Research article

The optimal problems for torsional rigidity

  • Received: 28 September 2020 Accepted: 25 January 2021 Published: 22 February 2021
  • MSC : 53A15, 52A39

  • In this paper, we consider the optimization problems associated with the nonhomogeneous and homogeneous Orlicz mixed torsional rigidities by investigating the properties of the corresponding mixed torsional rigidity. As the main results, the existence and the continuity of the solutions to these problems are proved.

    Citation: Jin Yang, Zhenzhen Wei. The optimal problems for torsional rigidity[J]. AIMS Mathematics, 2021, 6(5): 4597-4613. doi: 10.3934/math.2021271

    Related Papers:

  • In this paper, we consider the optimization problems associated with the nonhomogeneous and homogeneous Orlicz mixed torsional rigidities by investigating the properties of the corresponding mixed torsional rigidity. As the main results, the existence and the continuity of the solutions to these problems are proved.



    加载中


    [1] A. D. Aleksandrov, On the theory of mixed volumes, Ⅰ, Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N.S.), Russian, 2 (1937), 947–972.
    [2] K. J. Böröczky, Stronger versions of the Orlicz-Petty projection inequality, J. Diff. Geom., 95 (2013), 215–247. doi: 10.4310/jdg/1376053446
    [3] S. Campi, P. Gronchi, The $L^p$ Busemann-Petty centroid inequality, Adv. Math., 167 (2002), 128–141. doi: 10.1006/aima.2001.2036
    [4] F. Chen, J. Zhou, C. Yang, On the reverse Orlicz Busemann-Petty centroid inequality, Adv. Appl. Math., 47 (2011), 820–828. doi: 10.1016/j.aam.2011.04.002
    [5] A. Colesanti, Brunn-Minkowski inequality for variational functionals and related problems, Adv. Math., 194 (2005), 105–140. doi: 10.1016/j.aim.2004.06.002
    [6] A. Colesanti, M. Fimiani, The Minkowski problem for the torsional rigidity, Indiana Univ. Math. J., 59 (2010), 1013–1040. doi: 10.1512/iumj.2010.59.3937
    [7] W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat. Fys. Medd., 16 (1938), 1–31.
    [8] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355–405. doi: 10.1090/S0273-0979-02-00941-2
    [9] R. J. Gardner, D. Hug, W. Weil, The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities, J. Diff. Geom., 97 (2014), 427–476. doi: 10.4310/jdg/1406033976
    [10] R. J. Gardner, D. Hug, W. Weil, S. Xing, D. Ye, General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski Problem Ⅰ, Calc. Var. PDE, 58 (2018), 1–38.
    [11] R. J. Gardner, D. Hug, W. Weil, S. Xing, D. Ye, General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski Problem Ⅱ, Calc. Var. PDE, 59 (2020), 1–33. doi: 10.1007/s00526-019-1640-y
    [12] R. J. Gardner, D. Hug, W. Weil, D. Ye, The dual Orlicz-Brunn-Minkowski theory, J. Math. Anal. Appl., 430 (2015), 810–829. doi: 10.1016/j.jmaa.2015.05.016
    [13] C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem, Adv. Math., 224 (2010), 2485–2510. doi: 10.1016/j.aim.2010.02.006
    [14] C. Haberl, F. Schuster, General $L_p$ affine isoperimetric inequalities, J. Diff. Geom., 83 (2009), 1–26. doi: 10.4310/jdg/1253804349
    [15] H. Hong, D. Ye, N. Zhang, The $p$-capacitary Orlicz-Hadamard variational formula and Orlicz-Minkowski problems, Calc. Var. PDE, 57 (2018), 1–13. doi: 10.1007/s00526-017-1276-8
    [16] N. Li, B. Zhu, The Orlicz-Minkowski problem for torsional rigidity, J. Diff. Equ., 269 (2020), 8549–8572. doi: 10.1016/j.jde.2020.06.031
    [17] X. Li, H. Wang, J. Zhou, $(p, q)$-Mixed geominimal surface area and $(p, q)$-mixed affine surface area, J. Math. Anal. Appl., 475 (2019), 1472–1492. doi: 10.1016/j.jmaa.2019.03.027
    [18] M. Ludwig, General affine surface area, Adv. Math., 224 (2010), 2346–2360.
    [19] X. Luo, D. Ye, B. Zhu, On the polar Orlicz-Minkowski problems and the $p$-capacitary Orlicz-Petty bodies, Indiana Univ. Math. J., 69 (2018), 385–420.
    [20] E. Lutwak, The Brunn-Minkowski-Firey theory Ⅰ: Mixed volumes and the Minkowski problem, J. Diff. Geom., 38 (1993), 131–150. doi: 10.4310/jdg/1214454097
    [21] E. Lutwak, The Brunn-Minkowski-Firey theory Ⅱ: Affine and geominimal surface areas, Adv. Math., 118 (1996), 244–294. doi: 10.1006/aima.1996.0022
    [22] E. Lutwak, D. Yang, G. Zhang, $L_p$ affine isoperimetric inequalities, J. Diff. Geom., 56 (2000), 111–132. doi: 10.4310/jdg/1090347527
    [23] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math., 223 (2010), 220–242.
    [24] E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Diff. Geom., 84 (2010), 365–387.
    [25] T. Ma, W. Wang, Dual Orlicz geominimal surface area, J. Inequal. Appl., 2016 (2016), 1–13. doi: 10.1186/s13660-015-0952-5
    [26] M. Meyer, E. Werner, On the $p$-affine surface area, Adv. Math., 152 (2000), 288–313. doi: 10.1006/aima.1999.1902
    [27] G. Paouris, P. Pivovarov, A probabilistic take on isoperimetric-type inequalities, Adv. Math., 230 (2012), 1402–1422. doi: 10.1016/j.aim.2012.03.019
    [28] C. M. Petty, Geominimal surface area, Geom. Dedicata, 3 (1974), 77–97.
    [29] C. M. Petty, Affine isoperimetric problems, Ann. N. Y. Acad. Sci., 440 (1985), 113–127. doi: 10.1111/j.1749-6632.1985.tb14545.x
    [30] R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ. Press, 2014.
    [31] C. Schütt, E. Werner, Surface bodies and $p$-affine surface area, Adv. Math., 187 (2004), 98–145. doi: 10.1016/j.aim.2003.07.018
    [32] W. Shi, W. Wang, T. Ma, Dual Orlicz mixed geominimal surface areas, Filomat, 32 (2018), 5053–5061. doi: 10.2298/FIL1814053S
    [33] E. Werner, D. Ye, New $L_p$-affine isoperimetric inequalities, Adv. Math., 218 (2008), 762–780. doi: 10.1016/j.aim.2008.02.002
    [34] D. Xi, H. Jin, G. Leng, The Orlicz Brunn-Minkowski inequality, Adv. Math., 260 (2014), 350–374. doi: 10.1016/j.aim.2014.02.036
    [35] D. Ye, $L_p$ Geominimal Surface Areas and their Inequalities, Int. Math. Res. Not., 2015 (2014), 2465–2498.
    [36] D. Ye, New Orlicz affine isopermetric inequalities, J. Math. Anal. Appl., 427 (2015), 905–929. doi: 10.1016/j.jmaa.2015.02.084
    [37] D. Ye, Dual Orlicz-Brunn-Minkowski theory: Dual Orlicz $L_\phi$ affine and geominimal surface areas, J. Math. Anal. Appl., 443 (2016), 352–371. doi: 10.1016/j.jmaa.2016.05.027
    [38] D. Ye, B. Zhu, J. Zhou, The mixed $L_p$ geominimal surface areas for multiple convex bodies, Indiana Univ. Math. J., 64 (2013), 1513–1552.
    [39] S. Yuan, H. Jin, G. Leng, Orlicz geominimal surface areas, Math. Inequal. Appl., 18 (2015), 353–362.
    [40] B. Zhu, H. Hong, D. Ye, The Orlicz-Petty bodies, Int. Math. Res. Not., 2018 (2018), 4356–4403.
    [41] B. Zhu, N. Li, J. Zhou, Isoperimetric inequalities for $L_p$ geominimal surface area, Glas. Math. J., 53 (2011), 717–726. doi: 10.1017/S0017089511000292
    [42] B. Zhu, X. Luo, Optimal problem for mixed $p$-capacities, J. Math. Soc. Japan, 71 (2019), 1049–1079. doi: 10.2969/jmsj/80268026
    [43] B. Zhu, J. Zhou, W. Xu, Dual Orlicz-Brunn-Minkowski Theory, Adv. Math., 264 (2014), 700–725. doi: 10.1016/j.aim.2014.07.019
    [44] B. Zhu, J. Zhou, W. Xu, Affine isoperimetric inequalities for $L_p$ geominimal surface area, Springer, PROMS, 106 (2014), 167–176.
    [45] B. Zhu, J. Zhou, W. Xu, $L_p$ mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247–1263. doi: 10.1016/j.jmaa.2014.09.035
    [46] G. Zhu, The Orlicz centroid inequality for star bodies, Adv. Appl. Math., 48 (2012), 432–445. doi: 10.1016/j.aam.2011.11.001
    [47] D. Zou, G. Xiong, Orlicz-John ellipsoids, Adv. Math., 265 (2014), 132–168.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2202) PDF downloads(118) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog