This paper is devoted to studying a class of modified Kirchhoff-type equations
$ \begin{equation*} -\Big(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\Big)\Delta u+V(x)u-u\Delta(u^2) = f(x,u), \quad \mbox{in}\ \mathbb{R}^3, \end{equation*} $
where $ a > 0, b\geq 0 $ are two constants and $ V:{\mathbb{R}}^{3}\rightarrow {\mathbb{R}} $ is a potential function. The existence of non-trivial solution to the above problem is obtained by the perturbation methods. Moreover, when $ u > 0 $ and $ f(x, u) = f(u) $, under suitable hypotheses on $ V(x) $ and $ f(u) $, we obtain the existence of a positive ground state solution by using a monotonicity trick and a new version of global compactness lemma. The character of this work is that for $ f(u)\sim|u|^{p-2}u $ we prove the existence of a positive ground state solution in the case where $ p\in(2, 3] $, which has few results for the modified Kirchhoff equation. Hence our results improve and extend the existence results in the related literatures.
Citation: Zhongxiang Wang, Gao Jia. Existence of solutions for modified Kirchhoff-type equation without the Ambrosetti-Rabinowitz condition[J]. AIMS Mathematics, 2021, 6(5): 4614-4637. doi: 10.3934/math.2021272
This paper is devoted to studying a class of modified Kirchhoff-type equations
$ \begin{equation*} -\Big(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx\Big)\Delta u+V(x)u-u\Delta(u^2) = f(x,u), \quad \mbox{in}\ \mathbb{R}^3, \end{equation*} $
where $ a > 0, b\geq 0 $ are two constants and $ V:{\mathbb{R}}^{3}\rightarrow {\mathbb{R}} $ is a potential function. The existence of non-trivial solution to the above problem is obtained by the perturbation methods. Moreover, when $ u > 0 $ and $ f(x, u) = f(u) $, under suitable hypotheses on $ V(x) $ and $ f(u) $, we obtain the existence of a positive ground state solution by using a monotonicity trick and a new version of global compactness lemma. The character of this work is that for $ f(u)\sim|u|^{p-2}u $ we prove the existence of a positive ground state solution in the case where $ p\in(2, 3] $, which has few results for the modified Kirchhoff equation. Hence our results improve and extend the existence results in the related literatures.
[1] | Y. Q. Li, Z. Q. Wang, J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. I. H. Poincar$\acute{e}$-An., 23 (2006), 829–837. |
[2] | G. B. Li, C. Y. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal. Theory Methods Appl., 72 (2010), 4602–4613. doi: 10.1016/j.na.2010.02.037 |
[3] | S. B. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal. Theory Methods Appl., 73 (2010), 788–795. doi: 10.1016/j.na.2010.04.016 |
[4] | Z. L. Liu, Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 563–574. |
[5] | O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differ. Equations, 245 (2008), 3628–3638. doi: 10.1016/j.jde.2008.02.035 |
[6] | D. Mugnai, N. S. Papageorgiou, Wang's multiplicity result for superlinear $(p, q)$-equations without the Ambrosetti-Rabinowitz condition, T. Am. Math. Soc., 366 (2014), 4919–4937. |
[7] | B. T. Cheng, X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. Theory Methods Appl., 71 (2009), 4883–4892. |
[8] | A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. Theory Methods Appl., 70 (2009), 1275–1287. doi: 10.1016/j.na.2008.02.011 |
[9] | S. T. Chen, B. L. Zhang, X. H. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9 (2020), 148–167. |
[10] | G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in ${\mathbb{R}}^{3}$, J. Differ. Equations, 257 (2014), 566–600. doi: 10.1016/j.jde.2014.04.011 |
[11] | Z. J. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equations, 259 (2015), 2884–2902. doi: 10.1016/j.jde.2015.04.005 |
[12] | X. H. Tang, S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Dif., 56 (2017), 110-134. doi: 10.1007/s00526-017-1214-9 |
[13] | F. L. He, D. D. Qin, X. H. Tang, Existence of ground states for Kirchhoff-type problems with general potentials, J. Geom. Anal., 2020, DOI: 10.1007/s12220-020-00546-4. |
[14] | W. He, D. D. Qin, Q. F. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal., 10 (2021), 616–635. |
[15] | S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. doi: 10.1143/JPSJ.50.3262 |
[16] | E. W. Laedke, K. H. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764–2769. doi: 10.1063/1.525675 |
[17] | A. Nakamura, Damping and modification of exciton solitary waves, J. Phys. Soc. Jpn., 42 (1977), 1824–1835. doi: 10.1143/JPSJ.42.1824 |
[18] | M. Poppenberg, On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension, J. Differ. Equations, 172 (2001), 83–115. doi: 10.1006/jdeq.2000.3853 |
[19] | J. Q. Liu, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, I, P. Am. Math. Soc., 131 (2003), 441–448. |
[20] | M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Dif., 14 (2002), 329–344. doi: 10.1007/s005260100105 |
[21] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal. Theory Methods Appl., 56 (2004), 213–226. doi: 10.1016/j.na.2003.09.008 |
[22] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations: II, J. Differ. Equations, 187 (2003), 473–493. doi: 10.1016/S0022-0396(02)00064-5 |
[23] | D. Ruiz, G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 1221–1233. doi: 10.1088/0951-7715/23/5/011 |
[24] | X. Q. Liu, J. Q. Liu, Z. Q. Wang, Quasilinear elliptic equations via perturbation method, P. Am. Math. Soc., 141 (2013), 253–263. |
[25] | C. Huang, G. Jia, Infinitely many sign-changing solutions for modified Kirchhoff-type equations in $\mathbb{R}^3$, Complex Var. Elliptic, 2020, DOI: 10.1080/17476933.2020.1807964. |
[26] | T. Bartsch, Z. Q. Wang, Existence and multiple results for some superlinear elliptic problems on $\mathbb{R}^N$, Commun. Part. Diff. Eq., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149 |
[27] | Y. H. Li, F. Y. Li, J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equations, 253 (2012), 2285–2294. doi: 10.1016/j.jde.2012.05.017 |
[28] | L. G. Zhao, F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155–169. doi: 10.1016/j.jmaa.2008.04.053 |
[29] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. doi: 10.1016/j.jfa.2006.04.005 |
[30] | Z. H. Feng, X. Wu, H. X. Li, Multiple solutions for a modified Kirchhoff-type equation in ${\mathbb{R}}^{N}$, Math. Method. Appl. Sci., 38 (2015), 708–725. doi: 10.1002/mma.3102 |
[31] | A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822. doi: 10.1016/j.jfa.2009.09.013 |
[32] | M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1996. |
[33] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. An., 82 (1983), 313–345. doi: 10.1007/BF00250555 |
[34] | P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291. doi: 10.1007/BF00946631 |
[35] | P. Tolksdorf, Regularity for some general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. doi: 10.1016/0022-0396(84)90105-0 |
[36] | L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer-type problem set on ${\mathbb{R}}^{N}$, Proc. Royal Soc. Edinburgh Sect. A: A Math. Soc., 129 (1999), 787–809. doi: 10.1017/S0308210500013147 |