In this paper, we give the generalized form of soft semihypergroups in ternary structure and have studied it with the help of examples. There are some structures that are not appropriately handled by using the binary operation of the semihypergroup, such as all the sets of non-positive numbers are not closed under binary operation but hold for ternary operation. To deal with this type of problem and handling special type of uncertainty, we study the ternary semihypergroup in terms of prime soft hyperideals. We have introduced prime, strongly prime, semiprime, irreducible and strongly irreducible soft bi-hyperideals in ternary semihypergroups and studied certain properties of these soft bi-hyperideals in ternary semihypergroups. The main advantage of this paper is that we proved that each soft bi-hyperideal of ternary semihypergroup $K$ is strongly prime if it is idempotent and the set of soft bi-hyperideals of $K$ is totally ordered by inclusion.
Citation: Shahida Bashir, Rabia Mazhar, Bander Almutairi, Nauman Riaz Chaudhry. A novel approach to study ternary semihypergroups in terms of prime soft hyperideals[J]. AIMS Mathematics, 2023, 8(9): 20269-20282. doi: 10.3934/math.20231033
In this paper, we give the generalized form of soft semihypergroups in ternary structure and have studied it with the help of examples. There are some structures that are not appropriately handled by using the binary operation of the semihypergroup, such as all the sets of non-positive numbers are not closed under binary operation but hold for ternary operation. To deal with this type of problem and handling special type of uncertainty, we study the ternary semihypergroup in terms of prime soft hyperideals. We have introduced prime, strongly prime, semiprime, irreducible and strongly irreducible soft bi-hyperideals in ternary semihypergroups and studied certain properties of these soft bi-hyperideals in ternary semihypergroups. The main advantage of this paper is that we proved that each soft bi-hyperideal of ternary semihypergroup $K$ is strongly prime if it is idempotent and the set of soft bi-hyperideals of $K$ is totally ordered by inclusion.
[1] | W. L. Gau, D. J. Buehrer, Vague sets, IEEE T. Syst. Man Cy-S., 23 (1993), 610–614. https://doi.org/10.1109/21.229476 doi: 10.1109/21.229476 |
[2] | M. B. Gorzalzany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Set. Syst., 21 (1987), 1–17. https://doi.org/10.1016/0165-0114(87)90148-5 doi: 10.1016/0165-0114(87)90148-5 |
[3] | Z. Pawlak, Rough sets, Inter. J. Inform. Comput. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956 |
[4] | Z. Pawlak, A. Skoworn, Rudiments of rough sets, Inform. Sciences, 177 (2007), 3–27. https://doi.org/10.1016/j.ins.2006.06.003 doi: 10.1016/j.ins.2006.06.003 |
[5] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[6] | L. A. Zadeh, Toward a generalized theory of uncertainty (GTU)-an outline, Inform. Sciences, 172 (2005), 1–40. |
[7] | D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[8] | S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl., 229 (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-229 doi: 10.1186/1029-242X-2013-229 |
[9] | A. H. Zakri, H. M. Hossen, L. Y. Erwi, E. Al-Sharif, Application of soft sets to diagnose the educational obstacles for students, J. Innov. Technol. Educ., 3 (2016), 61–70. https://doi.org/10.12988/jite.2016.626 doi: 10.12988/jite.2016.626 |
[10] | F. Marty, Sur une generalization de la notion de groups, In: 8th Congress Math, Scandinaves, Stockholm, 1934, 45–49. |
[11] | P. Corsini, Prolegomena of hypergroup theory, Tricesimo: Aviani Editore, 1993. |
[12] | B. Davvaz, V. L. Fotea, Hyperring theory and applications, USA: International Academic Press, 2007. |
[13] | T. Vougiouklis, Hyperstructures and their representations, Palm Harbor: Hadronic Press, 1994. |
[14] | S. Hoskova-Mayerova, A. Maturo, On some applications of algebraic hyperstructures for the management of teaching and relationships in schools, Ital. J. Pure Appl. Math., 41 (2019), 584–592. |
[15] | P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publisher, 2003. https://doi.org/10.1007/978-1-4757-3714-1 |
[16] | I. Cristea, S. Hoskova, Fuzzy pseudotopological hypergroupoids, Iran. J. Fuzzy Syst., 6 (2009), 11–19. |
[17] | D. H. Lehmer, A ternary analogue of abelian groups, Am. J. Math., 54 (1932), 329–338. https://doi.org/10.2307/2370997 doi: 10.2307/2370997 |
[18] | B. Davvaz, W. A. Dudek, S. Mirvakili, Neutral elements, fundamental relations and n-ary hypersemigroups, Int. J. Algebra Comput., 19 (2009), 567–583. https://doi.org/10.1142/S0218196709005226 doi: 10.1142/S0218196709005226 |
[19] | S. Bashir, X. Du, On weakly regular fuzzy ordered ternary semigroups, Appl. Math. Inform. Sci., 10 (2016), 2247–2254. https://doi.org/10.18576/amis/100627 doi: 10.18576/amis/100627 |
[20] | S. Bashir, X. Du, Intra-regular and weakly regular ordered ternary semigroups, Annals Fuzzy Math. Inform., 13 (2017), 539–551. https://doi.org/10.30948/afmi.2017.13.4.539 doi: 10.30948/afmi.2017.13.4.539 |
[21] | S. Bashir, M. Fatima, M. Shabir, Regular ordered ternary semigroups in terms of bipolar fuzzy ideals, Mathematics, 7 (2019), 233. https://doi.org/10.3390/math7030233 doi: 10.3390/math7030233 |
[22] | S. Bashir, H. Abbas, R. Mazhar, M. Shabir, Rough fuzzy ternary subsemigroups based on fuzzy ideals with three-dimensional congruence relation, Comput. Appl. Math., 39 (2020), 1–16. https://doi.org/10.1007/s40314-020-1079-y doi: 10.1007/s40314-020-1079-y |
[23] | S. Bashir, R. Mazhar, H. Abbas, M. Shabir, Regular ternary semirings in terms of bipolar fuzzy ideals, Comput. Appl. Math., 39 (2020), 1–18. https://doi.org/10.1007/s40314-020-01319-z doi: 10.1007/s40314-020-01319-z |
[24] | D. Molodtsov, V. Y. Leonov, D. V. Kovkov, Soft sets technique and its application, Nechetkie Sistemi I Myakie Vychisleniya, 1 (2006), 8–39. |
[25] | M. Naz, M. Shabir, Fuzzy soft sets and their algebraic structure, World Appl. Sci. J., 22 (2013), 45–61. |
[26] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006 |
[27] | B. K. Tripathy, T. R. Sooraj, R. N. Mohanty, Application of soft set in game theory, In: Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction, 2019,421–435. https://doi.org/10.4018/978-1-5225-7368-5.ch031 |
[28] | A. Sezgin, A. O. Atagün, N. Çağman, Soft intersection near-rings with its applications, Neural Comput. Appl., 21 (2012), 221–229. https://doi.org/10.1007/s00521-011-0782-4 doi: 10.1007/s00521-011-0782-4 |
[29] | A. Sezgin, A. O. Atagün, On operations of soft sets, Comput. Math. Appl., 61 (2011), 1457–1467. https://doi.org/10.1016/j.camwa.2011.01.018 doi: 10.1016/j.camwa.2011.01.018 |
[30] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6 |
[31] | M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009 |
[32] | F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets, Atentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6 |
[33] | H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008 doi: 10.1016/j.ins.2006.12.008 |
[34] | S. M. Anvariyeh, S. Mirvakili, O. Kazanci, B. Davvaz, Algebraic hyperstructures of soft sets associated to semihypergroups, SE. Asian B. Math., 35 (2011), 911–925. |
[35] | M. Shabir, N. Kanwal, Prime bi-ideals of semigroups, SE. Asian B. Math., 31 (2007), 757–764. |
[36] | M. Shabir, S. Bashir, Prime ideals in ternary semigroups, Asian-Eur. J. Math., 2 (2009), 141–154. https://doi.org/10.1142/S1793557109000121 doi: 10.1142/S1793557109000121 |
[37] | M. Shabir, Y. B. Jun, M. Bano, On prime fuzzy bi-ideals of semigroups, Iran. J. Fuzzy Syst., 7 (2010), 115–128. |
[38] | S. Bashir, J. Mehmood, M. S. Kamran, Prime bi-ideals in ternary semirings, Ann. Fuzzy Math. Inform., 6 (2013), 181–189. |
[39] | T. Mahmood, Some contributions to semihypergroups, Ph.D. Thesis Quaid-i-Azam University, Islamabad, 2012. |
[40] | K. Hila, B. Davvaz, K. Naka, On hyperideal structure of ternary semihypergroups, Iran. J. Math. Sci. Info., 9 (2014), 81–98. |
[41] | K. Naka, K. Hila, On some special classes of hyperideals in ternary semihypergroups, Utilitas Mathematica, 98 (2015), 97–112. |
[42] | K. Naka, K. Hila, Some properties of hyperideals in ternary semihypergroups, Math. Slovaca, 63 (2013), 449–468. https://doi.org/10.2478/s12175-013-0108-3 doi: 10.2478/s12175-013-0108-3 |
[43] | S. Naz, M. Shabir, On prime soft bi-hyperideals of semihypergroups, J. Int. Fuzzy Syst., 26 (2014), 1539–1546. https://doi.org/10.3233/IFS-130837 doi: 10.3233/IFS-130837 |
[44] | B. Davvaz, Intuitionistic hyperideals of semihypergroups, Bull. Malays. Math. Sci. Soc., 29 (2006), 203–207. |
[45] | B. Davvaz, V. Leoreanu, Binary relations on ternary semihypergroups, Commun. Algebra, 38 (2010), 3621–3636. https://doi.org/10.1080/00927870903200935 doi: 10.1080/00927870903200935 |
[46] | N. Yaqoob, M. Aslam, K. Hilla, Rough Fuzzy hyperideals in ternary semihypergroups, Adv. Fuzzy Syst., 2012 (2012). https://doi.org/10.1155/2012/595687 doi: 10.1155/2012/595687 |