Research article Special Issues

On Ulam stability of a second order linear difference equation

  • Received: 23 March 2023 Revised: 13 May 2023 Accepted: 19 May 2023 Published: 20 June 2023
  • MSC : Primary 39A30, Secondary 39B82

  • In this paper we obtain some Ulam stability results for the second order and the third order linear difference equation with nonconstant coefficients in a Banach space. The main idea of the approach is to decompose the second order linear difference equation in a Riccati difference equation and a first order difference equation. In this way we extend some results for linear difference equations with constant coefficients and for linear difference equations with periodic coefficients.

    Citation: Delia-Maria Kerekes, Bianca Moșneguțu, Dorian Popa. On Ulam stability of a second order linear difference equation[J]. AIMS Mathematics, 2023, 8(9): 20254-20268. doi: 10.3934/math.20231032

    Related Papers:

  • In this paper we obtain some Ulam stability results for the second order and the third order linear difference equation with nonconstant coefficients in a Banach space. The main idea of the approach is to decompose the second order linear difference equation in a Riccati difference equation and a first order difference equation. In this way we extend some results for linear difference equations with constant coefficients and for linear difference equations with periodic coefficients.



    加载中


    [1] D. R. Anderson, M. Onitsuka, Best constant for Hyers-Ulam stability of second-order h-difference equations with constant coefficients, Results Math., 74 (2019), 151. https://doi.org/10.1007/s00025-019-1077-9 doi: 10.1007/s00025-019-1077-9
    [2] A. R. Baias, F. Blaga, D. Popa, Best Ulam constant for a linear difference equation, Carpathian J. Math., 35 (2019) 13–22.
    [3] A. R. Baias, D. Popa, On Ulam stability of a linear difference equation in Banach spaces, Bull. Malays. Math. Sci. Soc., 43 (2020), 1357–1371. https://doi.org/10.1007/s40840-019-00744-6 doi: 10.1007/s40840-019-00744-6
    [4] A. R. Baias, D. Popa, I. Raşa, Ulam stability of a successive approximation equation, J. Fixed Point Theory Appl., 22 (2020), 41. https://doi.org/10.1007/s11784-020-00777-6 doi: 10.1007/s11784-020-00777-6
    [5] D. Barbu, C. Buşe, A. Tabassum, Hyers-Ulam stability and discrete dichotomy, J. Math. Anal. Appl., 423 (2015), 1738–1752. https://doi.org/10.1016/j.jmaa.2014.10.082 doi: 10.1016/j.jmaa.2014.10.082
    [6] J. Brzdek, D. Popa, B. Xu, Note on nonstability of the linear recurrence, Abh. Math. Semin. Univ. Hambg., 76 (2006), 183–189. https://doi.org/10.1007/BF02960864 doi: 10.1007/BF02960864
    [7] J. Brzdek, S. M. Jung, Note on stability of a linear functional equation of second order connected with the Fibonacci numbers and Lucas sequences, J. Inequal. Appl., 2010 (2010), 1–10.
    [8] J. Brzdek, D. Popa, B. Xu, On nonstability of the linear recurrence of order one, J. Math. Anal. Appl., 367 (2010), 146–153. https://doi.org/10.1016/j.jmaa.2009.12.052 doi: 10.1016/j.jmaa.2009.12.052
    [9] J. Brzdek, D. Popa, B. Xu, Remarks on stability of linear recurrence of higher order, Appl. Math. Lett., 23 (2010), 1459–1463. https://doi.org/10.1016/j.aml.2010.08.010 doi: 10.1016/j.aml.2010.08.010
    [10] J. Brzdek, D. Popa, I. Raşa, B. Xu, Ulam stability of operators, Academic Press, 2018.
    [11] C. Buşe, D. O'Regan, O. Saierli, A. Tabassum, Hyers-Ulam stability and discrete dichotomy for difference periodic systems, Bull. Sci. Math., 140 (2016), 908–934. https://doi.org/10.1016/j.bulsci.2016.03.010 doi: 10.1016/j.bulsci.2016.03.010
    [12] D. Dragičević, W. Zhang, W. Zhang, Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy, Math. Z., 292 (2019), 1175–1193. https://doi.org/10.1007/s00209-018-2134-x doi: 10.1007/s00209-018-2134-x
    [13] D. Dragičević, On the Hyers-Ulam stability of certain nonautonomous and nonlinear difference equations, Aequat. Math., 95 (2021), 829–840. https://doi.org/10.1007/s00010-020-00774-7 doi: 10.1007/s00010-020-00774-7
    [14] D. Dragičević, M. Pituk, Shadowing for nonautonomous difference equations with infinite delay, Appl. Math. Lett., 120 (2021), 107284. https://doi.org/10.1016/j.aml.2021.107284 doi: 10.1016/j.aml.2021.107284
    [15] S. Elaydi, An introduction to difference equations, Springer-Verlag New York, 2005. https://doi.org/10.1007/0-387-27602-5
    [16] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [17] D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Boston, 1998.
    [18] S. M. Jung, Functional equation $f(x) = pf(x-1)-qf(x-2)$ and its Hyers-Ulam stability, J. Inequal. Appl., 2009, 1–10.
    [19] S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, 2011.
    [20] M. Onitsuka, Influence of the stepsize on Hyers-Ulam stability of first-order homogeneous linear difference equations, Int. J. Differ. Equ., 12 (2017), 281–302.
    [21] D. Popa, Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl., 309 (2005), 591–597.
    [22] D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Differ. Equ., 2 (2005), 407076. https://doi.org/10.1155/ADE.2005.101 doi: 10.1155/ADE.2005.101
    [23] S. M. Ulam, A collection of mathematical problems, Interscience, New York, 1960.
    [24] B. Xu, J. Brzdek, Hyers-Ulam stability of a system of first order linear recurrences with constant coefficients, Discrete Dyn. Nat. Soc., 2015 (2015), 1–5. https://doi.org/10.1155/2015/269356 doi: 10.1155/2015/269356
    [25] M. Xu, Hyers-Ulam-Rassias stability of a system of first order linear recurrences, Bull. Korean Math. Soc., 44 (2007), 841–849.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1142) PDF downloads(121) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog