
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(3): 6651–6681.
DOI: 10.3934/math.2023337
Received: 17 August 2022
Revised: 19 October 2022
Accepted: 05 December 2022
Published: 06 January 2023

Research article

Spherical q-linear Diophantine fuzzy aggregation information: Application
in decision support systems

Shahzaib Ashraf1, Huzaira Razzaque1, Muhammad Naeem2 and Thongchai Botmart3,*

1 Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology,
Rahim Yar Khan 64200, Pakistan

2 Department of Mathematics, Deanship of Applied sciences, Umm Al-Qura University, Makkah,
Saudi Arabia

3 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002,
Thailand

* Correspondence: Email: thongbo@kku.ac.th.

Abstract: The main goal of this article is to reveal a new generalized version of the q-
linear Diophantine fuzzy set (q-LDFS) named spherical q-linear Diophantine fuzzy set (Sq-LDFS).
The existing concepts of intuitionistic fuzzy set (IFS), q-rung orthopair fuzzy set (q-OFS), linear
Diophantine fuzzy set (LDFS), and spherical fuzzy set have a wide range of applications in decision-
making problems, but they all have strict limitations in terms of membership degree, non-membership
degree, and uncertainty degree. We moot the article of the spherical q-linear Diophantine fuzzy set
(Sq-LDFS) with control factors to alleviate these limitations. A Spherical q-linear Diophantine fuzzy
number structure is independent of the selection of the membership grades because of its control
parameters in three membership grades. An Sq-LDFS with a parameter estimation process can be
extremely useful for modeling uncertainty in decision-making (DM). By using control factors, Sq-
LDFS may classify a physical system. We highlight some of the downsides of q-LDFSs. By using
algebraic norms, we offer some novel operational laws for Sq-LDFSs. We also introduced the weighted
average and weighted geometric aggregation operators and their fundamental laws and properties.
Furthermore, we proposed the algorithms for a multicriteria decision-making approach with graphical
representation. Moreover, a numerical illustration of using the proposed methodology for Sq-LDF data
for emergency decision-making is presented. Finally, a comparative analysis is presented to examine
the efficacy of our proposed approach.
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1. Introduction

Along with intricacies and ambiguity inherent in such situations, classical mathematics is not always
effective when solving real-world problems. Zadeh [52] established the fuzzy set notion by assigning
grades to possibilities with limit [0, 1]. Since Zadeh’s approach to the fuzzy collection, fuzzy logic
has been used to characterize imprecision, ambiguity and obscureness in a variety of fields [29,44,46].
Uncertainty-related problems arise frequently in DM, however they are difficult to predict and control
on account of extensive modelling and regulating situation of these uncertainties.

The additional terms of non-membership degrees (NMD) to membership degrees (MD) with
the premise that by adding MD and NMD restricted by unity, atanassov [2] gave notion about the
thought of intuitionistic fuzzy set (IFS) as an extend form of FS. IF elements were used in a geometric
description by attanassov [1]. Xu [47] represent weighted geometric notations for IFNs. Garg [20]
utilized Einstein’s t-norm operating rules for IFS. Apart from that, the researchers, create a new useful
technique for collecting the OWA weights. By giving these reasons a low weight, the technique can
reduce the impact of unjust arguments on the outcome of the decision. Xue [48] give their views about
Measure-based granular uncertainty decision-making with intuitionistic fuzzy sets by using Choquet’s
integral, measure and representative payoffs. It is capable of handling problems in intuitionistic fuzzy
environments. Khalil [31] look into two new distances: the absolute normalized Euclidean distance
and the square hamming distance, both of which are used in decision-making as intuitionistic fuzzy
sets.

The Pythagorean fuzzy set (PyFS) was introduced by Yager [49], which is an expansion of the
IFS conception that satisfies the criteria that the summation of square of its MD and NMD is not
exceeding by one. Farhadinia [17] proposed Pythagorean fuzzy decision technique to make decisions
using similarity. Yager [50] added multiple aggregate operators (AOs) to the PyFS framework and
Garg [23] updated PyFSs to include more integrated operational rules and associated aggregation
operatives. Some Pythagorean fuzzy Dombi aggregation operators were constructed and explained
in [33]. Garg in [21, 22] utilized Einstein t-norm operational standards towards PyFNs. [36] created
a couple of symmetric PyF AOs. Zeng [54] reported the information on probabilistic and ordered
weighted averaging (OWA). Under the PyF framework, Garg [24] put forward various strategic DM
ways to tackle MCDM problems with imminent probability. Deqing [35] suggest several distance
measures that account for the four Pythagorean fuzzy set parameters for Pythagorean fuzzy sets
and Pythagorean fuzzy numbers. Utilizing triangle conorms, Firozja [19] presents a novel similarity
measure for Pythagorean fuzzy sets (S-norm). For more details, we refer to [13–15]

A wide range of applications in various real-world sectors are concept based on IFSs and PyFSs.
FSs, IFSs along with PyFSs ideas have a broad range of implementations in various physical-world
sectors, but allow them hold their individual set of constraints that are appropriate to MD and NMD. To
control these restrictions, Riaz [42] put forward the innovative invention of Linear Diophantine Fuzzy
Set (LDFS) by adding control factors (CFs). The LDFS concept is most effectual and multifaceted than
other models due to the inclusion of CFs. This collection expanded the space for MD and NMD by
filling the cracks left by current structures and by adding CPs. LDFSs also gave two grades about
information, the sum of which is not exceed by one and total of its factors such as the total of
product of control factors with MD and NMD can not be surpass 1. Many researcher contribute to
the LDFSs like: Iampan [16] introduced linear Diophantine fuzzy Einstein aggregation operators for

AIMS Mathematics Volume 8, Issue 3, 6651–6681.



6653

multi-criteria decision-making problems for the established post-acute care (PAC) model network for
the health restoration of patients with cerebrovascular disorders (CVDs). Decision making with linear
Diophantine fuzzy relations and their algebraic properties was first described by Ayub [12]. Mahmood
[37] presented linear Diophantine uncertain linguistic setting-based generalized hamacher aggregation
operators and their applications in decision-making problems. Riaz [41] expressed his thoughts on
a novel method for choosing third-party reverse logistics providers using linear Diophantine fuzzy
prioritized aggregation operators. Farid [18] proposed using Einstein prioritized for linear Diophantine
fuzzy aggregation operators to pick suppliers of sustainable thermal power equipment.

As a generalization of FS, IFS and PyFS, the concepts of spherical fuzzy sets (SFS) was introduced
by Ashraf et al. [11]. The human thoughts are not ristricted to MD and NMD like [27, 28, 45]. So,
Ashraf [9] presented the concept of spherical fuzzy set and its aggregation operators. The sphercal
fuzzy set is an extention of picture fuzzy set containing three grades namely MD, ND (neutral degree)
and NMD with limitation 0 ≤ a(℘) + δ (℘) + F(℘) ≤ 1 but ashraf et al. presented the generalization set
picture fuzzy set as spherical fuzzy set with constraint 0 ≤ a2 (℘) + δ2 (℘) + F2(℘) ≤ 1. Also Ashraf et
al. developed the spherical fuzzy Dombi aggregation operatives in [10]. The decision-making system
based on cosine similarity was put forward by Rafiq et al. [40]. Barukab et al. [5] used Spherical fuzzy
distance measurements to identify environmental influences on child development. In [6] Spherical
fuzzy sets were utilized by Ashraf et al. to express the spherical fuzzy t-norms and t-conorms. Ashraf
et al. [53] used application in the multi-attribute group decision making problem using symmetric sum
based aggregation operators for spherical fuzzy information. In [25] Gündodu and Kahraman presented
a novel technique for dealing with uncertainty in renewable energy utilising an analytic hierarchy
process. The DM methodologies connected to child development effect environmental elements under
SFSs were reported by Ashraf et al. [5]. Emergency decision model to deal with COVID19 under
spherical fuzzy information in different ways is study in [8] and [7]. Jin et al. [30] used the logarithmic
function to aggregate the uncertainty in decision-making issues and established the spherical fuzzy
aggregation information. Gündoğdu et al. [26] developed the QFD technique for spherical fuzzy
information and explored how it may be used to linear delta robot technology. So, in some physical-
world situations the summation of the membership grades such as alternative meets to fulfil attribute
given by DM is sometimes beat one, showing that SFS did not carry off his goal concerning to
control factors, like 0 ≤ a2 (℘) + δ2 (℘) + F2(℘) � 1. For more detail decision making methods,
we suggest fuzzy decision models [32–34, 51].

Almagrabi [3] introduced the q-linear Diophantine fuzzy set (q-LDFS), an unique generalisation
of the Pythagorean fuzzy set, q-rung orthopair fuzzy set, and linear Diophantine fuzzy set, and also
highlighted its significant aspects. Furthermore, aggregation operators contribute significantly to the
efficient aggregation of uncertainty in decision-making situations. The q-linear Diophantine fuzzy set
cover the MD (a) and NMD (F) with control factors (λ, µ) having restrictions 0 ≤ λqa+µqF ≤ 1,∀℘ ∈
U and 0 ≤ λq + µq ≤ 1. It gives us an open choice to select the MD and NMD values. The q-
linear Diophantine fuzzy set Qiyas [39] used the q-rung linear Diophantine fuzzy to suggest some new
distance and similarity measurements (q-ROLDF). The q-linear Diophantine fuzzy set only deals with
MD and NMD but still there is a gap of ND

(
neutral degree

)
. We need to add new fuzzy numbers in

fuzzy set theory in order to close this gap.
This research is driven by the desire to offer a novel hybrid structure of spherical q-linear

Diophantine fuzzy set (Sq-LDFS) that includes both SFS and q-LDFS in order to evaluate the best

AIMS Mathematics Volume 8, Issue 3, 6651–6681.



6654

option based on the record of attributes. This collection gives you a bird’s-eye view of a variety
of SFS generalized shapes. In addition, the research discusses certain aggregation operations for
integrating spherical q-linear Diophantine fuzzy information in uncertain emergency condition. These
operators are unique in that they can synthesis spherical q-linear Diophantine fuzzy information,
further developing and enriching the idea of spherical q-linear Diophantine fuzzy aggregation
operators. Furthermore, because the suggested aggregation operators are useful DM tools, they assist
the development of multiple-criteria decision-making in the spherical fuzzy setting. This paper’s
contributions are mostly evident in the following areas:

(1). The novel Sq-LDFS strategy with q > 1 is our initial target in filling this knowledge gap.
We can solve the IF, PyF, q-OF, LDF and SFS structure (e.g. for 0.9 + 0.7 + 0.4 > 1), also(
0.92 + 0.72 + 0.42 > 1

)
entrance of Sq-LDFS such that (0.9)(0.5) + (0.7)(0.4) + (0.4)(0.3) < 1, where

the triplet (0.6, 0.7, 0.4) can be utilized for MD, neutral grade (NG) and NMD respectively. Because
this proposed model is similar to familiar Diophantine equation (ax + by + cz = c) of number theory
and the insertion of the qth degree of control factors it appears that Sq-LDFS is the best name for the
established framework.

(2). The second objective is to implement the qth degree of control factors (CFs) capabilities in
Sq-LDFS because qth factors cannot be handled by IFSs, PyFSs, q-ROFSs, LDFSs and SFSs. The
designed system improves on current approaches and DM has complete freedom in selecting grades.
By changing physical sense of connection this model also characterizes the problem. When setting
q = 1, the respective assemblage is converted to SLDS. Furthermore, if we qth value increases, the
Diophantine space extends giving boundary bounds a larger search space to transmit a broader range
of fuzzy data. As a result, we may use Sq- LDFSs to describe a broader range of fuzzy data. By taking
it in another way, we can keep adjusting the value of the factor q to decide the information expressive
range, making Sq-LDFSs more idea and adaptable for unpredictable environments.

(3). Our third objective is to provide a clear connection between the present research and MADM
problems. We derived decision support techniques to deal with multi-attribute difficulties in a
parametric manner. Surprisingly both algorithms produce the same outcome.

This research contributions are follows as:
(i). By merging the features of SFSs with q-LDFSs, we may offer some more sophisticated

operational laws under spherical q-LDFSs based on algebraic t-norm and t-conorm.
(ii). Under spherical q-linear Diophantine fuzzy numbers, offer a collection of innovative

aggregation operators using the defined algebraic t-norm and t-conorm. The significance of some
fundamental features between the proposed aggregation operatives is also demonstrated.

(iii). To provide an unique MADM technique for solving decision making issues based on the
proposed aggregation operatives.

(iv). A numerical demonstration as well as their complete evaluations, demonstrates the consistency
and usefulness of the suggested method.

This work is organized as follows: Section 2 introduces the fundamental ideas of FS, IFS, PyFS,
q-OFS, LDFS and SLDFSs. In Section 3, we explain the unique notion of Sq-LDFS and provide
illustrations to demonstrate some Sq-LDFS procedures. The concept of Śq-LDFSs is introduced in
Section 4 for the Śq-LDFWA, Śq-LDFOWA operatives also provides the concept of Śq-LDFSs for
defining Śq-LDFWG, Śq-LDFOWG operatives, as well as distinct score for evaluating Śq-LDFNs of
different orders. The notion of MADM mathematical modelling is presented in Section 5 with the help
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of the Śq-LDFWA and Śq-LDFWG aggregation operators. In Section 6, we compare the proposed
method to current methods in detail and examine the aggregated findings as the influence of score
functions on the final selection. Section 7 outlines the conclusion of this project.

2. Primal concepts with some premises

In this section, we recall some significant and fundamental concepts of FSs, PyFSs, SFSs, LDFSs,
q-LDFSs and SLDFSs. We also introduce some fundamental properties of the mentioned notations
used in the study and briefly discuss the ideas and results employed in the rest of the work.

Definition 1. [52] A fuzzy set F under the action of universal set U, mathematically represented as

F = {a (℘) |℘ ∈ U} ,

where a (℘) ∈ [0, 1] is membership degree (MD) of F in U.

Definition 2. [2] An Intuitionistic fuzzy set (IFS) Ī under the action of universal set U, mathematically
represented as

Ī = {(a (℘) , F (℘)) |℘ ∈ U} ,

where a (℘) ∈ [0, 1] is membership degree and F ∈ [0, 1] is non-membership degree of Ī in U with
necessary condition 0 ≤ a (℘) + F (℘) ≤ 1.

Definition 3. [49] A Pythagorean fuzzy set P under the action of universal set U, mathematically
represented as

P = {(a (℘) , F(℘))|℘ ∈ U} ,

where a (℘) ∈ [0, 1] is membership degree and F ∈ [0, 1] is non-membership degree of P in U with
necessary condition 0 ≤ (a (℘))2 + (F (℘))2 ≤ 1.

Definition 4. [42] A LDFS L under the action of universal set U, mathematically represented as

L = {(a (℘) , F(℘)), ( λ, µ) |℘ ∈ U} ,

where a (℘) , F(℘) ∈ [0, 1] are the MD and NMD and λ, µ ∈ [0, 1] are the control factors (CFs) with
necessary condition 0 ≤ λ + µ ≤ 1. The degrees met with the criteria 0 ≤ λa (℘) + µF(℘) ≤ 1.
For simplicity, L = {(a (℘) , F(℘)), ( λ, µ)} is termed as Linear Diophantine fuzzy number (LDFN) with
0 ≤ λa (℘) + µF(℘) ≤ 1 and 0 ≤ λ + µ ≤ 1.

Definition 5. [11] The spherical fuzzy set over the non-empty fixed set U reflect the mathematical
form as under:

S = {℘, (a (℘) , δ (℘) , F(℘))|℘ ∈ U} ,

where a (℘) , F(℘), δ (℘) ∈ [0, 1] , are MD, neutral degree (ND) and NMD sequentially with the
constraint 0 ≤ a2 (℘) + δ2 (℘) + F2(℘) ≤ 1. The hasitation part of the (S FS ) in U can be taken in the
form as below:

√
1 −

(
a2 (℘) + δ2 (℘) + F2(℘)

)
. A triplet (a(℘) , δ (℘) , F(℘)) is taken into the account

of Spherical number S FN.
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Definition 6. [43] A spherical linear Diophantine fuzzy set
(
Ś LDFS

)
= in set U, mathematically

represented as
= = {℘, (a (℘) , δ (℘) , F(℘)), ( λ, µ, ω) |℘ ∈ U} ,

where a(℘) , δ (℘) , F(℘) ∈ [0, 1] are MD, neutral degree (ND) and NMD, also λ, µ, ω ∈ [0, 1] are
CF. The mentioned degrees surely met the constraint 0 ≤ λa(℘) + µδ (℘) + ωF(℘) ≤ 1, ∀℘ ∈ U with
0 ≤ λ + µ + ω ≤ 1.

These comparative parameters may aid in the description and identification of system. We can
arrange the framework by changing the manner in given factors.

Definition 7. ρχ (℘) = 1−(λa(℘)+µδ (℘)+ωF(℘)) , where ρχ serves as rejection portion of
(
Ś LDFS

)
,

((a (℘) , δ (℘) , F(℘)), ( λ, µ, ω)) are stands for
(
Ś LDFN

)
with limitation 0 ≤ λa(℘)+µδ (℘)+ωF(℘) ≤

1 and 0 ≤ λ + µ + ω ≤ 1.

Definition 8. [3] q-Linear Diophantine fuzzy set (q − LDFS ) $q over a fixed set U depicted in the
mathematical type as given:

$q =
{
℘, (aq (℘) , Fq(℘)), ( λ, µ) |℘ ∈ U

}
,

aq (℘) , Fq(℘), λ, µ ∈ [0, 1] , are MD,NMD and control factors (CFs) sequentially. These grades met
with essential constraint 0 ≤ λqaq (℘) + µqFq(℘) ≤ 1,∀℘ ∈ U and 0 ≤ λq + µq ≤ 1.

3. Spherical q-linear Diophantine fuzzy set
(
Ś q − LDFS

)
In this section, we initiate a novel notion of a spherical q-linear Diophantine fuzzy set (Sq-LDFS).

In pure mathematics, there is a well-known linear Diophantine equation for three independent variables
ax+by+cz = d, and the framework provided fits it. It’s a little more challenging since the participation,
abstention, and dissatisfaction categories in the picture fuzzy set, spherical fuzzy set, and SLDFS are
confined in certain ways. To address these restrictions, we proposed the concept of Sq-LDFSs based on
reference or control parameters. One significant component of this approach is that the decision-maker
(DM) is not bound by grade membership (positive, neutral, or negative). This framework is frequently
used to categories the problem by selecting several sorts of reference or control criteria. The Sq-
LDFSs structure, its visual representation, and the use of diagrams to explain specific principles are all
discussed.

Definition 9. A spherical q-linear Diophantine fuzzy set
(
Ś q − LDFS

)
over the non-empty fixed set U

reflect the mathematical form as under:

Ξ = {℘, (as (℘) , δs (℘) , Fs(℘)), ( λ, µ, ω) |℘ ∈ U} , (3.1)

where as (℘) , δs (℘) , Fs(℘) ∈ [0, 1] are MD, ND and NMD, also λ, µ, ω ∈ [0, 1] are CF. The
mentioned degrees surely met the constraint

1). 0 ≤ λqas (℘) + µqδs (℘) + ωqFs(℘) ≤ 1, ∀℘ ∈ U,
2). 0 ≤ λq + µq + ωq ≤ 1.
These comparative factors may aid in the description or identification of pattern. We can arrange

the pattern by changing the way in given factors. %σ (℘) = 1 − λas (℘) + µδs (℘) + ωFs(℘) ,
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where %σ serves as refusal part of
(
Ś q − LDFS

)
. ((as (℘) , δs (℘) , Fs(℘)), ( λ, µ, ω)) are stands for(

Ś q − LDFN
)

with
0 ≤ λqas (℘) + µqδs (℘) + ωqFs(℘) ≤ 1

and
0 ≤ λq + µq + ωq ≤ 1.

In this part we have present the Spherical q-linear Diophantine fuzzy set which is the extension of
q-linear Diophantine fuzzy set by extended the reference parameters and classify as: the summation
of qth power of reference factors (RFs) by scalar multiplication with (MD) , (ND) and (NMD) . Our
futuristic model of spherical q-linear Diophantine fuzzy set

(
Ś q − LDFS

)
is most flexible and having

more efficacy than (q-LDFS) due to extended control factors (CFs) in spherical form. Our model
strong correlation with (MADM) issues.

Table 1. Comparison of Sq-LDFSs with existing approach.

S et theories a δ F
Denail

part
Limits

FS s X × × × ×

IFS s X × X × ×

q − LDFS S X × X X X
S FS s X X X X ×

Ś q − LDFS s X X X X X

Now we present the definitions related to (Śq-LDFS) which are absolute spherical q-linear
Diophantine fuzzy set and null spherical q-linear Diophantine fuzzy set.

Definition 10. The absolute spherical q-linear Diophantine fuzzy set is structured as:

1υs = {α, (1, 0, 0) , (1, 0, 0) : α ∈ U} .

Definition 11. The null spherical q-linear Diophantine fuzzy set is the compliment of absolute
spherical q-linear Diophantine fuzzy set is structured as:

1υc
s = {α, (0, 0, 1) , (0, 0, 1) : α ∈ U} ,

we are familiar with this, if
(1). we set q = 1 in Definition 9, Śq-LDFS becomes ŚLDFS,
(2). we set q = 2 in Definition 9, Śq-LDFS becomes Śpherical quadratic DFS.
(3). we set q = 3 in Definition 9, Śq-LDFS becomes Śpherical cubic DFS,
(4). we set q = 4 in Definition 9, Śq-LDFS becomes Śpherical bi-quadratic DFS.

These are the major advantages of Sq-LDFS for distinct q values. It should be observed that as
we increase the q values, the spherical Diophantine space stretches, giving the boundary parameters a
larger search space to generate a larger spectrum of fuzzy data. Setting q = 1 gives Riaz’s (ŚLDFS),
while setting q = 2 makes Ashraf’s (ŚFS) as displayed in Figure 1:
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Figure 1. Flow chart about proposed Sq-LDFS.

Any IFS becomes LDFS, each LDFS becomes q-LDFS, also q-LDFS becomes Sq-LDFS by some
additional terms as shown in Figure 2.

Figure 2. Flow chart expansion of Sq-LDFS.

Definition 12. Let Γ1 =
{
(as1 , δs1 , Fs1), (λ1, µ1, ω1)

}
,Γ2 =

{
(as2 , δs2 , Fs2), (λ2, µ2, ω2)

}
be two(

Ś q − LDFS
)

over ξ and Ω > 0, then
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1). Γc
1 =

{
(Fs1 , δs1 ,as1), ( ω1, µ1, λ1)

}
,

2). Γ1 = Γ2 ⇔ as1 = as2 , δs1 = δs2 , F s1 = F s2 , λ1 = λ2, µ1 = µ2 , ω1 = ω2,

3). Γ1 ⊆ Γ2 ⇔ as1 ≤ as2 , δs1 ≥ δs2 , F s2 ≥ F s2 , λ1 ≤ λ2, µ1 ≥ µ2 , ω1 ≥ ω2,

4). Γ2 ∪ Γ2 =

(
((sup

(
as1 ,as2

)
, inf

(
δs1 , δs2

)
, inf

(
Fs1 , Fs2

)
),

(sup (λ1, λ2) , inf (µ1, µ2) , inf (ω1, ω2))

)
,

5). Γ1 ∩ Γ2 =

(
((inf

(
as1 ,as2

)
, inf

(
δs1 , δs2

)
, sup

(
Fs1 , Fs2

)
),

(inf (λ1, λ2) , inf (µ1, µ2) , sup (ω1, ω2))

)
,

6). Γ1 ⊕ Γ2 =


(

q
√

(as1)q + (as2)q − (as1)q(as2)q, δs1δs2 , Fs1 Fs2

)
,(

q√(λ1)q + (λ2)q − (λ1)q(λ2)q, µ1µ2, ω1ω2

)  ,
7). Γ1 ⊗ Γ2 =


(
as1as2 , δs1δs2 ,

q
√

(Fs1)q + (Fs2)q − (Fs1)q(Fs2)q
)
,(

λ1λ2, µ1µ2,
q√(ω1)q + (ω2)q − (ω1)q(ω2)q

)  ; q ≥ 1,

8). ΩΓ1 =


(

q
√

1 − (1 − aq
s1 )Ω, (δs1)

Ω, (Fs1)
Ω
)
,(

q
√

1 − (1 − λq
1)Ω, (µ1)Ω, (ω1)Ω

)  ,
9). ΓΩ

1 =

((
aΩ

s , δ
Ω
s ,

q
√

1 − (1 − Fq
s )Ω

)
,
(
λΩ

1 , µ
Ω
1 ,

q
√

1 − (1 − ωq
1)Ω

))
.

The algebraic rules for spherical q-linear Diophantine fuzzy numbers are therefore limited to the
algebraic rules for q-linear Diophantine numbers if δs1 = δs2 = 0 = µ1 = µ2.

Example 1. Let Γ1 = (0.48, 0.25, 0.34), (0.41, 0.24, 0.23) and Γ2 = (0.53, 0.24, 0.13), (0.48, 0.25, 0.26)
are two Śq-LDFNs, then
1). Γc

1 = ((0.34, 0.25, 0.48), (0.23, 0.24, 0.41)) .
2). Obvious by definition Γ1 ⊆ Γ2.
3). Γ1 ∪ Γ2 = ((0.53, 0.24, 0.13) , (0.48, 0.24, 0.23)) .
4). Γ1 ∩ Γ2 = ((0.48, 0.41, 0.34) , (0.41, 0.25, 0.26)) .
5). Γ1 ⊕ Γ2 = ((0.6240, 0.0600, 0.0442) , (0.5560, 0.0600, 0.0598)) .
6). Γ1 ⊗ Γ2 = ((0.2544, 0.0600, 0.3460) , (0.1968, 0.0600, 0.3091)) .
7). ΩΓ1 = ((0.6668, 0.0600, 0.0442) , (0.5777, 0.0138, 0.0122)) .
8). ΓΩ

1 = ((0.1106, 0.0156, 0.4839) , (0.0689, 0.014, 0.3304)) .

Theorem 1. Let Γ1 and Γ2 are two Śq-LDFNs with Ω,Ω1,Ω2 > 0,then these properties must hold:
1). Γ1 ⊕ Γ2 = Γ2 ⊕ Γ1,

2). Γ1 ⊗ Γ2 = Γ2 ⊗ Γ1,

3). Ω ( Γ1 ⊕ Γ2) = ΩΓ1 ⊕ΩΓ2,

4). ( Γ1 ⊗ Γ2)Ω = ΓΩ
1 ⊗ ΓΩ

2 ,

5). Ω1Γ1 ⊕Ω2Γ1 = (Ω1 ⊕Ω2) Γ1,

6). Γ
Ω1
1 ⊗ Γ

Ω2
1 = Γ

(Ω1+Ω2)
1 ,

7). ( Γ
Ω1
1 )Ω2 = Γ

Ω1Ω2
1 .

Proof. We just provide conclusive proof for the 1–3, 5 and 7 equality. According to Definition 12,
1).Γ1 ⊕ Γ2 = Γ2 ⊕ Γ1

Γ1 ⊕ Γ2 =


(

q
√

(as1)q + (as2)q − (as1)q(as2)q, δs1δs2 , Fs1 Fs2

)
,(

q√(λ1)q + (λ2)q − (λ1)q(λ2)q, µ1µ2, ω1ω2

)  ; q ≥ 1
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=


(

q
√

(as2)q + (as1)q − (as2)q(as1)q, δs2δs1 , Fs2 Fs1

)
,(

q√(λ2)q + (λ1)q − (λ2)q(λ1)q, µ2µ1, ω2ω1

)  ; q ≥ 1

= Γ2 ⊕ Γ1.

Hence it proved.
For equality (2) , we have
2). Γ1 ⊗ Γ2 = Γ2 ⊗ Γ1

Γ1 ⊗ Γ2 =


(
as1as2 , δs1δs2 ,

q
√

(Fs1)q + (Fs2)q − (Fs1)q(Fs2)q
)
,(

λ1λ2, µ1µ2,
q√(ω1)q + (ω2)q − (ω1)q(ω2)q

)  ; q ≥ 1

=


(
as2as1 , δs2δs1 ,

q
√

(Fs2)q + (Fs1)q − (Fs2)q(Fs1)q
)
,(

λ2λ1, µ2µ1,
q√(ω2)q + (ω1)q − (ω2)q(ω1)q

)  ; q ≥ 1

= Γ2 ⊗ Γ1.

Also for equality (3) , we have
3). Ω ( Γ1 ⊕ Γ2) = ΩΓ1 ⊕ΩΓ2.
By combining 6 and 8 point of Definition 12, we gain

Ω ( Γ1 ⊕ Γ2) = Ω


(

q
√

(as1)q + (as2)q − (as1)q(as2)q, δs1δs2 , Fs1 Fs2

)
,(

q√(λ1)q + (λ2)q − (λ1)q(λ2)q, µ1µ2, ω1ω2

)  ; q ≥ 1

=


(

q
√

1 −
(
1 − (as1)q + (as2)q − (as1)q(as2)q)Ω,

(
δs1δs2

)Ω ,
(
Fs1 Fs2

)Ω

)
,(

q
√

1 − (1 − (λ1)q + (λ2)q − (λ1)q(λ2)q)Ω, (µ1µ2)Ω , (ω1ω2)Ω

)
 ; q ≥ 1

=


(

q
√

1 −
(
1 − (as1)q)Ω (

1 − (as2)q)Ω,
(
δs1δs2

)Ω ,
(
Fs1 Fs2

)Ω

)
,(

q
√

1 −
(
1 − (λ1)q)Ω (

1 − (aλ2)q)Ω, (µ1µ2)Ω , (ω1ω2)Ω

)
 ; q ≥ 1.

We can retrieve it by using the right side of the equation.

ΩΓ1 =


(

q
√

1 − (1 − aq
s1 )Ω, (δs1)

Ω, (Fs1)
Ω
)
,(

q
√

1 − (1 − λq
1)Ω, (µ1)Ω, (ω1)Ω

)  ,
ΩΓ2 =


(

q
√

1 − (1 − aq
s2 )Ω, (δs2)

Ω, (Fs2)
Ω
)
,(

q
√

1 − (1 − λq
2)Ω, (µ2)Ω, (ω2)Ω

)  .
Futhermore, apart from this

=


(

q
√

1 − (1 − aq
s1 )Ω + 1 − (1 − aq

s2 )Ω − (1 − (1 − aq
s1 )Ω)(1 − (1 − aq

s2 )Ω),(
δs1

)Ω (
δs2

)Ω ,
(
Fs1

)Ω (
Fs2

)Ω

)
, q

√
1 − (1 − λq

1 )Ω + 1 − (1 − λq
2 )Ω − (1 − (1 − λq

1 )Ω)(1 − (1 − λq
2 )Ω),

(µ1)Ω (µ2)Ω , (ω1)Ω (ω2)Ω



 ; q ≥ 1
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=


(

q
√

(1 − (1 − aq
s1 )Ω(1 − aq

s2 )Ω),
(
δs1

)Ω (
δs2

)Ω ,
(
Fs1

)Ω (
Fs2

)Ω
)
,(

q
√

1 − (1 − λq
1 )Ω(1 − λq

2 )Ω, (µ1)Ω (µ2)Ω , (ω1)Ω (ω2)Ω
)  ; q ≥ 1

= ΩΓ1 ⊕ΩΓ2.

Thus shown.
In favour of (5) , the proof is given as
5).Ω1Γ1 ⊕Ω2Γ1 = (Ω1 ⊕Ω2) Γ1

Ω1Γ1 =


(

q
√

1 − (1 − aq
s1 )Ω1 , (δs1)

Ω1 , (Fs1)
Ω1

)
,(

q
√

1 − (1 − λq
1)Ω1 , (µ1)Ω1 , (ω1)Ω1

)  ,
Ω2Γ1 =


(

q
√

1 − (1 − aq
s1 )Ω2 , (δs1)

Ω2 , (Fs1)
Ω2

)
,(

q
√

1 − (1 − λq
1)Ω2 , (µ1)Ω2 , (ω1)Ω2

) 
Ω1Γ1 ⊕Ω2Γ1 =


(

q
√

1 − (1 − aq
s1 )Ω1 , (δs1)

Ω1 , (Fs1)
Ω1

)
,(

q
√

1 − (1 − λq
1)Ω1 , (µ1)Ω1 , (ω1)Ω1

) 
⊕


(

q
√

1 − (1 − aq
s1 )Ω2 , (δs1)

Ω2 , (Fs1)
Ω2

)
,(

q
√

1 − (1 − λq
1)Ω2 , (µ1)Ω2 , (ω1)Ω2

) 

=


(

q
√

1 − (1 − aq
s1 )Ω1 + 1 − (1 − aq

s1 )Ω2 − (1 − (1 − aq
s1 )Ω1)(1 − (1 − aq

s1 )Ω2),(
δs1

)Ω1
(
δs1

)Ω2 ,
(
Fs1

)Ω2
(
Fs1

)Ω2

)
, q

√
1 − (1 − λq

1 )Ω1 + 1 − (1 − λq
1 )Ω2 − (1 − (1 − λq

1 )Ω1)(1 − (1 − λq
2 )Ω2),

(µ1)Ω1 (µ1)Ω2 , (ω1)Ω1 (ω1)Ω2



 ; q ≥ 1

=


(

q
√

1 − (1 − aq
s1 )Ω1+Ω2 , (δs1)

Ω1+Ω2 , (Fs1)
Ω1+Ω2

)
,(

q
√

1 − (1 − λq
1)Ω1+Ω2 , (µ1)Ω1+Ω2 , (ω1)Ω1+Ω2

) 
= (Ω1 ⊕Ω2) Γ1.

Thus proved.
In praise of equality (7), we have

7) ( Γ
Ω1
1 )Ω2 = Γ

Ω1Ω2
1

Γ
Ω1
1 =

((
aΩ1

s1
, δΩ1

s1
, q
√

1 − (1 − Fq
s1

)Ω1

)
,
(
λΩ1

1 , µΩ1
1 ,

q
√

1 − (1 − ωq
1)Ω1

))
( Γ

Ω1
1 )Ω2 =

((
aΩ1

s1
, δΩ1

s1
, q
√

1 − (1 − Fq
s1

)Ω1

)
,
(
λΩ1

1 , µΩ1
1 ,

q
√

1 − (1 − ωq
1)Ω1

))Ω2

=

(((
aΩ1

s1

)Ω2
,
(
δ

Ω1
s1

)Ω2

,
(

q
√

1 − (1 − Fq
s1

)Ω1

)Ω2
)
,

((
λΩ1

1

)Ω2
,
(
µΩ1

1

)Ω2
,
(

q
√

1 − (1 − ωq
1)Ω1

)Ω2
))

=

(
aΩ1Ω2

s1
, δΩ1Ω2

s1
,
(

q
√

1 − (1 − Fq
s1

)Ω1Ω2

))
,
(
λΩ1Ω2

1 , µΩ1Ω2
1 ,

(
q
√

1 − (1 − ωq
1)Ω1Ω2

))
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= Γ
Ω1Ω2
1 .

So, we obtain
( Γ

Ω1
1 )Ω2 = Γ

Ω1Ω2
1 .

The proof of the remaining properties can be handled easily. �

4. Śpherical q-linear Diophantine fuzzy weighted aggregation operator

This section presented the list of novel algebraic norm based aggregation information under
spherical q-linear Diophantine fuzzy sets. Also the score function is introduced for ranking the Sq-
LDFNs.

Definition 13. Let Γ = {℘, (as, δs, Fs), (λ, µ, ω)} be an Śq-LDFN, then the transformation fs : Ś q −
LDFN (U)→ [−1, 1] is label as score function (S F) on U as shown

fΓs =

[
(as − δs − Fs) + ( λq − µq − ωq)

2

]
; q ≥ 1, (4.1)

where Śq-LDFN(U) is a group of Śq-LDFNs on U.

Definition 14. Let Γs1 and Γs2 be two Śq-LDFNs. Then
(1) . fΓ1 < fΓ2 ,Γ1 < Γ2,

(2) . fΓ1 = fΓ2 , Γ1 = Γ2.

Definition 15. The transformation Θ : Ś q − LDFN(U) −→ [−1, 1] manifest the quadratic score
function (QSF) for Śq-LDNs Γs and can be exhibit as

Θ (Γs) =


(
a2

s − δ
2
s − F2

s

)
+

(
( λq)2 − (µq)2 − (ωq)2

)
2

 ; q ≥ 1, (4.2)

where Śq-LDFN(U) is a collection of Śq-LDFNs on U.

Definition 16. Let Γs1 and Γs2 be two Śq-LDFNs. Then
(1) . ΘΓ1 < ΘΓ2 ,Γ1 < Γ2,

(2) . ΘΓ1 = ΘΓ2 ,Γ1 = Γ2.

Definition 17. An expectation score function (ESF) is represented by the mapping ϑs : Ś q −
LDFN (U)→ [0, 1] defined as:

ϑΓs = ϑ (Γs) =
1
3

[
(as − δs − Fs + 2)

2
+

( λq − µq − ωq + 2)
2

]
; q ≥ 1, (4.3)

where Śq-LDFN(U) is a group of Śq-LDFNs on U.

Definition 18. Let Γs1 and Γs2 be two Śq-LDFNs. Then
(1) . ϑ (Γ1) < ϑ (Γ2) ,Γ1 < Γ2,

(2) . ϑ (Γ1) = ϑ (Γ2) ,Γ1 = Γ2.
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The generalizes form of (SF) is expectation score function (ESF). The range of (ESF) is [0, 1] rather
than the range [−1, 1] . Moreover, we define numerous aggregation techniques rely on (Sq-LDFNs).

Definition 19. Let Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs and

Ś q − LDFN (U)n
−→ Ś q − LDFN (U), then Ś q − LDFWA operator is defined as

Ś q − LDFWAA (Γ1,Γ2, ...,Γn) =

n∑
ĥ=1

kĥ · Γsĥ
,

where the set k = (k1, k2, ..., kn)T represented the weight vector for Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)}(
ĥ ∈ N

)
such that k > 0 along with

∑
ĥ∈N kĥ = 1.

Theorem 2. For any Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
assemblage of Śq-LDFNs over U along

with weight vector k = (k1, k2, ..., kn)T such that k > 0 along with
∑

ĥ∈N kĥ = 1. Then the Śpherical
q-linear Diophantine fuzzy weighted averaging

(
Ś q − LDFWA

)
aggregation operator is define using

the operational laws as follows:

Ś q − LDFWA (Γ1,Γ2, ...,Γn) =

n∑
ĥ=1

kĥ · Γsĥ

=



, q

√
1 −

n∏̂
h=1

(1 − aq
sĥ

)kĥ ,
n∏̂

h=1
(δsĥ

)kĥ ,
n∏̂

h=1
(Fsĥ

)kĥ

 , q

√
1 −

n∏̂
h=1

(1 − λq
ĥ
)kĥ ,

n∏̂
h=1

(µĥ)kĥ ,
n∏̂

h=1
(ωĥ)kĥ



 . (4.4)

Proof. The inductive technique of mathematics may be used to prove this theorem. Therefore,
(1) . For n = 2, we have

k1Γs1 =


(

q
√

1 − (1 − aq
s1)k1, (δs1

)k1 , (Fs1)
k1
)
,(

q
√

1 − (1 − λq
1)k1 , (µ1)k1 , (ω1)k1

) 

k2Γs2 =


(

q
√

1 − (1 − aq
s2)k2 , (δs2

)k2 , (F s2
)k2

)
,(

q
√

1 − (1 − λq
2)k2 , (µ2)k2 , (ω2)k2

)  .
Then

Ś q − LDFWA (Γ1,Γ2) = k1Γs1 ⊕ k2Γs2

=


(

q
√

1 − (1 − aq
s1)k1 ,

(δs1
)k1 , (F s1

)k1

)
, q

√
1 − (1 − λq

1)k1 ,

(µ1)k1 , (ω1)k1


 ⊕


(

q
√

1 − (1 − aq
s2)k2,

(δs2
)k2 , (F s2

)k2

)
, q

√
1 − (1 − λq

2)k2 ,

(µ2)k2 , (ω2)k2


 ;
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=




q

√√ (
q
√

1 − (1 − aq
s1)k1

)q
+

(
q
√

1 − (1 − aq
s2)k2

)q
−(

q
√

1 − (1 − aq
s1)k1

)q
·
(

q
√

1 − (1 − aq
s2)k2

)q

, (δs1
)k1(δs2

)k2 , (F s1
)k1(F s2

)k2

 ,
q

√√ (
q
√

1 − (1 − λq
s1)k1

)q
+

(
q
√

1 − (1 − λq
s2)k2

)q
−(

q
√

1 − (1 − λq
s1)k1

)q
·
(

q
√

1 − (1 − λq
s2)k2

)q

, (µs1
)k1(δµs2

)k2 , (ωs1
)k1(ωs2

)k2




=


(

q
√

1 − (1 − aq
s1)k1(1 − aq

s2)k2 , (δs1
)k1(δs2

)k2 , (F s1
)k1(F s2

)k2
)
,(

q
√

1 − (1 − λq
s1)k1(1 − λq

s2)k2 , (µs1
)k1(δµs2

)k2 , (ωs1
)k1(ωs2

)k2
) 

=



 q

√
1 −

2∏̂
h=1

(1 − aq
sĥ

)kĥ ,
2∏̂

h=1
(δsĥ

)kĥ ,
2∏̂

h=1
(F sĥ

)kĥ

 , q

√
1 −

2∏̂
h=1

(1 − λq
sĥ

)kĥ ,
2∏̂

h=1
(µsĥ

)kĥ ,
2∏̂

h=1
(ωsĥ

)kĥ



 .
(2) . We assume that the equation is true for n = `, and it is demonstrated as follows.

=



 q

√
1 −

∏̂̀
h=1

(1 − aq
sĥ

)kĥ ,
∏̂̀
h=1

(δsĥ
)kĥ ,

∏̂̀
h=1

(F sĥ
)kĥ

 , q

√
1 −

∏̂̀
h=1

(1 − λq
sĥ

)kĥ ,
∏̂̀
h=1

(µsĥ
)kĥ ,

∏̂̀
h=1

(ωsĥ
)kĥ



 .

(3) . Now, we have to prove for n = ` + 1, then we have

Ś q − LDFWA
(
Γs1 ,Γs2,...,Γs`+1

)
= k1Γs1 ⊕ k2Γs2 ⊕ ... ⊕ k`Γs` ⊕ k`+1Γs`+1

 q

√
1 −

∏̂̀
h=1

(1 − aq
sĥ

)kĥ ,
∏̂̀
h=1

(δsĥ
)kĥ ,

∏̂̀
h=1

(F sĥ
)kĥ

 , q

√
1 −

∏̂̀
h=1

(1 − λq
sĥ

)kĥ ,
∏̂̀
h=1

(µsĥ
)kĥ ,

∏̂̀
h=1

(ωsĥ
)kĥ



⊕
(

q
√

1 − (1 − aq
s`+1)kĥ , (δs`+1

)kĥ , (F s`+1
)kĥ

)
,(

q
√

1 − (1 − λq
s`+1)kĥ , (µs`+1

)kĥ , (ωs`+1
)kĥ

)


=



 q

√
1 −

`+1∏̂
h=1

(1 − aq
sĥ

)kĥ ,
`+1∏̂
h=1

(δsĥ
)kĥ ,

`+1∏̂
h=1

(F sĥ
)kĥ

 , q

√
1 −

`+1∏̂
h=1

(1 − λq
sĥ

)kĥ ,
`+1∏̂
h=1

(µsĥ
)kĥ ,

`+1∏̂
h=1

(ωsĥ
)kĥ



 .
Therefore, the equation is true for n = ` + 1.
Hence proved. �
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Definition 20. Let Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs and

Ś q − LDFN (U)n
−→ Ś q − LDFN (U), then Ś q − LDFOWA operator is defined as

Ś q − LDFOWA (Γ1,Γ2, ...,Γn) =

n∑
ĥ=1

kĥ · Γs
ς(ĥ) ,

where the set k = (k1, k2, ..., kn)T represented the weight vector for Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)}(
ĥ ∈ N

)
such that k > 0 along with

∑
ĥ∈N kĥ = 1 and ς (1) , ς (2) , ..., ς (n) be the permutation such that

ς
(
ĥ
)
< ς

(
ĥ − 1

)
.

Theorem 3. For any Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
assemblage of Śq-LDFNs over U along

with weight vector k = (k1, k2, ..., kn)T such that k > 0 along with
∑

ĥ∈N kĥ = 1. Then the Śpherical q-
linear Diophantine fuzzy ordered weighted averaging

(
Ś q − LDFOWA

)
aggregation operator is define

using the operational laws as follows:

Ś q − LDFOWA (Γ1,Γ2, ...,Γn) =

n∑
ĥ=1

kĥ · Γς(ĥ)

=



, q

√
1 −

n∏̂
h=1

(1 − aq
s
ς(ĥ))kĥ ,

n∏̂
h=1

(δs
ς(ĥ)

)kĥ ,
n∏̂

h=1
(Fs

ς(ĥ))kĥ

 , q

√
1 −

n∏̂
h=1

(1 − λq
ς(ĥ))

kĥ ,
n∏̂

h=1
(µς(ĥ))

kĥ ,
n∏̂

h=1
(ως(ĥ))

kĥ



 . (4.5)

where ς (1) , ς (2) , ..., ς (n) be the permutation such that ς
(
ĥ
)
< ς

(
ĥ − 1

)
.

Proof. Prove is similar to proof of Theorem 2. �

Now, we presented some interesting properties that the averaging operators satisfy.
1).

(
Idempotency

)
Let Γĥ =

{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs.

If Γ1 = Γ2 = ... = Γn = Γ, then

Ś q − LDFWA (Γ1,Γ2, ...,Γn) = Γ.

2). (Boundedness) Let Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs,

with σsĥ is the refusal degree ∀ Γĥ. Then δ∗
sĥ

= min{δsĥ}, F∗
sĥ

= min{Fsĥ}, σ
∗

sĥ
= min

{
σsĥ

}
and µ∗

ĥ
,=

min{µĥ}, ω
∗

ĥ
= min{ωĥ}, $

∗

ĥ
= min{$ĥ}, then, λ · a∗

sĥ
= 1 − µĥδ

∗

sĥ
+ ωĥF∗

sĥ
+$ĥσ

∗

sĥ
also δ′

sĥ
= max{δsĥ}, F′

sĥ
= max{Fsĥ}, σ

′

sĥ
= max

{
σsĥ

}
and µ′

ĥ
,= max{µĥ}, ω

′

ĥ
= max{ωĥ}, $

′

ĥ
=

max{$ĥ}, then, λ · a′
sĥ

= 1 − µĥδ
′

sĥ
+ ωĥF′

sĥ
+$ĥσ

′

sĥ

Γ∗ ≤ Ś q − LDFWA(Γ1,Γ2, ...,Γn) ≤ Γ′.

Where Γ′
ĥ

=
{(
a′

sĥ
, δ′

sĥ
, F′

sĥ

)
,
(
λ′

ĥ
, µ′

ĥ
, ω′

ĥ

)}
and Γ∗

ĥ
=

{(
a∗

sĥ
, δ∗

sĥ
, F∗

sĥ

)
,
(
λ∗

ĥ
, µ∗

ĥ
, ω∗

ĥ

)}
.

3).
(
Monotonicity

)
Let Γĥ =

{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)}
and

Γ
◦

ĥ
=

{(
a◦sĥ, δ

◦
sĥ, F

◦
sĥ
)
,
(
λĥ
◦, µĥ

◦, ωĥ
◦
)} (

ĥ ∈ N
)

be two assemblage of Śq-LDFNs. If asĥ ≤

a◦sĥ, δsĥ ≤ δ
◦

sĥ, Fsĥ ≤ F◦sĥ, λĥ ≤ λĥ
◦, µĥ ≤ µĥ

◦, ωĥ ≤ ωĥ
◦ ,then

Ś q − LDFWA(Γ1,Γ2, ...,Γn) ≥ Ś q − LDFWA(Γ
◦

1,Γ
◦

2, ...,Γ
◦

n).
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Definition 21. Let Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs and

Ś q − LDFN (U)n
−→ Ś q − LDFN (U), then Ś q − LDFWG operator is defined as

Ś q − LDFWG (Γ1,Γ2, ...,Γn) =

n∏
ĥ=1

(
Γsĥ

)kĥ
,

where the set k = (k1, k2, ..., kn)T represented the weight vector for Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)}(
ĥ ∈ N

)
such that k > 0 along with

∑
ĥ∈N kĥ = 1.

Theorem 4. For any Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
assemblage of Śq-LDFNs over U along

with weight vector
k = (k1, k2, ..., kn)T such that k > 0 along with

∑
ĥ∈N kĥ = 1. Then the Śpherical q-linear

Diophantine fuzzy weighted averaging
(
Ś q − LDFWA

)
aggregation operator is define using the

operational laws as follows:

Ś q − LDFWG (Γ1,Γ2, ...,Γn) =

n∏
ĥ=1

(
Γsĥ

)kĥ

=



, n∏̂
h=1

(aq
sĥ

)kĥ ,
n∏̂

h=1
(δsĥ

)kĥ , q

√
1 −

n∏̂
h=1

(1 − Fsĥ
)kĥ

 , n∏̂
h=1

(λq
ĥ
)kĥ ,

n∏̂
h=1

(µĥ)kĥ , q

√
1 −

n∏̂
h=1

(1 − ωĥ)kĥ



 . (4.6)

Proof. The inductive technique of mathematics may be used to prove this theorem. Therefore,
(1) . For n = 2, we have

(
Γs1

)k1 =


(
(aq

s1)
k1, (δs1

)k1 , q
√

1 − (1 − Fs1)k1
)
,(

(λq
1)k1 , (µ1)k1 ,

q
√

1 − (1 − ω1)k1
) 

(
Γs2

)k2 =


(
(aq

s2)
k2 , (δs2

)k2 , q
√

1 − (1 − Fs2)k2
)
,(

(λq
2)k2 , (µ2)k2 ,

q
√

1 − (1 − ω2)k2
)  .

Then
Ś q − LDFWG (Γ1,Γ2) = (Γ1)k1 ⊕ (Γ2)k2

=


(

(aq
s1)

k1, (δs1
)k1 ,

q
√

1 − (1 − Fs1)k1

)
,(

(λq
1)k1 , (µ1)k1 ,

q
√

1 − (1 − ω1)k1

)
 ⊗


(

(aq
s2)

k2 , (δs2
)k2 ,

q
√

1 − (1 − Fs2)k2

)
,(

(λq
2)k2 , (µ2)k2 ,

q
√

1 − (1 − ω2)k2

)
 ;

=




(as1)

k1(as2)
k2 , (δs1

)k1(δs2
)k2 ,

q

√√ (
q
√

1 − (1 − Fq
s1)k1

)q
+

(
q
√

1 − (1 − Fq
s2)k2

)q
−(

q
√

1 − (1 − Fq
s1)k1

)q
·
(

q
√

1 − (1 − Fq
s2)k2

)q

 ,
(λs1)

k1(λs2)
k2 , (µs1

)k1(δµs2
)k2 ,

q

√√ (
q
√

1 − (1 − ωq
s1)k1

)q
+

(
q
√

1 − (1 − ωq
s2)k2

)q
−(

q
√

1 − (1 − ωq
s1)k1

)q
·
(

q
√

1 − (1 − ωq
s2)k2

)q
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=


(
(as1)

k1(as2)
k2 , (δs1

)k1(δs2
)k2 , q

√
1 − (1 − Fq

s1)k1(1 − Fq
s2)k2

)
,(

(λs1)
k1(λs2)

k2 , (µs1
)k1(δµs2

)k2 , q
√

1 − (1 − ωq
s1)k1(1 − ωq

s2)k2
) 

=



 2∏̂
h=1

(asĥ
)kĥ ,

2∏̂
h=1

(δsĥ
)kĥ , q

√
1 −

2∏̂
h=1

(1 − Fq
sĥ

)kĥ

 , 2∏̂
h=1

(λsĥ
)kĥ ,

2∏̂
h=1

(µsĥ
)kĥ , q

√
1 −

2∏̂
h=1

(1 − ωq
sĥ

)kĥ



 .
(2) . We assume that the equation is true for n = `, and it is demonstrated as follows.

=



∏̂̀
h=1

(asĥ
)kĥ ,

∏̂̀
h=1

(δsĥ
)kĥ , q

√
1 −

∏̂̀
h=1

(1 − Fq
sĥ

)kĥ

 ,∏̂̀
h=1

(λsĥ
)kĥ ,

∏̂̀
h=1

(µsĥ
)kĥ , q

√
1 −

∏̂̀
h=1

(1 − ωq
sĥ

)kĥ



 .
(3) . Now, we have to prove for n = ` + 1, then we have

Ś q − LDFWG
(
Γs1 ,Γs2,...,Γs`+1

)
= (Γ1)k1 ⊕ (Γ2)k2 ⊕ ... ⊕ (Γ`)k` ⊕ (Γ`+1)k`+1

∏̂̀
h=1

(asĥ
)kĥ ,

∏̂̀
h=1

(δsĥ
)kĥ , q

√
1 −

∏̂̀
h=1

(1 − Fq
sĥ

)kĥ

 ,∏̂̀
h=1

(λsĥ
)kĥ ,

∏̂̀
h=1

(µsĥ
)kĥ , q

√
1 −

∏̂̀
h=1

(1 − ωq
sĥ

)kĥ



⊗
(
(as`+1)

kĥ , (δs`+1
)kĥ , q

√
1 − (1 − Fq

s`+1)kĥ

)
,(

(λs`+1)
kĥ , (µs`+1

)kĥ , q
√

1 − (1 − ωq
s`+1)kĥ

)


=



`+1∏̂
h=1

(asĥ
)kĥ ,

`+1∏̂
h=1

(δsĥ
)kĥ , q

√
1 −

`+1∏̂
h=1

(1 − Fq
sĥ

)kĥ

 ,`+1∏̂
h=1

(λsĥ
)kĥ ,

`+1∏̂
h=1

(µsĥ
)kĥ , q

√
1 −

`+1∏̂
h=1

(1 − ωq
sĥ

)kĥ



 .
Therefore, the equation is true for n = ` + 1.
Hence proved. �

Definition 22. Let Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs and

Ś q − LDFN (U)n
−→ Ś q − LDFN (U), then Ś q − LDFOWG operator is defined as

Ś q − LDFOWG (Γ1,Γ2, ...,Γn) =

n∏
ĥ=1

(
Γς(ĥ)

)kĥ
,

where the set k = (k1, k2, ..., kn)T represented the weight vector for Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)}(
ĥ ∈ N

)
such that k > 0 along with

∑
ĥ∈N kĥ = 1 and ς (1) , ς (2) , ..., ς (n) be the permutation such that

ς
(
ĥ
)
< ς

(
ĥ − 1

)
.
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Theorem 5. For any Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
assemblage of Śq-LDFNs over U along

with weight vector
k = (k1, k2, ..., kn)T such that k > 0 along with

∑
ĥ∈N kĥ = 1. Then the Śpherical q-linear

Diophantine fuzzy ordered weighted averaging
(
Ś q − LDFOWG

)
aggregation operator is define using

the operational laws as follows:

Ś q − LDFOWG (Γ1,Γ2, ...,Γn) =

n∏
ĥ=1

(
Γς(ĥ)

)kĥ

=



 n∏̂
h=1

(as
ς(ĥ))kĥ ,

n∏̂
h=1

(δs
ς(ĥ)

)kĥ , q

√
1 −

n∏̂
h=1

(1 − Fq
s
ς(ĥ))kĥ

 , n∏̂
h=1

(λς(ĥ))
kĥ ,

n∏̂
h=1

(µς(ĥ))
kĥ , q

√
1 −

n∏̂
h=1

(1 − ωq
ς(ĥ))

kĥ



 , (4.7)

where ς (1) , ς (2) , ..., ς (n) be the permutation such that ς
(
ĥ
)
< ς

(
ĥ − 1

)
.

Proof. Prove is similar to proof of Theorem 4. �

Now, we presented some interesting properties that the averaging operators satisfy.
1).

(
Idempotent

)
Let Γĥ =

{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs. If

Γ1 = Γ2 = ... = Γn = Γ, then
Ś q − LDFWG (Γ1,Γ2, ...,Γn) = Γ.

2). (Boundedness) Let Γĥ =
{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)} (
ĥ ∈ N

)
be the assemblage of Śq-LDFNs,

with σsĥ is the refusal degree ∀ Γĥ. Then δ∗
sĥ

= min{δsĥ}, F∗
sĥ

= min{Fsĥ}, σ
∗

sĥ
= min

{
σsĥ

}
and µ∗

ĥ
,=

min{µĥ}, ω
∗

ĥ
= min{ωĥ}, $

∗

ĥ
= min{$ĥ}, then, λ · a∗

sĥ
= 1 − µĥδ

∗

sĥ
+ ωĥF∗

sĥ
+$ĥσ

∗

sĥ
also δ′

sĥ
= max{δsĥ}, F′

sĥ
= max{Fsĥ}, σ

′

sĥ
= max

{
σsĥ

}
and µ′

ĥ
,= max{µĥ}, ω

′

ĥ
= max{ωĥ}, $

′

ĥ
=

max{$ĥ}, then, λ · a′
sĥ

= 1 − µĥδ
′

sĥ
+ ωĥF′

sĥ
+$ĥσ

′

sĥ

Γ∗ ≤ Ś q − LDFWG(Γ1,Γ2, ...,Γn) ≤ Γ′.

Where Γ′
ĥ

=
{(
a′

sĥ
, δ′

sĥ
, F′

sĥ

)
,
(
λ′

ĥ
, µ′

ĥ
, ω′

ĥ

)}
and Γ∗

ĥ
=

{(
a∗

sĥ
, δ∗

sĥ
, F∗

sĥ

)
,
(
λ∗

ĥ
, µ∗

ĥ
, ω∗

ĥ

)}
.

3).
(
Monotonicity

)
Let Γĥ =

{(
asĥ, δsĥ, Fsĥ

)
,
(
λĥ, µĥ, ωĥ

)}
and Γ

◦

ĥ
={(

a◦sĥ, δ
◦

sĥ, F
◦

sĥ
)
,
(
λĥ
◦, µĥ

◦, ωĥ
◦
)} (

ĥ ∈ N
)

be two assemblage of Śq-LDFNs. If asĥ ≤ a◦sĥ,

δsĥ ≤ δ
◦

sĥ, Fsĥ ≤ F◦sĥ, λĥ ≤ λĥ
◦, µĥ ≤ µĥ

◦, ωĥ ≤ ωĥ
◦, then

Ś q − LDFWG(Γ1,Γ2, ...,Γn) ≥ Ś q − LDFWG(Γ
◦

1,Γ
◦

2, ...,Γ
◦

n).

5. Mathematical modeling

This section consists of an algorithm based on the proposed list of novel aggregation operators
under spherical q-linear Diophantine fuzzy (Sq-LDF) information to tackle the real world decision
making problems. The set Ng =

{
Ng1 ,Ng2 ,Ng3 , ...,Ngm

}
contains the numbers of alternatives while

ð = {ð1, ð2, ð3, ..., ðn} represents the numbers of attributes. Let k = (k1, k2, ..., kn)T be the weight vector
met the criteria as kĥ > 0,

∑
ĥ∈N kĥ = 1.
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Consider the Sq-LDF decision matrix DM = (( as, δs, Fs), (λs, µs, ωs ))(gm×n), where as is the
membership degree, δs is the neutral degree, Fs is the non-membership degree and λs, µs & ωs are
the control factors for which the alternative

(
Ngm

)
satisfies the (ðn) attribute provided by the decision-

makers, such that as, Fs, λs, µs ∈ [0, 1] as

0 ≤ λq
sas + µsδs + ωq

s Fs ≤ 1, (q = 1, 2, 3, ..., t) .

The algorithm contain the follows steps.

Step-1 Collect the considered expert information using the novel notion of Sq-LDFS. The decision
makers group is represented by DM =

{
DM1,DM2,DM3,...,DMi

}
. Sq-LDFNs are used to calculate

individual DM’s interests. Consequently, use the decision information defined in decision matrix,
that are Śq-LDFNs and shown in the form of DM1,DM2,DM3,DM4,DM5, ...,DMi along with the
weight vector k.

Step-2 Expert evaluation information required in standard Śq-LDF numbers: Prior to beginning the
computations, the input data must be normalized in order to achieve the best result. It is therefore
possible to standardized the Sq-LDF information.

DMs =




(
asq, δsq, Fsq

)
,(

λsq, µsq, ωsq

)  i f data is benefit type,
(
Fsq, δsq,asq

)
,(

ωsq, µsq, λsq

)  i f data is cost type.

Step-3 Evaluation of resultant weight vector as follows:

{ =

1
q

q∑
∂=1

∂{1,
1
q

q∑
∂=1

∂{2,
1
q

q∑
∂=1

∂{3, ...,
1
q

q∑
∂=1

∂{m

T

.

Step-4 Using the proposed list of aggregation operators under Śq-LDFSs to compute the integrated
(combined) aggregated value for individual attribute ð along with their weight vector.

Step-5 Utilizing the concept of graded functions, score function, quadratic function and expectation
score functions to evaluate the scores for individual attribute ð from aggregated expert values.

Step-6 Individual rank the attribute based on the values of the score function, quadratic score function
and expectation score functions.

Step-7 The attribute that get highest score has the highest ranking and must be selected for the final
selection.

Step-8 End.

The flow chart of the algorithm is presented in Figure 3:
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Figure 3. Flow chart for the proposed algorithm.

5.1. Numerical illustration of the proposed algorithm

This part of paper is the implementation of the proposed algorithm to tackle the uncertainty in
selection of top-ranked university among five universities under five attributes.

Case Study: Let ℘ = {℘1, ℘2, ℘3, ℘4, ℘5} be a set of five universities (alternatives). We evaluate the
best university under the list of five attributes set J = {J1, J2, J3, J4, J5} as follows.
J1 = {Shows Academic Staffs} ,
J2 =

{
shows projects for Culturure and Community representation

}
,

J3 =
{
shows Library

}
,

J4 = {shows Scientific Research} ,
J5 =

{
shows National and International Scientific Activities for students best learning

}
.

Step-1 The expert information in the form of Sq-LDFSs as follows in Tables 2 and 3.
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Table 2. Sq-LDF expert evaluation information.

ð1 ð2 ð3

Ng1

(
(.85, .24, .45) ,
(.25, .34, .18)

) (
(.73, .31, .48) ,
(.34, .11, .23)

) (
(.63, .45, .38) ,
(.41, .28, .11)

)
Ng2

(
(.77, .41, .52) ,
(.34, .21, .22)

) (
(.82, .51, .43) ,
(.13, .25, .21)

) (
(.58, .43, .41) ,
(.31, .23, .15)

)
Ng3

(
(.95, .41, .38) ,
(.41, .25, .18)

) (
(.77, .62, .43) ,
(.31, .25, .21)

) (
(.86, .41, .38) ,
(.41, .23, .17)

)
Ng4

(
(.82, .41, .38) ,
(.41, .21, .11)

) (
(.91, .61, .53) ,
(.38, .21, .22)

) (
(.73, .61, .48) ,
(.25, .31, .18)

)
Ng5

(
(.73, .61, .53) ,
(.41, .21, .18)

) (
(.83, .51, .68) ,
(.31, .21, .15)

) (
(.73, .61, .58) ,
(.41, .23, .16)

)

Table 3. Sq-LDF expert evaluation information.

ð4 ð5

Ng1

(
(.81, .41, .32) ,
(.31, .23, .31)

) (
(.78, .17, .45) ,
(.33, .12, .27)

)
Ng2

(
(.78, .45, .31) ,
(.51, .11, .18)

) (
(.83, .21, .43) ,
(.72, .13, .14)

)
Ng3

(
(.89, .38, .46) ,
(.46, .32, .11)

) (
(.83, .21, .38) ,
(.51, .18, .17)

)
Ng4

(
(.83, .63, .47) ,
(.38, .21, .17)

) (
(.76, .58, .43) ,
(.31, .23, .33)

)
Ng5

(
(.81, .32, .58) ,
(.38, .31, .14)

) (
(.93, .21, .41) ,
(.41, .21, .13)

)

Step-2 The consider expert information is benefit type so we do not need to standardized the
information.

Step-3 Assume that the decision-maker have a weight vector with the following values:
expert 1 viewpoint 1{ = (0.1, 0.042, .045, .02, 0.01)T ,

expert 2 viewpoint 2{ = (0.09, .02, .02, .01, .005)T ,

expert 3 viewpoint 3{ = (0.08, .06, .05, .04, .007)T ,

expert 4 viewpoint 3{ = (0.07, .03, .04, .01, .04)T ,

expert 5 viewpoint 3{ = (0.11, .058, .044, .02, .044)T ,

yielding final WV =(0.45, .210, .200, .100, .040)T ,
∑5

z=1 {z = 1.

Step-4 Now we’ll utilize the proposed aggregation operators Śq-LDFWA, Śq-LDFOWA, Sq-LDFGA
and Sq-LDFOWG to compute the integrated (combine) Sq-LDF data computed in Table 4.
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Table 4. Sq-LDF aggregated information.

Śq-LDFWA
Ng1 ((.866, .327, .444) , (.339, .270, .179))
Ng2 ((.792, .432, .470) , (.314, .169, .217))
Ng3 ((.711, .457, 402) , (.382, .259, .137))
Ng4 ((.827, .426, .364) , (.411, .211, .205))
Ng5 ((.811, .211, .427) , (.517, .144, .212))

Śq-LDFOWA
Ng1 ((.901, .372, .412) , (.380, .251, .166))
Ng2 ((.812, .431, .480) , (.322, .166, .218))
Ng3 ((.775, .446, 402) , (.383, .247, .152))
Ng4 ((.821, .418, .367) , (.456, .182, .176))
Ng5 ((.862, .206, .416) , (.612, .155, .153))

Śq-LDFWGA
Ng1 ((.843, .327, .094) , (.316, .270, .005))
Ng2 ((.777, .432, .111) , (.275, .169, .005))
Ng3 ((.673, .457, .070) , (.368, .259, .002))
Ng4 ((.821, .426, .060) , (.383, .221, .002))
Ng5 ((.804, .211, .079) , (.425, .144, .005))

Śq-LDFOWGA
Ng1 ((.873, .372, .402) , (.363, .251, .004))
Ng2 ((.790, .431, .447) , (.280, .166, .005))
Ng3 ((.728, .446, .383) , (.369, .247, .002))
Ng4 ((.813, .418, .390) , (.434, .182, .007))
Ng5 ((.849, .206, .397) , (.540, .155, .004))

Step-5 Now the scores are computed as follows in Tables 5–8.

Table 5. The Score detail under Sq-LDFWA Operator.

Score function
fNg1 fNg2 fNg3 fNg4 fNg5

0.054 -0.047 -0.056 0.045 0.149
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Quardratic score function
ΘNg1 ΘNg2 ΘNg3 ΘNg4 ΘNg5

0.224 0.110 0.070 0.188 0.224
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Expectation score function
ϑNg1 ϑNg2 ϑNg3 ϑNg4 ϑNg5

0.351 0.318 0.315 0.348 0.383
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Table 6. The Score detail under Sq-LDFOWA Operator.

Score function
fNg1 fNg2 fNg3 fNg4 fNg5

0.076 -0.040 -0.018 0.060 0.231
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Quardratic score function
ΘNg1 ΘNg2 ΘNg3 ΘNg4 ΘNg5

0.250 0.118 0.116 0.185 0.278
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Expectation score function
ϑNg1 ϑNg2 ϑNg3 ϑNg4 ϑNg5

0.358 0.319 0.326 0.353 0.405
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3
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Table 7. The Score detail under Sq-LDFWG Operator.

Score function
fNg1 fNg2 fNg3 fNg4 fNg5

0.217 0.125 0.090 0.191 0.293
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Quardratic score function
ΘNg1 ΘNg2 ΘNg3 ΘNg4 ΘNg5

0.202 0.094 0.042 0.173 0.212
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Expectation score function
ϑNg1 ϑNg2 ϑNg3 ϑNg4 ϑNg5

0.678 0.645 0.640 0.673 0.704
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Table 8. The Score detail under Sq-LDFOWG Operator.

Score function
fNg1 fNg2 fNg3 fNg4 fNg5

0.065 -0.035 -0.033 0.040 0.200
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Quardratic score function
ΘNg1 ΘNg2 ΘNg3 ΘNg4 ΘNg5

0.228 0.101 0.087 0.167 0.266
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Expectation score function
ϑNg1 ϑNg2 ϑNg3 ϑNg4 ϑNg5

0.685 0.646 0.652 0.677 0.730
Ranking sequence Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Step-6 The ranking reslts of the considered alternatives are as follows in Tables 9 and 10:

Table 9. Ranking.

Developed operators Score Quardratic score
Sq-LDFWA Ng5 > Ng1 > Ng4 > Ng2 > Ng3 Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Sq-LDFOWA Ng5 > Ng1 > Ng4 > Ng2 > Ng3 Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Sq-LDFWG Ng5 > Ng1 > Ng4 > Ng2 > Ng3 Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Sq-LDFOWG Ng5 > Ng1 > Ng4 > Ng2 > Ng3 Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Table 10. Ranking.

Developed operators Expectation score
Sq-LDFWA Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Sq-LDFOWA Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Sq-LDFWG Ng5 > Ng1 > Ng4 > Ng2 > Ng3

Sq-LDFOWG Ng5 > Ng1 > Ng4 > Ng2 > Ng3
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Step-7 The above tables shows that ℘5 is the best alternative (Due to the fact that the scoring functions
for the data in Tables 5–8 for quadratic score function are not identical, hence they are sufficient
to identify the optimal choice).

Step-8 End.

6. Comparative analysis and discussion

This section compare the proposed Śq-LDF aggregation operators with the existing methodology in
the literature described in [42], demonstrating their ability to handle physical-world decision making
problems under complex uncertainty. Because of the qth power, this notion is impressive in that it
covers the valuation spaces of IFSs, SFSs, q-ROFSs, LDFSs and SLDFSs.

Cogency and integrity of the propose method: Our approach is adaptable and suited for all forms
of input data. The proposed model is effective in dealing with uncertainty. This technique covers the
areas of IFS, SFS, q-ROFS, LDFS and SLDFS with the addition of qth degree of CFs. By increasing
the qth degree of factors, more membership, neutral and non-membership space is created, as well as
the physical layout. We can utilize our strategy in a diversity of situations. we’re using it in selection
of required best university. The proposed Śq-LDFS may be simply modified to produce a variety of
outputs.

Score function impact: We generalized and then implemented the previously described three types
of score functions consists of three membership grades with their related control parameters, SF, QSF
and ESF. Allow for a somewhat variable result because each SF has its own observation and ordering
techniques. Tables 4–7 shows that the SF, ESF and QSF rankings differ slightly from one another.
However, it’s worth noting that the end result from both algorithms is practically identical for all
scoring functions.

Aggregation versatility with various inputs and outputs: Due to qth power of control factors and
the three membership grades increases grade space and can differ build on the scenarios in MADM
approaches, this approach is significantly more versatile than others. It can also be utilized for a
variety of input and output informations where the spherical and q-linear Diophantine fuzzy sets fail to
fulfill their requirements.

Comparison of the suggested method to existing approaches and its superiority: Because
Sq-LDFS handles qth simulations, it takes up a lot of space when compared to IFSs, SFSs, q-
ROFSs, LDFSs and SLDFSs. [3] introduced q-LDFSs with additional qth degree, although q-LDFSs
have some limitations and cannot handle the problem related to three grades. We expand the concept
of q-LDFSs by merging it with SFS and proposed Sq-LDFSs to fill this knowledge gap. The SLDFS
only serves for q = 1, but the strategy we propose serves for q ≥ 1.

The proposed approach and MADM difficulties are inextricably linked. Tables 11–13 shows the
comparison of aggregation operation values based on the Sq-LDFWA, Sq-LDFOWA, Sq-LDFWGA
and Sq-LDFOWGA and their graphical representation is in Figures 4 and 5.
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Table 11. Analysis of score using existing methods.

fNg1 fNg2 fNg3 fNg4 fNg5

S q − LDFWA 0.054 −0.047 −0.056 0.045 0.149
S q − LDFOWA 0.076 −0.040 −0.018 0.060 0.231
S q − LDFWG 0.217 0.125 0.090 0.191 0.293

S q − LDFOWG 0.065 −0.035 −0.033 0.040 0.200
Ś LDFWA (existing) −0.034 −0.109 −0.024 −0.023 −0.160
Ś LDFWG (existing) −0.043 −0.117 −0.027 −0.920 −0.184

Table 12. Analysis of Quardratic score using existing methods.

fNg1 fNg2 fNg3 fNg4 fNg5

S q − LDFWA 0.224 0.110 0.070 0.188 0.224
S q − LDFOWA 0.254 0.122 0.122 0.187 0.290
S q − LDFWG 0.298 0.203 0.121 0.246 0.300

S q − LDFOWG 0.232 0.120 0.093 0.171 0.273
Ś LDFWA (existing) 0.175 0.100 0.270 0.147 0.037
Ś LDFWG (existing) 0.158 0.085 0.237 0.122 0.008

Table 13. Analysis of Expectation score using existing methods.

fNg1 fNg2 fNg3 fNg4 fNg5

S q − LDFWA 0.351 0.318 0.315 0.348 0.383
S q − LDFOWA 0.359 0.320 0.327 0.353 0.410
S q − LDFWG 0.406 0.375 0.363 0.397 0.431

S q − LDFOWG 0.355 0.322 0.322 0.347 0.400
Ś LDFWA (existing) 0.655 0.630 0.675 0.644 0.613
Ś LDFWG (existing) 0.652 0.628 0.667 0.636 0.605
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Figure 4. Ranking related to Sq-LDFWA.

Figure 5. Ranking related to Sq-LDFWG.

We make comparison of SLDF weighted and geometric operators with Sq-LDF weighted and
geometric operators. The Tables 11–13 shows the better results than the results of SLDFSs.

The fuzzy set theory, whose popularity has increased ever since Zadeh introduced it, is supported
by the work in this paper. Specific academics expanded fuzzy set theory and the most significant of
which are IFSs, PyFSs and SFSs. In order to address uncertainty in real-life problems are challenging
to resolve utilizing fuzzy models. In 2019 the structure of Pythagorean fuzzy sets extended by [3] to
initiate the concept of q-LDFS, in which they introduced the role of control factors, which hold the
condition 0 ≤ λqa + µqF ≤ 1,∀℘ ∈ U and 0 ≤ λq + µq ≤ 1. However the total sum of degrees with
scalar product with control factors provided by DM may be greater than one, i.e. λq +µq > 1, opposing
the q-LDFS constraint. Consequently, q-LDFS, SFSs and SLDFSs are restricted to meet his target in
terms of degrees, information are as follows in Table 14:
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Table 14. Detail on comparative study of Sq-LDFS to existing techniques.

Family of sets Remarks Framework
FS Incapable to deal with the degree of non-membership F ×

IFS Cann’t fulfill the condition a + F > 1 ×

q-ROFS
Incapable to treat smaller”q” power in this state

,aq + Fq > 1 for a = 1 = F
×

SFS Incapable for this state, a + δ + F > 1 for a = δ = F = 1 ×

SLDFS

This collection take into account the of condition
0 ≤ λa + µδ + ωF ≤ 1, as well as the

influence of control factors. SLDF operators are the
sole existing method,which we compare to our

suggested method.

×

It limits the MADM and has an impact on the best decision. We offer the innovative idea of the
Sq-LDFS, which is capable of dealing with these circumstances and eliminate these contradiction.

7. Conclusions

The manuscript briefly demonstrated how the Sq-LDFS framework extends all existing theories and
provides a strong foundation with no limitations. The formal definition of Sq-LDFS was stated which
is generalization of q-linear Diophantine fuzzy set by merging it with spherical fuzzy set to enhance the
memberships space. Under the Sq-LDF context, set theoretical operations were introduced, and several
aggregation operators were established. Some interesting properties of the proposed aggregation
operators were explored. Furthermore, a MADM technique based on suggested aggregating operators
and scoring functions was established. A case study was offered to demonstrate how the suggested
strategy be used. As a limitation on our study, we only take into account five alternatives in order to
demonstrate the veracity of the suggested strategy. The suggested technique works where the SFSs,
q-linear Diophantine fuzzy set did not work. The SLDFS only works for q=1 but Sq-LDFS works
for q ≥ 1. The methodology of the suggested technique may be converted into a computer program,
allowing us to conduct our research for a small number of qualities and alternatives while using huge
data and taking into account additional factors. Future research goals include investigating additional
aggregating operators like Hamacher and Bonferroni, similarity and distance metrics, and extending
the suggested operators to the Archimedean norm.
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