021), 1–29. https://doi.org/10.22124/cse.2021.19356.1003 doi: 10.22124/cse.2021.19356.1003 |
[6] | A. Abdeljabba, H. O. Roshid, A. Aldurayhim, Bright, Dark, and Rogue Wave Soliton Solutions of the Quadratic Nonlinear Klein-Gordon Equation, Symmetry, 14 (2022), 1223. https://doi.org/10.3390/sym14061223 doi: 10.3390/sym14061223 |
[7] | U. Younas, M. Younis, A. R. Seadawy, S. T. R. Rizvi, S. Althobaiti, S. Sayed, Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative, Results Phys., 20 (2021), 103766. http://doi.org/10.1016/j.rinp.2020.103766 doi: 10.1016/j.rinp.2020.103766 |
[8] | D. D. Santo, T. Kinoshita, M. Reissig, Klein-Gordon type equations with a singular time-dependent potential, Rend. Istit. Mat. Univ. Trieste, XXXIX (2007), 141–175. |
[9] | Y. V. Bebikhov, I. A. Shepelev, S. V. Dmitriev, A review of specially discretized Klein-Gordon models, Saratov Fall Meeting 2019: Computations and Data Analysis: From Nanoscale Tools to Brain Functions, 1145910 (2020), 217–224. https://doi.org/10.1117/12.2565763 doi: 10.1117/12.2565763 |
[10] | F. Hirosawa, M. Reissig, From wave to Klein-Gordon type decay rates, In: Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations, Basel: Birkhäuser, 2003. https://doi.org/10.1007/978-3-0348-8073-2_2 |
[11] | C. Böhme, M. Reissig, Energy bounds for Klein-Gordon equations with time-dependent potential, Ann. Univ. Ferrara, 59 (2013), 31–55. https://doi.org/10.1007/s11565-012-0162-8 doi: 10.1007/s11565-012-0162-8 |
[12] | E. M. E. Zayed, M. E. M. Alngar, A. Biswas, H. Triki, Y. Yıldırım, A. S. Alshomrani, Chirped and chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic-cubic nonlinearity by sub-ODE approach, Optik, 203 (2020), 163993. https://doi.org/10.1016/j.ijleo.2019.163993 doi: 10.1016/j.ijleo.2019.163993 |
[13] | J. C. Butcher, Numerical methods for ordinary differential equations, 2 Eds., Chichester: John Wiley and Sons, 2008. https://doi.org/10.1002/9781119121534 |
[14] | B. Leimkuhler, S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, Cambridge, (2004). https://doi.org/10.1017/CBO9780511614118 |
[15] | M. Kraus, Projected variational integrators for degenerate Lagrangian systems, 2017. https://doi.org/10.48550/arXiv.1708.07356 |
[16] | E. Hairer, C. Lubich, G. Wanner. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, Springer Berlin, Heidelberg, 31 2nd edition (2006). https://doi.org/10.1007/3-540-30666-8 |
[17] | S. Reich, C. Cotter, Variational integrators and adaptive time stepping for the numerical simulation of wave energy propagation, J. Comput. Phys., 256 (2014), 460–480. |
[18] | A. J. Lew, Discrete variational Hamiltonian mechanics, Rep. Math. Phys., 52 (2003), 147–158. |
[19] | J. C. Butcher, General linear methods, Acta Numer., 15 (2006), 157–256. |
[20] | F. Shehzad, Y. Habib, Discrete Gradient Methods for Solving SIRI Epidemic Model Numerically While Preserving First Integrals, Arabian J. Sci. Eng., 46 (2021), 663–668. |
[21] | J. C. Butcher, Y. Habib, A. T. Hill, T. J. Norton, The control of parasitism in G-symplectic methods, SIAM J. Numer. Anal, 52 (2014), 2440–2465. |
[22] | J. E. Marsden, G W. Patrick, The structure and stability of periodic orbits for Hamiltonian systems, Rep. Prog. Phys., 56 (1994), 439. |
[23] | M. Kraus, Variational integrators in plasma physics, 2013. https://doi.org/10.48550/arXiv.1307.5665 |
[24] | S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A: Math. General, 39 (2006), 5509. |
[25] | N. Raza, S. Arshed, A. R. Butt, D. Baleanu, New and more solitary wave solutions for the Klein-Gordon-Schrödinger model arising in nucleon-meson interaction, Sec. Stat. Comput. Phys., 9 (2021), 637964. https://doi.org/10.3389/fphy.2021.637964 doi: 10.3389/fphy.2021.637964 |
[26] | M. Iqbal, D. Lu, A. R. Seadawy, G. Mustafa, Z. Zhang, M. Ashraf, A. Ghaffar, Dynamical analysis of soliton structures for the nonlinear third-order Klein-Fock-Gordon equation under explicit approach, Opt. Quant. Electron., 56 (2024), 651. https://doi.org/10.1007/s11082-023-05435-y doi: 10.1007/s11082-023-05435-y |
[27] | H. U. Rehman, I. Iqbal, S. S. Aiadi, N. Mlaiki, M. S. Saleem, Soliton solutions of Klein-Fock-Gordon equation using sardar subequation method, Mathematics, 10 (2022), 3377. https://doi.org/10.3390/math10183377 doi: 10.3390/math10183377 |
[28] | Y. Li, J. Lührmann, Soliton dynamics for the 1D quadratic Klein-Gordon equation with symmetry, J. Differ. Eq., 344 (2023), 172–202. https://doi.org/10.1016/j.jde.2022.10.030 doi: 10.1016/j.jde.2022.10.030 |
[29] | R. Sassaman, A. Biswas, Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3239–3249. https://doi.org/10.1016/j.jfranklin.2010.04.012 doi: 10.1016/j.jfranklin.2010.04.012 |
[30] | M. M. A. Khater, A. A. Mousa, M. A. El-Shorbagy, R. A. M. Attia, Abundant novel wave solutions of nonlinear Klein-Gordon-Zakharov (KGZ) model, Eur. Phys. J. Plus, 136 (2021), 604. https://doi.org/10.1140/epjp/s13360-021-01385-0 doi: 10.1140/epjp/s13360-021-01385-0 |
[31] | A. Houwe, H. Rezazadeh, A. Bekir, S. Y. Doka, Traveling-wave solutions of the Klein-Gordon equations with M-fractional derivative, Pramana, 96 (2022), 26. https://doi.org/10.1007/s12043-021-02254-2 doi: 10.1007/s12043-021-02254-2 |
[32] | M. M. Roshid, M. F. Karim, A. K. Azad, M. M. Rahman, T. Sultana, New solitonic and rogue wave solutions of a Klein-Gordon equation with quadratic nonlinearity, Partial Differ. Eq. Appl. Math., 3 (2021), 100036. https://doi.org/10.1016/j.padiff.2021.100036 doi: 10.1016/j.padiff.2021.100036 |
[33] | R. Sassaman, A. Heidari, A. Biswas, Topological and non-topological solitons of nonlinear Klein-Gordon equations by He's semi-inverse variational principle, J. Franklin Inst., 347 (2010), 1148–1157. https://doi.org/10.1016/j.jfranklin.2010.04.012 doi: 10.1016/j.jfranklin.2010.04.012 |
[34] | D. Saadatmand, K. Javidan, Collective-coordinate analysis of inhomogeneous nonlinear Klein-Gordon Field Theory, Braz. J. Phys., 43 (2013), 48–56. https://doi.org/10.1007/s13538-012-0113-y doi: 10.1007/s13538-012-0113-y |