Research article

Spherical q-linear Diophantine fuzzy aggregation information: Application in decision support systems

  • Received: 17 August 2022 Revised: 19 October 2022 Accepted: 05 December 2022 Published: 06 January 2023
  • The main goal of this article is to reveal a new generalized version of the q-linear Diophantine fuzzy set (q-LDFS) named spherical q-linear Diophantine fuzzy set (Sq-LDFS). The existing concepts of intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy set (q-OFS), linear Diophantine fuzzy set (LDFS), and spherical fuzzy set have a wide range of applications in decision-making problems, but they all have strict limitations in terms of membership degree, non-membership degree, and uncertainty degree. We moot the article of the spherical q-linear Diophantine fuzzy set (Sq-LDFS) with control factors to alleviate these limitations. A Spherical q-linear Diophantine fuzzy number structure is independent of the selection of the membership grades because of its control parameters in three membership grades. An Sq-LDFS with a parameter estimation process can be extremely useful for modeling uncertainty in decision-making (DM). By using control factors, Sq-LDFS may classify a physical system. We highlight some of the downsides of q-LDFSs. By using algebraic norms, we offer some novel operational laws for Sq-LDFSs. We also introduced the weighted average and weighted geometric aggregation operators and their fundamental laws and properties. Furthermore, we proposed the algorithms for a multicriteria decision-making approach with graphical representation. Moreover, a numerical illustration of using the proposed methodology for Sq-LDF data for emergency decision-making is presented. Finally, a comparative analysis is presented to examine the efficacy of our proposed approach.

    Citation: Shahzaib Ashraf, Huzaira Razzaque, Muhammad Naeem, Thongchai Botmart. Spherical q-linear Diophantine fuzzy aggregation information: Application in decision support systems[J]. AIMS Mathematics, 2023, 8(3): 6651-6681. doi: 10.3934/math.2023337

    Related Papers:

  • The main goal of this article is to reveal a new generalized version of the q-linear Diophantine fuzzy set (q-LDFS) named spherical q-linear Diophantine fuzzy set (Sq-LDFS). The existing concepts of intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy set (q-OFS), linear Diophantine fuzzy set (LDFS), and spherical fuzzy set have a wide range of applications in decision-making problems, but they all have strict limitations in terms of membership degree, non-membership degree, and uncertainty degree. We moot the article of the spherical q-linear Diophantine fuzzy set (Sq-LDFS) with control factors to alleviate these limitations. A Spherical q-linear Diophantine fuzzy number structure is independent of the selection of the membership grades because of its control parameters in three membership grades. An Sq-LDFS with a parameter estimation process can be extremely useful for modeling uncertainty in decision-making (DM). By using control factors, Sq-LDFS may classify a physical system. We highlight some of the downsides of q-LDFSs. By using algebraic norms, we offer some novel operational laws for Sq-LDFSs. We also introduced the weighted average and weighted geometric aggregation operators and their fundamental laws and properties. Furthermore, we proposed the algorithms for a multicriteria decision-making approach with graphical representation. Moreover, a numerical illustration of using the proposed methodology for Sq-LDF data for emergency decision-making is presented. Finally, a comparative analysis is presented to examine the efficacy of our proposed approach.



    加载中


    [1] K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets Syst., 31 (1989), 343–349. https://doi.org/10.1016/0165-0114(89)90205-4 doi: 10.1016/0165-0114(89)90205-4
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19, J. Ambient Intell. Human. Comput., 13 (2022), 1687–1713. https://doi.org/10.1007/s12652-021-03130-y doi: 10.1007/s12652-021-03130-y
    [4] S. Ashraf, S. Abdullah, M. Aslam, Symmetric sum based aggregation operators for spherical fuzzy information: Application in multi-attribute group decision making problem, J. Intell. Fuzzy Systs., 38 (2020), 5241–5255. https://doi.org/10.3233/JIFS-191819 doi: 10.3233/JIFS-191819
    [5] S. Ashraf, S. Abdullah, L. Abdullah, Child development influence environmental factors determined using spherical fuzzy distance measures, Mathematics, 7 (2019), 661. https://doi.org/10.3390/math7080661 doi: 10.3390/math7080661
    [6] S. Ashraf, S. Abdullah, M. Aslam, M. Qiyas, M. A. Kutbi, Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms, J. Intell. Fuzzy Systs., 36 (2019), 6089–6102. https://doi.org/10.3233/JIFS-181941 doi: 10.3233/JIFS-181941
    [7] S. Ashraf, S. Abdullah, A. O. Almagrabi, A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19, Soft Comput., 2020. https://doi.org/10.1007/s00500-020-05287-8
    [8] S. Ashraf, S. Abdullah, Emergency decision support modeling for COVID-19 based on spherical fuzzy information, Int. J. Intell. Syst., 35 (2020), 1601–1645. https://doi.org/10.1002/int.22262 doi: 10.1002/int.22262
    [9] S. Ashraf S. Abdullah, Spherical aggregation operators and their application in multiattribute group decision-making, Int. J. Intell. Syst., 34 (2019), 493–523. https://doi.org/10.1002/int.22062 doi: 10.1002/int.22062
    [10] S. Ashraf, S. Abdullah, T. Mahmood, Spherical fuzzy Dombi aggregation operators and their application in group decision making problems, J Ambient Intell. Human. Comput., 11 (2020), 2731–2749. https://doi.org/10.1007/s12652-019-01333-y
    [11] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, Spherical fuzzy sets and their applications in multi-attribute decision making problem, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [12] S. Ayub, M. Shabir, M. Riaz, M. Aslam, R. Chinram, Linear Diophantine fuzzy relations and their algebraic properties with decision making, Symmetry, 13 (2021), 945. https://doi.org/10.3390/sym13060945 doi: 10.3390/sym13060945
    [13] K. Y. Bai, X. M. Zhu, J. Wang, R. T. Zhang, Some partitioned Maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making, Symmetry, 10 (2018), 383. https://doi.org/10.3390/sym10090383 doi: 10.3390/sym10090383
    [14] O. Barukab, S. Abdullah, S. Ashraf, M. Arif, S. A. Khan, A new approach to fuzzy TOPSIS method based on entropy measure under spherical fuzzy information, Entropy, 21 (2019), 1231. https://doi.org/10.3390/e21121231 doi: 10.3390/e21121231
    [15] E. Alsuwat, S. Alzahrani, H. Alsuwat, Detecting COVID-19 Utilizing Probabilistic Graphical Models, Int. J. Adv. Comput. Sci. Appl., 12 (2021), 786–793. https://doi.org/10.14569/IJACSA.2021.0120692 doi: 10.14569/IJACSA.2021.0120692
    [16] A. Iampan, G. S. Garc, M. Riaz, H. M. Athar Farid, R. Chinram, Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision making problems, J. Math., 2021 (2021), 5548033. https://doi.org/10.1155/2021/5548033 doi: 10.1155/2021/5548033
    [17] B. Farhadinia, Similarity-based multi-criteria decision making technique of pythagorean fuzzy set, Artif. Intell. Rev., 55 (2022), 2103–2148. https://doi.org/10.1007/s10462-021-10054-8 doi: 10.1007/s10462-021-10054-8
    [18] H. M. A. Farid, M. Riaz, M. J. Khan, P. Kumam, K. Sitthithakerngkiet, Sustainable thermal power equipment supplier selection by Einstein prioritized linear Diophantine fuzzy aggregation operators, AIMS Mathematics, 7 (2022), 11201–11242. https://doi.org/10.3934/math.2022627 doi: 10.3934/math.2022627
    [19] M. A. Firozja, B. Agheli, E. B. Jamkhaneh, A new similarity measure for Pythagorean fuzzy sets, Complex Intell. Syst., 6 (2020), 67–74. https://doi.org/10.1007/s40747-019-0114-3 doi: 10.1007/s40747-019-0114-3
    [20] H. Garg, Some series of intuitionistic fuzzy interactive averaging aggregation operators, SpringerPlus, 5 (2016), 999. https://doi.org/10.1186/s40064-016-2591-9 doi: 10.1186/s40064-016-2591-9
    [21] H. Garg, A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making, Int. J. Intell. Syst., 31 (2016), 886–920. https://doi.org/10.1002/int.21809 doi: 10.1002/int.21809
    [22] H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision-making process, Int. J. Intell. Syst., 32 (2017), 597–630. https://doi.org/10.1002/int.21860 doi: 10.1002/int.21860
    [23] H. Garg, New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications, Int. J. Intell. Syst., 34 (2019), 82–106 https://doi.org/10.1002/int.22043 doi: 10.1002/int.22043
    [24] H. Garg, Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment, Int. J. Intell. Syst., 33 (2018), 687–712. https://doi.org/10.1002/int.21949 doi: 10.1002/int.21949
    [25] F. K. Gündoğdu, C. Kahraman, A novel spherical fuzzy analytic hierarchy process and its renewable energy application, Soft Comput., 24 (2020), 4607–4621. https://doi.org/10.1007/s00500-019-04222-w doi: 10.1007/s00500-019-04222-w
    [26] F. K. Gündoğdu, C. Kahraman, A novel spherical fuzzy QFD method and its application to the linear delta robot technology development, Eng. Appl. Artif. Intel., 87 (2020), 103348. https://doi.org/10.1016/j.engappai.2019.103348 doi: 10.1016/j.engappai.2019.103348
    [27] G. Q. Huang, L. M. Xiao, W. Pedrycz, D. Pamucar, G. B. Zhang, L. Martínez, Design alternative assessment and selection: A novel Z-cloud rough number-based BWM-MABAC model, Inf. Sci., 603 (2022), 149–189. https://doi.org/10.1016/j.ins.2022.04.040 doi: 10.1016/j.ins.2022.04.040
    [28] G. Q. Huang, L. M. Xiao, G. B. Zhang, Assessment and prioritization method of key engineering characteristics for complex products based on cloud rough numbers, Adv. Eng. Inform., 49 (2021), 101309. https://doi.org/10.1016/j.aei.2021.101309 doi: 10.1016/j.aei.2021.101309
    [29] G. Q. Huang, L. M. Xiao, W. Pedrycz, G. B. Zhang, L. Martinez, Failure mode and effect analysis using T-spherical fuzzy maximizing deviation and combined comparison solution methods, IEEE T. Reliab., 2022, 1–22. https://doi.org/10.1109/TR.2022.3194057
    [30] Y. Jin, S. Ashraf, S. Abdullah, Spherical fuzzy logarithmic aggregation operators based on entropy and their application in decision support systems, Entropy, 21 (2019), 628. https://doi.org/10.3390/e21070628 doi: 10.3390/e21070628
    [31] S. M. Khalil, M. A. H. Hasab, Decision making using new distances of intuitionistic fuzzy sets and study their application in the universities, In: Intelligent and fuzzy techniques: Smart and innovative solutions, Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-51156-2_46
    [32] M. A. Khan, S. Ashraf, S. Abdullah, F. Ghani, Applications of probabilistic hesitant fuzzy rough set in decision support system, Soft Comput., 24 (2020), 16759–16774. https://doi.org/10.1007/s00500-020-04971-z doi: 10.1007/s00500-020-04971-z
    [33] M. J. Khan, P. Kumam, P. D. Liu, W. Kumam, S. Ashraf, A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system, Mathematics, 7 (2019), 742. https://doi.org/10.3390/math7080742 doi: 10.3390/math7080742
    [34] M. J. Khan, P. Kumam, P. D. Liu, W. Kumam, S. Ashraf, A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system, Mathematics, 7 (2019), 742. https://doi.org/10.3390/math7080742 doi: 10.3390/math7080742
    [35] D. Q. Li, W. Y. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018), 348–361. https://doi.org/10.1002/int.21934 doi: 10.1002/int.21934
    [36] Z. M. Ma, Z. S. Xu, Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems, Int. J. Intell. Syst., 31 (2016), 1198–1219. https://doi.org/10.1002/int.21823 doi: 10.1002/int.21823
    [37] T. Mahmood, Z. Ali, M. Aslam, R. Chinram, Generalized Hamacher aggregation operators based on linear Diophantine uncertain linguistic setting and their applications in decision-making problems, IEEE Access, 9 (2021), 126748–126764. https://doi.org/10.1109/ACCESS.2021.3110273 doi: 10.1109/ACCESS.2021.3110273
    [38] X. D. Peng, J. G. Dai, Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy information based on multiparametric similarity measure and combinative distancebased assessment, Int. J. Intell. Syst., 34 (2019), 1588–1630. https://doi.org/10.1002/int.22109 doi: 10.1002/int.22109
    [39] M. Qiyas, M. Naeem, S. Abdullah, N. Khan, A. Ali, Similarity measures based on q-rung linear Diophantine fuzzy sets and their application in logistics and supply chain management, J. Math., 2022 (2022), 4912964. https://doi.org/10.1155/2022/4912964 doi: 10.1155/2022/4912964
    [40] M. Rafiq, S. Ashraf, S. Abdullah, T. Mahmood, S. Muhammad, The cosine similarity measures of spherical fuzzy sets and their applications in decision making, J. Intell. Fuzzy Syst., 36 (2019), 6059–6073. https://doi.org/10.3233/JIFS-181922 doi: 10.3233/JIFS-181922
    [41] M. Riaz, H. M. A. Farid, M. Aslam, D. Pamucar, D. Bozanić, Novel approach for third-party reverse logistic provider selection process under linear Diophantine fuzzy prioritized aggregation operators, Symmetry, 13 (2021), 1152. https://doi.org/10.3390/sym13071152 doi: 10.3390/sym13071152
    [42] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [43] M. Riaz, M. R. Hashmi, D. Pamucar, Y. M. Chu, Spherical linear Diophantine fuzzy sets with modeling uncertainties in MCDM, Comput. Model. Eng. Sci., 126 (2021), 1125–1164. https://doi.org/10.32604/cmes.2021.013699 doi: 10.32604/cmes.2021.013699
    [44] A. Sotoudeh-Anvari, A critical review on theoretical drawbacks and mathematical incorrect assumptions in fuzzy OR methods: Review from 2010 to 2020, Appl. Soft Comput., 93 (2020), 106354. https://doi.org/10.1016/j.asoc.2020.106354 doi: 10.1016/j.asoc.2020.106354
    [45] L. M. Xiao, G. Q. Huang, W. Pedrycz, D. Pamucar, L. Martínez, G. B. Zhang, A q-rung orthopair fuzzy decision-making model with new score function and best-worst method for manufacturer selection, Inf. Sci., 608 (2022), 153–177. https://doi.org/10.1016/j.ins.2022.06.061 doi: 10.1016/j.ins.2022.06.061
    [46] L. M. Xiao, G. Q. Huang, G. B. Zhang, An integrated risk assessment method using Z-fuzzy clouds and generalized TODIM, Qual. Reliab. Eng., 38 (2022), 1909–1943. https://doi.org/10.1002/qre.3062 doi: 10.1002/qre.3062
    [47] Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417–433.
    [48] Y. G. Xue, Y. Deng, Decision making under measure-based granular uncertainty with intuitionistic fuzzy sets, Appl. Intell., 51 (2021), 6224–6233. https://doi.org/10.1007/s10489-021-02216-6 doi: 10.1007/s10489-021-02216-6
    [49] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61.
    [50] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965.
    [51] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [52] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [53] S. Z. Zeng, A. Hussain, T. Mahmood, M. I. Ali, S. Ashraf, M. Munir, Covering-based spherical fuzzy rough set model hybrid with TOPSIS for multi-attribute decision-making, Symmetry, 11 (2019), 547. https://doi.org/10.3390/sym11040547 doi: 10.3390/sym11040547
    [54] S. Z. Zeng, Pythagorean fuzzy multiattribute group decision making with probabilistic information and OWA approach, Int. J. Intell. Syst., 32 (2017), 1136–1150. https://doi.org/10.1002/int.21886 doi: 10.1002/int.21886
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1451) PDF downloads(100) Cited by(9)

Article outline

Figures and Tables

Figures(5)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog