A susceptible diabetes comorbidity model was used in the mathematical treatment to explain the predominance of mellitus. In the susceptible diabetes comorbidity model, diabetic patients were divided into three groups: susceptible diabetes, uncomplicated diabetics, and complicated diabetics. In this research, we investigate the susceptible diabetes comorbidity model and its intricacy via the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). The analysis backs up the idea that the aforesaid fractional order technique plays an important role in predicting whether or not a person will develop diabetes after a substantial immunological assault. Using the fixed point postulates, several theoretic outcomes of existence and Ulam's stability are proposed for the susceptible diabetes comorbidity model. Meanwhile, a mathematical approach is provided for determining the numerical solution of the developed framework employing the Adams type predictor–corrector algorithm for the ABC-fractional integral operator. Numerous mathematical representations correlating to multiple fractional orders are shown. It brings up the prospect of employing this structure to generate framework regulators for glucose metabolism in type 2 diabetes mellitus patients.
Citation: Saima Rashid, Fahd Jarad, Taghreed M. Jawa. A study of behaviour for fractional order diabetes model via the nonsingular kernel[J]. AIMS Mathematics, 2022, 7(4): 5072-5092. doi: 10.3934/math.2022282
A susceptible diabetes comorbidity model was used in the mathematical treatment to explain the predominance of mellitus. In the susceptible diabetes comorbidity model, diabetic patients were divided into three groups: susceptible diabetes, uncomplicated diabetics, and complicated diabetics. In this research, we investigate the susceptible diabetes comorbidity model and its intricacy via the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). The analysis backs up the idea that the aforesaid fractional order technique plays an important role in predicting whether or not a person will develop diabetes after a substantial immunological assault. Using the fixed point postulates, several theoretic outcomes of existence and Ulam's stability are proposed for the susceptible diabetes comorbidity model. Meanwhile, a mathematical approach is provided for determining the numerical solution of the developed framework employing the Adams type predictor–corrector algorithm for the ABC-fractional integral operator. Numerous mathematical representations correlating to multiple fractional orders are shown. It brings up the prospect of employing this structure to generate framework regulators for glucose metabolism in type 2 diabetes mellitus patients.
[1] | H. W. Hethcote, H. R. Thiem, Stability of the endemic equilibrium in epidemic models with subpopulations, Math. Biosci., 75 (1985), 205–227. https://doi.org/10.1016/0025-5564(85)90038-0 doi: 10.1016/0025-5564(85)90038-0 |
[2] | D. Schenzle, An age-structured model of pre and post-vaccination measles transmission, Math. Med. Bio., 1 (1984), 169–191. https://doi.org/10.1093/imammb/1.2.169 doi: 10.1093/imammb/1.2.169 |
[3] | H. W. Hethcote, Measles and rubella in the United States, Am. J. Epidemiol., 117 (1983), 2–13. |
[4] | S. S. Alzaid, B. S. T. Alkahtani, S. Sharma, R. S. Dubey, Numerical solution of fractional model of HIV-1 infection in framework of different fractional derivatives, J. Funct. Spaces, 2021 (2021), 6642957. https://doi.org/10.1155/2021/6642957 doi: 10.1155/2021/6642957 |
[5] | S. Syafruddin, M. S. Md. Noorani, Lyapunov function of SIR and SEIR model for transmission of dengue fever disease. Int. J. Simul. Proc. Model., 8 (2013), 177–184. |
[6] | S. Side, W. Sanusi, M. K. Aidid, S. Sidjara, Global stability of SIR and SEIR model for tuberculosis disease transmission with lyapunov function method, Asian J. Appl. Sci., 9 (2016), 87–96. |
[7] | P. Widyaningsih, R. C. Affan, D. R. S. Saputro1, A Mathematical model for the epidemiology of diabetes mellitus with lifestyle and genetic factors, J. Phys.: Conf. Ser., 1028 (2018), 012110. |
[8] | E. Bonyaha, K. O. Okosun, Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., 6 (2016), 673–679. https://doi.org/10.1016/S2222-1808(16)61108-8 doi: 10.1016/S2222-1808(16)61108-8 |
[9] | Sutanto, A. Azizah, P. Widyaningsih, D. R. S. Saputro, SEIIrR: Drug abuse model with rehabilitation, AIP Conf. Proc., 1847 (2017), 020018. https://doi.org/10.1063/1.4983873 doi: 10.1063/1.4983873 |
[10] | S. S. Rich, Genetics of diabetes and its complications, JASN, 17 (2006), 353–360. https://doi.org/10.1681/ASN.2005070770 doi: 10.1681/ASN.2005070770 |
[11] | J. Hill, M. Nielsen, M. H. Fox, Understanding the social factors that contribute to diabetes: A means to informing health care and social policies for the chronically ill, Perm. J., 17 (2013), 67–72. https://doi.org/10.7812/TPP/12-099 doi: 10.7812/TPP/12-099 |
[12] | A. Boutayeb, E. H. Twizell, K. Achouay, A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomed. Eng. Online, 3 (2004), 20. https://doi.org/10.1186/1475-925X-3-20 doi: 10.1186/1475-925X-3-20 |
[13] | S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y. M. Chu, New fractional approaches for $ n $ -polynomial $ P $ -convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 543. https://doi.org/10.1186/s13662-020-03000-5 doi: 10.1186/s13662-020-03000-5 |
[14] | S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. https://doi.org/10.3934/math.2020451 doi: 10.3934/math.2020451 |
[15] | S. B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y. M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020 (2020), 647. https://doi.org/10.1186/s13662-020-03108-8 doi: 10.1186/s13662-020-03108-8 |
[16] | S. B. Chen, S. Saleem, M. N. Alghamdi, K. S. Nisar, A. Arsalanloo, A. Issakhov, et al., Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins, Case Stud. Therm. Eng., 25 (2021), 100939. https://doi.org/10.1016/j.csite.2021.100939 doi: 10.1016/j.csite.2021.100939 |
[17] | S. B. Chen, S. Soradi-Zeid, H. Jahanshahi, R. Alcaraz, J. F. Gómez-Aguilar, S. Bekiros, et al., Optimal control of time-delay fractional equations via a joint application of radial basis functions and collocation method, Entropy, 22 (2020), 1213. https://doi.org/10.3390/e22111213 doi: 10.3390/e22111213 |
[18] | N. Sene, Theory and applications of new fractional-order chaotic system under Caputo operator. IJOCTA, 12 (2022), 20–38. http://doi.org/10.11121/ijocta.2022.1108 doi: 10.11121/ijocta.2022.1108 |
[19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, 2006. |
[20] | A. Atangana, A. Akgül, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005 |
[21] | N. Sene, Analysis of the stochastic model for predicting the novel coronavirus disease, Adv. Differ. Equ., 2020 (2020), 568. https://doi.org/10.1186/s13662-020-03025-w doi: 10.1186/s13662-020-03025-w |
[22] | N. Sene, SIR epidemic model with Mittag–Leffler fractional derivative, Chaos Soliton. Fract, 137 (2020), 109833. https://doi.org/10.1016/j.chaos.2020.109833 doi: 10.1016/j.chaos.2020.109833 |
[23] | X. P. Li, N. Gul, M. A. Khan, R. Bilal, A. Ali, M. Y. Alshahrani, et al., A new Hepatitis B model in light of asymptomatic carriers and vaccination study through Atangana-Baleanu derivative, Results Phys., 29 (2021), 104603. https://doi.org/10.1016/j.rinp.2021.104603 doi: 10.1016/j.rinp.2021.104603 |
[24] | X. P. Li, Y. Wang, M. A. Khan, M. Y. Alshahrani, T. Muhammad, A dynamical study of SARS-COV-2: A study of third wave, Results Phys., 29 (2021), 104705. https://doi.org/10.1016/j.rinp.2021.104705 doi: 10.1016/j.rinp.2021.104705 |
[25] | X. P. Li, H. Al Bayatti, A. Din, A. Zeb, A vigorous study of fractional order COVID-19 model via ABC derivatives, Results Phys. 29 (2021), 104737. https://doi.org/10.1016/j.rinp.2021.104737 doi: 10.1016/j.rinp.2021.104737 |
[26] | S. S. Zhou, M. I. Khan, S. Qayyum, B. C. Prasannakumara, R. N. Kumar, S. U. Khan, et al., Nonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganisms, Int. J. Mod. Phys. B, 35 (2021), 2150145. https://doi.org/10.1142/S0217979221501459 doi: 10.1142/S0217979221501459 |
[27] | Y. Q. Song, H. Waqas, K. Al-Khaled, U. Farooq, S. U. Khan, M. I. Khan, et al., Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model, Alex. Eng. J., 60 (2021), 4663–4675. https://doi.org/10.1016/j.aej.2021.03.056 doi: 10.1016/j.aej.2021.03.056 |
[28] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https.//doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[29] | R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The Grünwald-Letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917. https://doi.org/10.1016/j.camwa.2011.03.054 doi: 10.1016/j.camwa.2011.03.054 |
[30] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. http://www.sciepub.com/reference/3051 |
[31] | Y. Q. Song, S. A. Khan, M. Imran, H. Waqas, S. U. Khan, M. I. Khan, et al., Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk, Alex. Eng. J., 60 (2021), 4607–4618. https://doi.org/10.1016/j.aej.2021.03.053 doi: 10.1016/j.aej.2021.03.053 |
[32] | Y. Q. Song, M. Hassan, S. U. Khan, M. I. Khan, S. Qayyum, Y. M. Chu, et al., Thermal and boundary layer flow analysis for MWCNT-SiO2 hybrid nanoparticles: an experimental thermal model, Mod. Phys. Lett. B, 35 (2021), 2150303. https://doi.org/10.1142/S0217984921503036 doi: 10.1142/S0217984921503036 |
[33] | J. F. Li, H. Jahanshahi, S. Kacar, Y. M. Chu, J. F. Gómez-Aguilar, N. D. Alotaibi, et al., On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos Solition. Fract., 145 (2021), 110681. https://doi.org/10.1016/j.chaos.2021.110681 doi: 10.1016/j.chaos.2021.110681 |
[34] | P. Y. Xiong, A. Almarashi, H. A. Dhahad, W. H. Alawee, A. Issakhov, Y. M. Chu, Nanoparticles for phase change process of water utilizing FEM, J. Mol. Liq., 334 (2021), 116096. https://doi.org/10.1016/j.molliq.2021.116096 doi: 10.1016/j.molliq.2021.116096 |
[35] | P. Y. Xiong, A. Hamid, Y. M. Chu, M. I. Khan, R. J. P. Gowda, R. N. Kumar, et al., Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of cross nanofluid by a vertical thin needle point, Eur. Phys. J. Plus, 136 (2021), 315. https://doi.org/10.1140/epjp/s13360-021-01294-2 doi: 10.1140/epjp/s13360-021-01294-2 |
[36] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, 2015, arXiv: 1602.03408. |
[37] | I. Koca, Modelling the spread of Ebola virus with Atangana–Baleanu fractional operators. Eur. Phys. J. Plus, 133 (2018), 100. https://doi.org/10.1140/epjp/i2018-11949-4 doi: 10.1140/epjp/i2018-11949-4 |
[38] | S. Ahmad, A. Ullah, M. Arfan, K. Shah, On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana–Baleanu (AB) derivative, Chaos Solition. Fract., 140 (2020), 110233. https://doi.org/10.1016/j.chaos.2020.110233 doi: 10.1016/j.chaos.2020.110233 |
[39] | B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solition. Fract., 133 (2020), 109619. https://doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619 |
[40] | M. U. Rahman, M. Arfan, Z. Shah, P. Kumam, M. Shutaywi, Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana–Baleanu derivative, Alex. Eng. J., 60 (2021), 2845–2856. https://doi.org/10.1016/j.aej.2021.01.015 doi: 10.1016/j.aej.2021.01.015 |
[41] | M. U. Saleem, M. Farman, A. Ahmad, E. U. Haquec, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulin therapies for diabetes, Ain Shams Eng. J., 11 (2020), 1309–1316. https://doi.org/10.1016/j.asej.2020.03.006 doi: 10.1016/j.asej.2020.03.006 |
[42] | J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ., 2018 (2018), 231. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1 |
[43] | R. S. Dubey, P. Goswami, Mathematical model of diabetes and its complication involving fractional operator without singular kernel, 14 (2021), 2151–2161. https://doi.org/10.3934/dcdss.2020144 |
[44] | B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor–corrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191–3200. https://doi.org/10.22436/jnsa.010.06.32. doi: 10.22436/jnsa.010.06.32 |
[45] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005 |
[46] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |