An associative Artinian ring with an identity is a chain ring if its lattice of left (right) ideals forms a unique chain. In this article, we first prove that for every chain ring, there exists a certain finite commutative chain subring which characterizes it. Using this fact, we classify chain rings with invariants $ p, n, r, k, k', m $ up to isomorphism by finite commutative chain rings ($ k' = 1 $). Thus the classification of chain rings is reduced to that of finite commutative chain rings.
Citation: Yousef Alkhamees, Sami Alabiad. Classification of chain rings[J]. AIMS Mathematics, 2022, 7(4): 5106-5116. doi: 10.3934/math.2022284
An associative Artinian ring with an identity is a chain ring if its lattice of left (right) ideals forms a unique chain. In this article, we first prove that for every chain ring, there exists a certain finite commutative chain subring which characterizes it. Using this fact, we classify chain rings with invariants $ p, n, r, k, k', m $ up to isomorphism by finite commutative chain rings ($ k' = 1 $). Thus the classification of chain rings is reduced to that of finite commutative chain rings.
[1] | S. Alabiad, Y. Alkhamees, On classification of finite commutative chain rings, AIMS Mathematics, 7 (2022), 1742–1757. http://dx.doi.org/10.3934/math.2022100 doi: 10.3934/math.2022100 |
[2] | S. Alabiad, Y. Alkhamees, On automorphism groups of finite chain rings, Symmetry, 13 (2021), 681. http://dx.doi.org/10.3390/sym13040681 doi: 10.3390/sym13040681 |
[3] | S. Alabiad, Y. Alkhamees, Recapturing the structure of group of units of any finite commutative chain ring, Symmetry, 13 (2021), 307. http://dx.doi.org/10.3390/sym13020307 doi: 10.3390/sym13020307 |
[4] | Y. Alkhamees, H. Alolayan, S. Singh, A representation theorem for chain rings, Collog. Math., 96 (2003), 103–119. http://dx.doi.org/10.4064/cm96-1-10 doi: 10.4064/cm96-1-10 |
[5] | Y. Al-Khamees, The enumeration of finite principal completely primary rings, Abh. Math. Semin. Univ. Hambg., 51 (1981), 226. http://dx.doi.org/10.1007/BF02941222 doi: 10.1007/BF02941222 |
[6] | C. Ayoub, On the group of units of certain rings, J. Number Theory, 4 (1972), 383–403. http://dx.doi.org/10.1016/0022-314X(72)90070-4 doi: 10.1016/0022-314X(72)90070-4 |
[7] | W. Clark, D. Drake, Finite chain rings, Abh.Math.Semin.Univ.Hambg., 39 (1973), 147–153. http://dx.doi.org/10.1007/BF02992827 doi: 10.1007/BF02992827 |
[8] | W. Clark, J. Liang, Enumeration of finite chain rings, J. Algebra, 27 (1973), 445–453. http://dx.doi.org/10.1016/0021-8693(73)90055-0 doi: 10.1016/0021-8693(73)90055-0 |
[9] | W. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc., 33 (1972), 25–28. http://dx.doi.org/10.2307/2038164 doi: 10.2307/2038164 |
[10] | J. Fisher, Finite principal ideal rings, Can. Math. Bull., 19 (1976), 277–283. http://dx.doi.org/10.4153/CMB-1976-043-1 doi: 10.4153/CMB-1976-043-1 |
[11] | M. Greferath, Cyclic codes over finite rings, Discrete Math., 177 (1997), 273–277. http://dx.doi.org/10.1016/S0012-365X(97)00006-X doi: 10.1016/S0012-365X(97)00006-X |
[12] | X. Hou, K. Leung, S. Ma, On the groups of units of finite commutative chain rings, Finite Fields Appl., 9 (2003), 20–38. http://dx.doi.org/10.1016/S1071-5797(02)00003-5 doi: 10.1016/S1071-5797(02)00003-5 |
[13] | X. Hou, Finite commutative chain rings, Finite Fields Appl., 7 (2001), 382–396. http://dx.doi.org/10.1006/ta.2000.0317 doi: 10.1006/ta.2000.0317 |
[14] | K. Iwasawa, Local class field theory, New York: Oxford Univ Press, 1986. |
[15] | W. Klingenberg, Projective und affine Ebenen mit Nachbarelementen, Math. Z., 60 (1954), 384–406. http://dx.doi.org/10.1007/BF01187385 doi: 10.1007/BF01187385 |
[16] | W. Krull, Algebraische theorie der ringe. II., Math. Ann., 91 (1924), 1–46. http://dx.doi.org/10.1007/BF01498378 doi: 10.1007/BF01498378 |
[17] | W. Krull, Grundlagen und ausgangspunkte, Berlin: Springer, 1968. http://dx.doi.org/10.1007/978-3-642-87033-0_1 |
[18] | S. Lang, Algebraic number theory, New York: Springer-Verlag, 1986. http://dx.doi.org/10.1007/978-1-4612-0853-2 |
[19] | X. Lui, H. Lui, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1–19. http://dx.doi.org/10.1016/j.ffa.2015.01.004 doi: 10.1016/j.ffa.2015.01.004 |
[20] | B. Wirt, Finite non-commutative local rings, Ph.D Thesis, University of Oklahoma, 1972. Available from: https://shareok.org/handle/11244/3379. |