In this paper, a numerical method to solve a class of stochastic nonlinear differential equations is introduced. The proposed method is based on the Temimi-Ansari method. The special states of the four systems are studied to show that the proposed method is efficient and applicable. These systems are stochastic Langevin's equation, Ginzburg-Landau equation, Davis-Skodje, and Brusselator systems. The results clarify the accuracy and efficacy of the presented new method with no need for any restrictive assumptions for nonlinear terms.
Citation: Mourad S. Semary, M. T. M. Elbarawy, Aisha F. Fareed. Discrete Temimi-Ansari method for solving a class of stochastic nonlinear differential equations[J]. AIMS Mathematics, 2022, 7(4): 5093-5105. doi: 10.3934/math.2022283
In this paper, a numerical method to solve a class of stochastic nonlinear differential equations is introduced. The proposed method is based on the Temimi-Ansari method. The special states of the four systems are studied to show that the proposed method is efficient and applicable. These systems are stochastic Langevin's equation, Ginzburg-Landau equation, Davis-Skodje, and Brusselator systems. The results clarify the accuracy and efficacy of the presented new method with no need for any restrictive assumptions for nonlinear terms.
[1] | S. Singh, S. Ray, Numerical solutions of stochastic Fisher equation to study migration and population behavior in biological invasion, Int. J. Biomath., 10 (2017), 1750103. https://doi.org/10.1142/S1793524517501030 doi: 10.1142/S1793524517501030 |
[2] | X. Chen, P. Hu, S. Shum, Y. Zhang, Dynamic stochastic inventory management with reference price effects, Oper. Res., 64 (2016), 1529–1536. https://doi.org/10.1287/opre.2016.1524 doi: 10.1287/opre.2016.1524 |
[3] | G. Zmievskaya, A. Bondareva, T. Levchenko, G. Maino, Computational stochastic model of ions implantation, AIP Conference Proceedings, 1648 (2015), 230003. https://doi.org/10.1063/1.4912495 doi: 10.1063/1.4912495 |
[4] | N. Gillard, E. Belin, F. Chapeau-Blondeau, Stochastic antiresonance in qubit phase estimation with quantum thermal noise, Phys. Lett. A, 381 (2017), 2621–2628. https://doi.org/10.1016/j.physleta.2017.06.009 doi: 10.1016/j.physleta.2017.06.009 |
[5] | K. Nouri, H. Ranjbar, L. Torkzadeh, Improved Euler-Maruyama method for numerical solution of the Itô stochastic differential systems by composite Previous-Current-Step idea, Mediterr. J. Math., 15 (2018), 140. https://doi.org/10.1007/s00009-018-1187-8 doi: 10.1007/s00009-018-1187-8 |
[6] | D. Higham, X. Mao, A. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40 (2002), 1041–1063. https://doi.org/10.1137/S0036142901389530 doi: 10.1137/S0036142901389530 |
[7] | B. Düring, C. Heuer, Time-adaptive high-order compact finite difference schemes for option pricing in a family of stochastic volatility models, arXiv: 2107.09094. http://doi.org/10.2139/ssrn.3890159 |
[8] | C. Roth, A combination of finite difference and Wong-Zakai methods for hyperbolic stochastic partial differential equations, Stoch. Anal. Appl., 24 (2006), 221–240. https://doi.org/10.1080/07362990500397764 doi: 10.1080/07362990500397764 |
[9] | K. Nouri, H. Ranjbar, L. Torkzadeh, Modified stochastic theta methods by ODEs solvers for stochastic differential equations, Commun. Nonlinear Sci., 68 (2019), 336–346. https://doi.org/10.1016/j.cnsns.2018.08.013 doi: 10.1016/j.cnsns.2018.08.013 |
[10] | J. Walsh, On numerical solutions of the stochastic wave equation, Illinois J. Math., 50 (2006), 991–1018. https://doi.org/10.1215/ijm/1258059497 doi: 10.1215/ijm/1258059497 |
[11] | Q. Du, T. Zhang, Numerical approximation of some linear stochastic partial differential equations driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), 1421–1445. https://doi.org/10.1137/S0036142901387956 doi: 10.1137/S0036142901387956 |
[12] | M. Geissert, M. Kovacs, S. Larsson, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, Bit Numer. Math., 49 (2009), 343–356. https://doi.org/10.1007/s10543-009-0227-y doi: 10.1007/s10543-009-0227-y |
[13] | A. Fareed, H. El-Zoheiry, M. El-Tawil, M. El-Beltagy, H. Hassan, Solving nonlinear stochastic diffusion models with nonlinear losses using the homotopy analysis method, Applied Mathematics, 5 (2014), 115–127. http://doi.org/10.4236/am.2014.51014 doi: 10.4236/am.2014.51014 |
[14] | S. Shiralashetti, L. Lamani, Numerical solution of stochastic ordinary differential equations using HAAR wavelet collocation method, J. Interdiscip. Math., in press. https://doi.org/10.1080/09720502.2021.1874085 |
[15] | M. El-Tawil, A. Fareed, Solution of stochastic cubic and quintic nonlinear diffusion equation using WHEP, Pickard and HPM methods, Open Journal of Discrete Mathematics, 1 (2011), 6–21. https://doi.org/10.4236/ojdm.2011.11002 doi: 10.4236/ojdm.2011.11002 |
[16] | F. Mirzaee, E. Hadadiyan, Solving system of linear Stratonovich Volterra integral equations via modification of hat functions, Appl. Math. Comput., 293 (2017), 254–264. https://doi.org/10.1016/j.amc.2016.08.016 doi: 10.1016/j.amc.2016.08.016 |
[17] | M. Heydari, M. Mahmoudi, A. Shakiba, Z. Avazzadeh, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun. Nonlinear Sci., 64 (2018), 98–121. https://doi.org/10.1016/j.cnsns.2018.04.018 doi: 10.1016/j.cnsns.2018.04.018 |
[18] | A. Babaei, H. Jafari, S. Banihashemi, A collocation approach for solving time-fractional stochastic heat equation driven by an additive noise, Symmetry, 12 (2020), 904. https://doi.org/10.3390/sym12060904 doi: 10.3390/sym12060904 |
[19] | B. Moghaddam, Z. Mostaghim, A. Pantelous, J. Machado, An integro quadratic spline based scheme for solving nonlinear fractional stochastic differential equations with constant time delay, Commun. Nonlinear Sci., 92 (2021), 105475. https://doi.org/10.1016/j.cnsns.2020.105475 doi: 10.1016/j.cnsns.2020.105475 |
[20] | F. Mirzaee, S. Alipour, Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order, J. Comput. Appl. Math., 366 (2020), 112440. https://doi.org/10.1016/j.cam.2019.112440 doi: 10.1016/j.cam.2019.112440 |
[21] | M. Li, Y. Hu, C. Huang, X. Wang, Mean square stability of stochastic theta method for stochastic differential equations driven by fractional Brownian motion, arXiv: 2109.09009. |
[22] | K. Ralchenko, G. Shevchenko, Existence and uniqueness of mild solution to fractional stochastic heat equation, Modern Stochastics: Theory and Applications, 6 (2018), 57–79. https://doi.org/10.15559/18-VMSTA122 doi: 10.15559/18-VMSTA122 |
[23] | P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Berlin: Springer-Verlag, 1992. https://doi.org/10.1007/978-3-662-12616-5 |
[24] | B. Moghaddam, L. Zhang, A. Lopes, J. Machado, Z. Mostaghim, Sufficient conditions for existence and uniqueness of fractional stochastic delay differential equations, Stochastics, 92 (2020), 379–396. https://doi.org/10.1080/17442508.2019.1625903 doi: 10.1080/17442508.2019.1625903 |
[25] | H. Temimi, A. R. Ansari, A semi-analytical iterative technique for solving nonlinear problems, Comput. Math. Appl., 61 (2011), 203–210. https://doi.org/10.1016/j.camwa.2010.10.042 doi: 10.1016/j.camwa.2010.10.042 |
[26] | H. Temimi, A. Ansari, A computational iterative method for solving nonlinear ordinary differential equations, LMS J. Comput. Math., 18 (2015), 730–753. https://doi.org/10.1112/S1461157015000285 doi: 10.1112/S1461157015000285 |
[27] | M. Al-Jawary, S. Hatif, A semi-analytical iterative method for solving differential algebraic equations, Ain Shams Eng. J., 9 (2018), 2581–2586. https://doi.org/10.1016/j.asej.2017.07.004 doi: 10.1016/j.asej.2017.07.004 |
[28] | F. Ehsani, A. Hadi, F. Ehsani, R. Mahdavi, An iterative method for solving partial differential equations and solution of Korteweg-de Vries equations for showing the capability of the iterative method, World Applied Programming, 3 (2013), 320–327. |
[29] | A. Arafa, A. El‐Sayed, A. Hagag, A fractional Temimi‐Ansari method (FTAM) with convergence analysis for solving physical equations, Math. Method. Appl. Sci., 44 (2021), 6612–6629. https://doi.org/10.1002/mma.7212 doi: 10.1002/mma.7212 |
[30] | Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett., 21 (2008), 194–199. https://doi.org/10.1016/j.aml.2007.02.022 doi: 10.1016/j.aml.2007.02.022 |
[31] | M. Hamed, M. El-Twail, B. El-desouky, M. El-Beltagy, Solution of nonlinear stochastic Langevin's equation using WHEP, Pickard and HPM methods, Applied Mathematics, 5 (2014), 42746. https://doi.org/10.4236/am.2014.53041 doi: 10.4236/am.2014.53041 |
[32] | V. Ginzburg, On the theory of superconductivity, In: On superconductivity and superfluidity, Berlin: Springer-Verlag, 2009,113–137. |
[33] | K. Nouri, H. Ranjbar, D. Baleanu, L. Torkzadeh, Investigation on Ginzburg-Landau equation via a tested approach to benchmark stochastic Davis-Skodje system, Alex. Eng. J., 60 (2021), 5521–5526. https://doi.org/10.1016/j.aej.2021.04.040. doi: 10.1016/j.aej.2021.04.040 |
[34] | X. Han, H. Najm, Dynamical structures in stochastic chemical reaction systems, SIAM J. Appl. Dyn. Syst., 13 (2014), 1328–1351. https://doi.org/10.1137/140957482 doi: 10.1137/140957482 |
[35] | D. Vossa, A. Khaliq, Split-Step Adams–Moulton Milstein methods for systems of stiff stochastic differential equations, Int. J. Comput. Math., 95 (2015), 995–1011. http://doi.org/10.1080/00207160.2014.915963 |