Research article

Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method

  • Received: 02 August 2022 Revised: 19 September 2022 Accepted: 26 September 2022 Published: 02 November 2022
  • MSC : 78M22, 81Q05

  • This paper uses the Fourier spectral method to study the propagation and interaction behavior of the fractional-in-space Ginzburg-Landau equation in different parameters and different fractional derivatives. Comparisons are made between the numerical and the exact solution, and it is found that the Fourier spectral method is a satisfactory and efficient algorithm for capturing the propagation of the fractional-in-space Ginzburg-Landau equation. Experimental findings indicate that the proposed method is easy to implement, effective and convenient in the long-time simulation for solving the proposed model. The influence of the fractional Laplacian operator on the fractional-in-space Ginzburg-Landau equation and some of the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation are observed. In Experiment 2, we observe the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation which are unlike any that have been previously obtained in numerical studies.

    Citation: Xiao-Yu Li, Yu-Lan Wang, Zhi-Yuan Li. Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method[J]. AIMS Mathematics, 2023, 8(1): 2407-2418. doi: 10.3934/math.2023124

    Related Papers:

  • This paper uses the Fourier spectral method to study the propagation and interaction behavior of the fractional-in-space Ginzburg-Landau equation in different parameters and different fractional derivatives. Comparisons are made between the numerical and the exact solution, and it is found that the Fourier spectral method is a satisfactory and efficient algorithm for capturing the propagation of the fractional-in-space Ginzburg-Landau equation. Experimental findings indicate that the proposed method is easy to implement, effective and convenient in the long-time simulation for solving the proposed model. The influence of the fractional Laplacian operator on the fractional-in-space Ginzburg-Landau equation and some of the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation are observed. In Experiment 2, we observe the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation which are unlike any that have been previously obtained in numerical studies.



    加载中


    [1] I. S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74 (2002), 99–143. https://doi.org/10.1103/RevModPhys.74.99 doi: 10.1103/RevModPhys.74.99
    [2] A. Atangana, R. T. Alqahtani, New numerical method and application to Keller-Segel model with fractional order derivative, Chaos Soliton. Fract., 116 (2018), 14–21. https://doi.org/10.1016/j.chaos.2018.09.013 doi: 10.1016/j.chaos.2018.09.013
    [3] K. M. Owolabi, A. Atangana, Numerical methods for fractional differentiation, Singapore: Springer, 2019. https://doi.org/10.1007/978-981-15-0098-5
    [4] S. Ahmad, S. Javeed, H. Ahmad, J. Khushi, S. K. Elagan, A. Khames, Analysis and numerical solution of novel fractional model for dengue, Results Phys., 28 (2021), 104669. https://doi.org/10.1016/j.rinp.2021.104669 doi: 10.1016/j.rinp.2021.104669
    [5] Z. U. Zafar, S. Zaib, M. T. Hussain, C. Tunç, S. Javeed, Analysis and numerical simulation of tuberculosis model using different different fractional derivatives, Chaos Soliton. Fract., 160 (2022), 112202. https://doi.org/10.1016/j.chaos.2022.112202 doi: 10.1016/j.chaos.2022.112202
    [6] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [7] X. Y. Li, C. Han, Y. L. Wang, Novel patterns in fractional-in-space nonlinear coupled FitzHugh-Nagumo models with Riesz fractional derivative, Fractal Fract., 6 (2022), 136. https://doi.org/10.3390/fractalfract6030136 doi: 10.3390/fractalfract6030136
    [8] V. E. Tarasov, G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249–261. https://doi.org/10.1016/j.physa.2005.02.047 doi: 10.1016/j.physa.2005.02.047
    [9] V. E. Tarasov, G. M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16 (2006), 023110. https://doi.org/10.1063/1.2197167 doi: 10.1063/1.2197167
    [10] M. D. Ortigueira, T. M. Laleg-Kirati, J. A. T. Machado, Riesz potential versus fractional Laplacian, J. Statis. Mech., 2014 (2014), P09032. https://doi.org/10.1088/1742-5468/2014/09/P09032 doi: 10.1088/1742-5468/2014/09/P09032
    [11] Q. F. Zhang, L. Zhang, H. W. Sun, A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations, J. Comput. Appl. Math., 389 (2021), 113355. https://doi.org/10.1016/j.cam.2020.113355 doi: 10.1016/j.cam.2020.113355
    [12] M. Zhang, G. F. Zhang, L. D. Liao, Fast iterative solvers and simulation for the space fractional Ginzburg-Landau equations, Comput. Math. Appl., 78 (2019), 1793–1800. https://doi.org/10.1016/j.camwa.2019.01.026 doi: 10.1016/j.camwa.2019.01.026
    [13] R. Du, Y. Y. Wang, Z. P. Hao, High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: Discretization and simulations, Commun. Nonlinear Sci., 102 (2021), 105920. https://doi.org/10.1016/j.cnsns.2021.105920 doi: 10.1016/j.cnsns.2021.105920
    [14] P. D. Wang, Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain, Appl. Math. Lett., 112 (2021), 106710. https://doi.org/10.1016/j.aml.2020.106710 doi: 10.1016/j.aml.2020.106710
    [15] M. Li, C. M. Huang, N. Wang, Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation, Appl. Numer. Math., 118 (2017), 131–149. https://doi.org/10.1016/j.apnum.2017.03.003 doi: 10.1016/j.apnum.2017.03.003
    [16] N. Akhmediev, V. Afanasjev, J. Soto-Crespo, Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation, Phys. Rev. E, 53 (1996), 1190. https://doi.org/10.1103/PhysRevE.53.1190 doi: 10.1103/PhysRevE.53.1190
    [17] C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207
    [18] C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1399) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog