Uncertain numbers, in a parallel definition of fuzzy numbers, are introduced. Model uncertainty and measurement uncertainty are our motivations for this study. A class of scalar multiplication and differences is proposed. Related algebra is investigated. A necessary and sufficient condition of the existence of the introduced differences is obtained. Then, the existing result for the derivative is studied. Many interestingly important results are obtained. For example, the Hukuhara derivative does not exist for any fuzzy function with the new viewpoint. Constructive conditions for the existence of the generalized Hukuhara derivative are introduced. Four possible categories for derivatives fall into two forms of the fuzzy derivative for the generalized Hukuhara derivative. Importantly, this bifurcation in the definition of the new generalized Hukuhara derivative does not happen. Finally, all definitions related to differences and derivatives of uncertain numbers are unified in one concrete form with concrete analysis. Some examples and counterexamples are provided to illustrate theories and theorems in detail.
Citation: Babak Shiri. A unified generalization for Hukuhara types differences and derivatives: Solid analysis and comparisons[J]. AIMS Mathematics, 2023, 8(1): 2168-2190. doi: 10.3934/math.2023112
Uncertain numbers, in a parallel definition of fuzzy numbers, are introduced. Model uncertainty and measurement uncertainty are our motivations for this study. A class of scalar multiplication and differences is proposed. Related algebra is investigated. A necessary and sufficient condition of the existence of the introduced differences is obtained. Then, the existing result for the derivative is studied. Many interestingly important results are obtained. For example, the Hukuhara derivative does not exist for any fuzzy function with the new viewpoint. Constructive conditions for the existence of the generalized Hukuhara derivative are introduced. Four possible categories for derivatives fall into two forms of the fuzzy derivative for the generalized Hukuhara derivative. Importantly, this bifurcation in the definition of the new generalized Hukuhara derivative does not happen. Finally, all definitions related to differences and derivatives of uncertain numbers are unified in one concrete form with concrete analysis. Some examples and counterexamples are provided to illustrate theories and theorems in detail.
[1] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001 |
[2] | B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets Syst., 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003 |
[3] | L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst., 161 (2010), 1564–1584. https://doi.org/10.1016/j.fss.2009.06.009 doi: 10.1016/j.fss.2009.06.009 |
[4] | L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal. Theory Methods Appl., 71 (2009), 1311–1328. https://doi.org/10.1016/j.na.2008.12.005 doi: 10.1016/j.na.2008.12.005 |
[5] | Z. Alijani, D. Baleanu, B. Shiri, G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos Solitons Fract., 131 (2019), 1–12. https://doi.org/10.1016/j.chaos.2019.109510 doi: 10.1016/j.chaos.2019.109510 |
[6] | Z. Alijani, U. Kangro, Collocation method for fuzzy Volterra integral equations of the second kind, Math. Model. Anal., 25 (2020), 146–166. https://doi.org/10.3846/mma.2020.9695 doi: 10.3846/mma.2020.9695 |
[7] | S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3685–3693. https://doi.org/10.1016/j.na.2011.02.048 doi: 10.1016/j.na.2011.02.048 |
[8] | Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos Solitons Fract., 38 (2008), 112–119. https://doi.org/10.1016/j.chaos.2006.10.043 doi: 10.1016/j.chaos.2006.10.043 |
[9] | L. L. Huang, D. Baleanu, Z. W. Mo, G. C. Wu, Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus, Phys. A Stat. Mech. Appl., 508 (2018), 166–175. https://doi.org/10.1016/j.physa.2018.03.092 doi: 10.1016/j.physa.2018.03.092 |
[10] | L. L. Huang, B. Q. Liu, D. Baleanu, G. C. Wu, Numerical solutions of interval-valued fractional nonlinear differential equations, Eur. Phys. J. Plus, 134 (2019), 220. https://doi.org/10.1140/epjp/i2019-12746-3 doi: 10.1140/epjp/i2019-12746-3 |
[11] | G. C. Wu, J. L. Wei, C. Luo, L. L. Huang, Parameter estimation of fractional uncertain differential equations via Adams method, Nonlinear Anal. Model. Control, 27 (2022), 1–5. https://doi.org/10.15388/namc.2022.27.25363 doi: 10.15388/namc.2022.27.25363 |
[12] | Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, M. D. Jiménez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets Syst., 219 (2013), 49–67. https://doi.org/10.1016/j.fss.2012.12.004 doi: 10.1016/j.fss.2012.12.004 |
[13] | Y. Chalco-Cano, G. G. Maqui-Huamán, G. N. Silva, M. D. Jiménez-Gamero, Algebra of generalized Hukuhara differentiable interval-valued functions: Review and new properties, Fuzzy Sets Syst., 375 (2019), 53–69. https://doi.org/10.1016/j.fss.2019.04.006 doi: 10.1016/j.fss.2019.04.006 |
[14] | L. L. Huang, G. C. Wu, D. Baleanu, H. Y. Wang, Discrete fractional calculus for interval-valued systems, Fuzzy Sets Syst., 404 (2021), 141–158. https://doi.org/10.1016/j.fss.2020.04.008 doi: 10.1016/j.fss.2020.04.008 |
[15] | L. L. Huang, G. C. Wu, Q. Fan, B. Shiri, Fractional linear interval-valued systems with w-monotonicity's constraint conditions, Fuzzy Syst Math., 2022, in press. |
[16] | S. Treanţă, LU-optimality conditions in optimization problems with mechanical work objective functionals, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 4971–4978. https://doi.org/10.1109/TNNLS.2021.3066196 doi: 10.1109/TNNLS.2021.3066196 |
[17] | Y. Guo, G. Ye, W. Liu, D. Zhao, S. Treanţă, On symmetric gH-derivative: Applications to dual interval-valued optimization problems, Chaos Solitons Fract., 158 (2022), 112068. https://doi.org/10.1016/j.chaos.2022.112068 doi: 10.1016/j.chaos.2022.112068 |
[18] | M. B. Khan, S. Treanţă, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some new versions of integral inequalities for left and right Preinvex functions in the interval-valued settings, Mathematics, 10 (2022), 611. https://doi.org/10.3390/math10040611 doi: 10.3390/math10040611 |
[19] | S. Treanţă, Robust optimality in constrained optimization problems with application in mechanics, J. Math. Anal. Appl., 515 (2022), 126440. https://doi.org/10.1016/j.jmaa.2022.126440 doi: 10.1016/j.jmaa.2022.126440 |
[20] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7 |
[21] | M. Hukuhara, Integration des applications measurables dont la valeur est un com-pact convexe, Funkcial. Ekvac., 10 (1967), 205–223. |
[22] | Y. Chalco-Cano, R. Rodríguez-López, M. D. Jiménez-Gamero, Characterizations of generalized differentiable fuzzy functions, Fuzzy Sets Syst., 295 (2016), 37–56. https://doi.org/10.1016/j.fss.2015.09.005 doi: 10.1016/j.fss.2015.09.005 |