Research article

Classification of chain rings

  • Received: 21 October 2021 Revised: 09 December 2021 Accepted: 13 December 2021 Published: 30 December 2021
  • MSC : 16L30, 16P20, 16P30

  • An associative Artinian ring with an identity is a chain ring if its lattice of left (right) ideals forms a unique chain. In this article, we first prove that for every chain ring, there exists a certain finite commutative chain subring which characterizes it. Using this fact, we classify chain rings with invariants $ p, n, r, k, k', m $ up to isomorphism by finite commutative chain rings ($ k' = 1 $). Thus the classification of chain rings is reduced to that of finite commutative chain rings.

    Citation: Yousef Alkhamees, Sami Alabiad. Classification of chain rings[J]. AIMS Mathematics, 2022, 7(4): 5106-5116. doi: 10.3934/math.2022284

    Related Papers:

  • An associative Artinian ring with an identity is a chain ring if its lattice of left (right) ideals forms a unique chain. In this article, we first prove that for every chain ring, there exists a certain finite commutative chain subring which characterizes it. Using this fact, we classify chain rings with invariants $ p, n, r, k, k', m $ up to isomorphism by finite commutative chain rings ($ k' = 1 $). Thus the classification of chain rings is reduced to that of finite commutative chain rings.



    加载中


    [1] S. Alabiad, Y. Alkhamees, On classification of finite commutative chain rings, AIMS Mathematics, 7 (2022), 1742–1757. http://dx.doi.org/10.3934/math.2022100 doi: 10.3934/math.2022100
    [2] S. Alabiad, Y. Alkhamees, On automorphism groups of finite chain rings, Symmetry, 13 (2021), 681. http://dx.doi.org/10.3390/sym13040681 doi: 10.3390/sym13040681
    [3] S. Alabiad, Y. Alkhamees, Recapturing the structure of group of units of any finite commutative chain ring, Symmetry, 13 (2021), 307. http://dx.doi.org/10.3390/sym13020307 doi: 10.3390/sym13020307
    [4] Y. Alkhamees, H. Alolayan, S. Singh, A representation theorem for chain rings, Collog. Math., 96 (2003), 103–119. http://dx.doi.org/10.4064/cm96-1-10 doi: 10.4064/cm96-1-10
    [5] Y. Al-Khamees, The enumeration of finite principal completely primary rings, Abh. Math. Semin. Univ. Hambg., 51 (1981), 226. http://dx.doi.org/10.1007/BF02941222 doi: 10.1007/BF02941222
    [6] C. Ayoub, On the group of units of certain rings, J. Number Theory, 4 (1972), 383–403. http://dx.doi.org/10.1016/0022-314X(72)90070-4 doi: 10.1016/0022-314X(72)90070-4
    [7] W. Clark, D. Drake, Finite chain rings, Abh.Math.Semin.Univ.Hambg., 39 (1973), 147–153. http://dx.doi.org/10.1007/BF02992827 doi: 10.1007/BF02992827
    [8] W. Clark, J. Liang, Enumeration of finite chain rings, J. Algebra, 27 (1973), 445–453. http://dx.doi.org/10.1016/0021-8693(73)90055-0 doi: 10.1016/0021-8693(73)90055-0
    [9] W. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc., 33 (1972), 25–28. http://dx.doi.org/10.2307/2038164 doi: 10.2307/2038164
    [10] J. Fisher, Finite principal ideal rings, Can. Math. Bull., 19 (1976), 277–283. http://dx.doi.org/10.4153/CMB-1976-043-1 doi: 10.4153/CMB-1976-043-1
    [11] M. Greferath, Cyclic codes over finite rings, Discrete Math., 177 (1997), 273–277. http://dx.doi.org/10.1016/S0012-365X(97)00006-X doi: 10.1016/S0012-365X(97)00006-X
    [12] X. Hou, K. Leung, S. Ma, On the groups of units of finite commutative chain rings, Finite Fields Appl., 9 (2003), 20–38. http://dx.doi.org/10.1016/S1071-5797(02)00003-5 doi: 10.1016/S1071-5797(02)00003-5
    [13] X. Hou, Finite commutative chain rings, Finite Fields Appl., 7 (2001), 382–396. http://dx.doi.org/10.1006/ta.2000.0317 doi: 10.1006/ta.2000.0317
    [14] K. Iwasawa, Local class field theory, New York: Oxford Univ Press, 1986.
    [15] W. Klingenberg, Projective und affine Ebenen mit Nachbarelementen, Math. Z., 60 (1954), 384–406. http://dx.doi.org/10.1007/BF01187385 doi: 10.1007/BF01187385
    [16] W. Krull, Algebraische theorie der ringe. II., Math. Ann., 91 (1924), 1–46. http://dx.doi.org/10.1007/BF01498378 doi: 10.1007/BF01498378
    [17] W. Krull, Grundlagen und ausgangspunkte, Berlin: Springer, 1968. http://dx.doi.org/10.1007/978-3-642-87033-0_1
    [18] S. Lang, Algebraic number theory, New York: Springer-Verlag, 1986. http://dx.doi.org/10.1007/978-1-4612-0853-2
    [19] X. Lui, H. Lui, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1–19. http://dx.doi.org/10.1016/j.ffa.2015.01.004 doi: 10.1016/j.ffa.2015.01.004
    [20] B. Wirt, Finite non-commutative local rings, Ph.D Thesis, University of Oklahoma, 1972. Available from: https://shareok.org/handle/11244/3379.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1846) PDF downloads(113) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog