Research article Special Issues

Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay

  • Received: 06 May 2023 Revised: 15 June 2023 Accepted: 28 June 2023 Published: 17 July 2023
  • Recent studies demonstrate that the reproduction of prey is suppressed by the fear of predators. However, it will not respond immediately to fear, but rather reduce after a time lag. We propose a diffusive predator-prey model incorporating fear response delay into prey reproduction. Detailed bifurcation analysis reveals that there are three different cases for the effect of the fear response delay on the system: it might have no effect, both stabilizing and destabilizing effect, or destabilizing effect on the stability of the positive equilibrium, respectively, which are found by numerical simulations to correspond to low, intermediate or high level of fear. For the second case, through ordering the critical values of Hopf bifurcation, we prove the existence of stability switches for the system. Double Hopf bifurcation analysis is carried out to better understand how the fear level and delay jointly affect the system dynamics. Using the normal form method and center manifold theory, we derive the normal form of double Hopf bifurcation, and obtain bifurcation sets around double Hopf bifurcation points, from which all the dynamical behaviors can be explored, including periodic solutions, quasi-periodic solutions and even chaotic phenomenon.

    Citation: Mengting Sui, Yanfei Du. Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay[J]. Electronic Research Archive, 2023, 31(9): 5124-5150. doi: 10.3934/era.2023262

    Related Papers:

  • Recent studies demonstrate that the reproduction of prey is suppressed by the fear of predators. However, it will not respond immediately to fear, but rather reduce after a time lag. We propose a diffusive predator-prey model incorporating fear response delay into prey reproduction. Detailed bifurcation analysis reveals that there are three different cases for the effect of the fear response delay on the system: it might have no effect, both stabilizing and destabilizing effect, or destabilizing effect on the stability of the positive equilibrium, respectively, which are found by numerical simulations to correspond to low, intermediate or high level of fear. For the second case, through ordering the critical values of Hopf bifurcation, we prove the existence of stability switches for the system. Double Hopf bifurcation analysis is carried out to better understand how the fear level and delay jointly affect the system dynamics. Using the normal form method and center manifold theory, we derive the normal form of double Hopf bifurcation, and obtain bifurcation sets around double Hopf bifurcation points, from which all the dynamical behaviors can be explored, including periodic solutions, quasi-periodic solutions and even chaotic phenomenon.



    加载中


    [1] É. Diz-Pita, M. V. Otero-Espinar, Predator–prey models: A review of some recent advances, Mathematics, 9 (2021), 1783. https://https://doi.org/10.3390/math9151783 doi: 10.3390/math9151783
    [2] Q. J. A. Khan, E. Balakrishnan, G. C. Wake, Analysis of a predator-prey system with predator switching, B. Math. Biol., 66 (2004), 109–123. https://doi.org/10.1016/j.bulm.2003.08.005 doi: 10.1016/j.bulm.2003.08.005
    [3] S. Liu, E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type, Siam. J. Appl. Math., 66 (2006), 1101–1129. https://doi.org/10.1137/050630003 doi: 10.1137/050630003
    [4] J. M. Jeschke, M. Kopp, R. Tollrian, Predator functional responses: Discriminating between handling and digesting prey, Ecol. Monogr., 72 (2002), 95–112. https://doi.org/10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2 doi: 10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2
    [5] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [6] L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–140. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [7] W. Cresswell, Predation in bird populations, J. Ornithol., 152 (2011), 251–263. https://doi.org/10.1007/s10336-010-0638-1 doi: 10.1007/s10336-010-0638-1
    [8] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [9] Y. Shi, J. Wu, Q. Cao, Analysis on a diffusive multiple Allee effects predator-prey model induced by fear factors, Nonlinear Anal. Real, 59 (2021), 103249. https://doi.org/10.1016/j.nonrwa.2020.103249 doi: 10.1016/j.nonrwa.2020.103249
    [10] X. Zhang, H. Zhao, Y. Yuan, Impact of discontinuous harvesting on a diffusive predator-prey model with fear and Allee effect, Z. Angew. Math. Phys., 73 (2022), 1–29. https://doi.org/10.1007/s00033-022-01807-8 doi: 10.1007/s00033-022-01807-8
    [11] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Math. Biosci. Eng., 16 (2019), 5146–5179. https://doi.org/10.3934/mbe.2019258 doi: 10.3934/mbe.2019258
    [12] P. Panday, N. Pal, S. Samanta, P. Tryjanowski, Dynamics of a stage-structured predator-prey model: cost and benefit of fear-induced group defense, J. Theor. Biol., 528 (2021), 110846. https://doi.org/10.1016/j.jtbi.2021.110846 doi: 10.1016/j.jtbi.2021.110846
    [13] S. K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481 (2020), 123471. https://doi.org/10.1016/j.jmaa.2019.123471 doi: 10.1016/j.jmaa.2019.123471
    [14] N. Zhang, Y. Kao, B. Xie, Impact of fear effect and prey refuge on a fractional order prey-predator system with Beddington-DeAngelis functional response, Chaos, 32 (2022), 043125. https://doi.org/10.1063/5.0082733 doi: 10.1063/5.0082733
    [15] H. Chen, C. Zhang, Dynamic analysis of a Leslie-Gower-type predator-prey system with the fear effect and ratio-dependent Holling III functional response, Nonlinear Anal-Model., 27 (2022), 904–926. https://doi.org/10.15388/namc.2022.27.27932 doi: 10.15388/namc.2022.27.27932
    [16] Y. Wang, X. Zou, On a predator-prey system with digestion delay and anti-predation strategy, J. Nonlinear Sci., 30 (2020), 1579–1605. https://doi.org/10.1007/s00332-020-09618-9 doi: 10.1007/s00332-020-09618-9
    [17] B. Dai, G. Sun, Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect, Appl. Math. Lett., 111 (2021), 106644. https://doi.org/10.1016/j.aml.2020.106644 doi: 10.1016/j.aml.2020.106644
    [18] X. Zhang, Q. An, L. Wang, Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect, Nonlinear Dyn., 105 (2021), 3775–3790. https://doi.org/10.1007/s11071-021-06780-x doi: 10.1007/s11071-021-06780-x
    [19] C. Wang, S. Yuan, H. Wang, Spatiotemporal patterns of a diffusive prey-predator model with spatial memory and pregnancy period in an intimidatory environment, J. Math. Biol., 84 (2022), 12. https://doi.org/10.1007/s00285-022-01716-4 doi: 10.1007/s00285-022-01716-4
    [20] J. Liu, Y. Kang, Spatiotemporal dynamics of a diffusive predator-prey model with fear effect, Nonlinear Anal-Model., 27 (2022), 841–862. https://doi.org/10.15388/namc.2022.27.27535 doi: 10.15388/namc.2022.27.27535
    [21] X. Wang, X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2018), 775–805. https://doi.org/10.3934/mbe.2018035 doi: 10.3934/mbe.2018035
    [22] J. P. Tripathi, S. Bugalia, D. Jana, N. Gupta, V. Tiwari, J. Li, et al., Modeling the cost of anti-predator strategy in a predator-prey system: The roles of indirect effect, Math. Methods Appl. Sci., 45 (2022), 4365-4396. https://doi.org/10.1002/mma.8044 doi: 10.1002/mma.8044
    [23] D. Duan, B. Niu, J. Wei, Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect, Chaos Solitons Fractals, 123 (2019), 206–216. https://doi.org/10.1016/j.chaos.2019.04.012 doi: 10.1016/j.chaos.2019.04.012
    [24] P. Panday, S. Samanta, N. Pal, J. Chattopadhyay, Delay induced multiple stability switch and chaos in a predator-prey model with fear effect, Math. Comput. Simul., 172 (2020), 134–158. https://doi.org/10.1016/j.matcom.2019.12.015 doi: 10.1016/j.matcom.2019.12.015
    [25] B. Dubey, A. Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior, Math. Comput. Simulat., 188 (2021), 164–192. https://doi.org/10.1016/j.matcom.2021.03.037 doi: 10.1016/j.matcom.2021.03.037
    [26] Y. Song, Q. Shi, Stability and bifurcation analysis in a diffusive predator-prey model with delay and spatial average, Math. Method. Appl. Sci., 5 (2023), 5561–5584. https://doi.org/10.1002/mma.8853 doi: 10.1002/mma.8853
    [27] D. Geng, W. Jiang, Y. Lou, H. Wang, Spatiotemporal patterns in a diffusive predator-prey system with nonlocal intraspecific prey competition, Stud. Appl. Math., 148 (2022), 396–432. https://doi.org/10.1111/sapm.12444 doi: 10.1111/sapm.12444
    [28] Y. Du, B. Niu, Y. Guo, J. Wei, Double Hopf bifurcation in delayed reaction-diffusion systems, J. Dyn. Differ. Equ., 32 (2020), 313–358. https://doi.org/10.1007/s10884-018-9725-4 doi: 10.1007/s10884-018-9725-4
    [29] J. Guckenheimer, P. Holmes, Local codimension two bifurcations of flows in Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, (1983), 397–411. https://doi.org/10.1007/978-1-4612-1140-2
    [30] A. M. Turing, The chemical basis of morphogenesis, B. Math. Biol., 52 (1990), 153–197. https://doi.org/10.1016/S0092-8240(05)80008-4 doi: 10.1016/S0092-8240(05)80008-4
    [31] Y. Almirantis, S. Papageorgiou, Cross-diffusion effects on chemical and biological pattern formation, J. Theor. Biol., 151 (1991), 289–311. https://doi.org/10.1016/S0022-5193(05)80379-0 doi: 10.1016/S0022-5193(05)80379-0
    [32] J. Chattopadhyay, P. K. Tapaswi, Effect of cross-diffusion on pattern formation-a nonlinear analysis, Acta Appl. Math., 48 (1997), 1–12. https://doi.org/10.1023/A:1005764514684 doi: 10.1023/A:1005764514684
    [33] J. Zhao, J. Wei, Dynamics in a diffusive plankton system with delay and toxic substances effect, Nonlinear Anal. Real, 22 (2015), 66–83. https://doi.org/10.1016/j.nonrwa.2014.07.010 doi: 10.1016/j.nonrwa.2014.07.010
    [34] J. Shi, C. Wang, H. Wang, X. Yan, Diffusive spatial movement with memory, J. Dyn. Differ., 32 (2020), 979–1002. https://doi.org/10.1007/s10884-019-09757-y doi: 10.1007/s10884-019-09757-y
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(990) PDF downloads(122) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog