Citation: Robert Reynolds, Allan Stauffer. Definite integrals involving product of logarithmic functions and logarithm of square root functions expressed in terms of special functions[J]. AIMS Mathematics, 2020, 5(6): 5724-5733. doi: 10.3934/math.2020367
[1] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9 Eds., New York, Dover, 1982. |
[2] | T. M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1995. |
[3] | A. Erdéyli, W. Magnus, F. Oberhettinger, et al. Higher Transcendental Functions, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. |
[4] | D. Bierens de Haan, Nouvelles Tables d'intégrales définies, Amsterdam, 1867. |
[5] | J. Guillera, J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J., 16 (2008), 247. |
[6] | I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series and Products, 6 Eds., Academic Press, USA, 2000. |
[7] | A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, More Special Functions, USSR Academy of Sciences, Moscow, 1990. |
[8] | R. Reynolds, A. Stauffer, A Method for Evaluating Definite Integrals in terms of Special Functions with Examples, Available from: https://arxiv.org/pdf/1906.04927.pdf. |
[9] | H. J. Weber, G. B. Arfken, Mathematical Methods for Physicists, ISE. Academic Press, 2004. |