This paper uses the Fourier spectral method to study the propagation and interaction behavior of the fractional-in-space Ginzburg-Landau equation in different parameters and different fractional derivatives. Comparisons are made between the numerical and the exact solution, and it is found that the Fourier spectral method is a satisfactory and efficient algorithm for capturing the propagation of the fractional-in-space Ginzburg-Landau equation. Experimental findings indicate that the proposed method is easy to implement, effective and convenient in the long-time simulation for solving the proposed model. The influence of the fractional Laplacian operator on the fractional-in-space Ginzburg-Landau equation and some of the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation are observed. In Experiment 2, we observe the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation which are unlike any that have been previously obtained in numerical studies.
Citation: Xiao-Yu Li, Yu-Lan Wang, Zhi-Yuan Li. Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method[J]. AIMS Mathematics, 2023, 8(1): 2407-2418. doi: 10.3934/math.2023124
This paper uses the Fourier spectral method to study the propagation and interaction behavior of the fractional-in-space Ginzburg-Landau equation in different parameters and different fractional derivatives. Comparisons are made between the numerical and the exact solution, and it is found that the Fourier spectral method is a satisfactory and efficient algorithm for capturing the propagation of the fractional-in-space Ginzburg-Landau equation. Experimental findings indicate that the proposed method is easy to implement, effective and convenient in the long-time simulation for solving the proposed model. The influence of the fractional Laplacian operator on the fractional-in-space Ginzburg-Landau equation and some of the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation are observed. In Experiment 2, we observe the propagation behaviors of the 3D fractional-in-space Ginzburg-Landau equation which are unlike any that have been previously obtained in numerical studies.
[1] | I. S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74 (2002), 99–143. https://doi.org/10.1103/RevModPhys.74.99 doi: 10.1103/RevModPhys.74.99 |
[2] | A. Atangana, R. T. Alqahtani, New numerical method and application to Keller-Segel model with fractional order derivative, Chaos Soliton. Fract., 116 (2018), 14–21. https://doi.org/10.1016/j.chaos.2018.09.013 doi: 10.1016/j.chaos.2018.09.013 |
[3] | K. M. Owolabi, A. Atangana, Numerical methods for fractional differentiation, Singapore: Springer, 2019. https://doi.org/10.1007/978-981-15-0098-5 |
[4] | S. Ahmad, S. Javeed, H. Ahmad, J. Khushi, S. K. Elagan, A. Khames, Analysis and numerical solution of novel fractional model for dengue, Results Phys., 28 (2021), 104669. https://doi.org/10.1016/j.rinp.2021.104669 doi: 10.1016/j.rinp.2021.104669 |
[5] | Z. U. Zafar, S. Zaib, M. T. Hussain, C. Tunç, S. Javeed, Analysis and numerical simulation of tuberculosis model using different different fractional derivatives, Chaos Soliton. Fract., 160 (2022), 112202. https://doi.org/10.1016/j.chaos.2022.112202 doi: 10.1016/j.chaos.2022.112202 |
[6] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[7] | X. Y. Li, C. Han, Y. L. Wang, Novel patterns in fractional-in-space nonlinear coupled FitzHugh-Nagumo models with Riesz fractional derivative, Fractal Fract., 6 (2022), 136. https://doi.org/10.3390/fractalfract6030136 doi: 10.3390/fractalfract6030136 |
[8] | V. E. Tarasov, G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249–261. https://doi.org/10.1016/j.physa.2005.02.047 doi: 10.1016/j.physa.2005.02.047 |
[9] | V. E. Tarasov, G. M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16 (2006), 023110. https://doi.org/10.1063/1.2197167 doi: 10.1063/1.2197167 |
[10] | M. D. Ortigueira, T. M. Laleg-Kirati, J. A. T. Machado, Riesz potential versus fractional Laplacian, J. Statis. Mech., 2014 (2014), P09032. https://doi.org/10.1088/1742-5468/2014/09/P09032 doi: 10.1088/1742-5468/2014/09/P09032 |
[11] | Q. F. Zhang, L. Zhang, H. W. Sun, A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg-Landau equations, J. Comput. Appl. Math., 389 (2021), 113355. https://doi.org/10.1016/j.cam.2020.113355 doi: 10.1016/j.cam.2020.113355 |
[12] | M. Zhang, G. F. Zhang, L. D. Liao, Fast iterative solvers and simulation for the space fractional Ginzburg-Landau equations, Comput. Math. Appl., 78 (2019), 1793–1800. https://doi.org/10.1016/j.camwa.2019.01.026 doi: 10.1016/j.camwa.2019.01.026 |
[13] | R. Du, Y. Y. Wang, Z. P. Hao, High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: Discretization and simulations, Commun. Nonlinear Sci., 102 (2021), 105920. https://doi.org/10.1016/j.cnsns.2021.105920 doi: 10.1016/j.cnsns.2021.105920 |
[14] | P. D. Wang, Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg-Landau equation with fractional Laplacian in unbounded domain, Appl. Math. Lett., 112 (2021), 106710. https://doi.org/10.1016/j.aml.2020.106710 doi: 10.1016/j.aml.2020.106710 |
[15] | M. Li, C. M. Huang, N. Wang, Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation, Appl. Numer. Math., 118 (2017), 131–149. https://doi.org/10.1016/j.apnum.2017.03.003 doi: 10.1016/j.apnum.2017.03.003 |
[16] | N. Akhmediev, V. Afanasjev, J. Soto-Crespo, Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation, Phys. Rev. E, 53 (1996), 1190. https://doi.org/10.1103/PhysRevE.53.1190 doi: 10.1103/PhysRevE.53.1190 |
[17] | C. Han, Y. L. Wang, Numerical solutions of variable-coefficient fractional-in-space KdV equation with the Caputo fractional derivative, Fractal Fract., 6 (2022), 207. https://doi.org/10.3390/fractalfract6040207 doi: 10.3390/fractalfract6040207 |
[18] | C. Han, Y. L. Wang, Z. Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759 |